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ABSTRACT

The authors of this study recently proposed a resampling method for deriving probabilistic forecasts of near-term

climate change and presented some results focusing on temperature and precipitation changes in southern Finland from

1971–2000 to 2011–2020. Here, the sensitivity of the resulting forecasts to two details of the methodology is studied.

First, to account for differences between simulated and observed climate variability, a variance correction technique is

devised. Second, the sensitivity of the forecasts to the choice of the baseline period is studied. In southern Finland, the

variance correction technique generally widens the derived probability distributions of precipitation change, mirroring an

underestimate of the observed precipitation variability in climate models. However, the impact on the derived probability

distributions of temperature change is small. The choice of the baseline period is generally more important, but again

the forecasts of temperature change are less sensitive to different options than those of precipitation change. Cross-

verification suggests that the variance correction leads to a slight improvement in the potential quality of the probabilistic

forecasts, especially for precipitation change. The optimal baseline length appears to be at least 30 yr, and the baseline

should be as late as possible (e.g. 1971–2000 is preferable over 1961–1990).

1. Introduction

Projections of future climate change are affected by several

sources of uncertainty (e.g. Cubasch et al., 2001). A natural way

to deal with the uncertainties is to try to express the projections

in probabilistic terms, analogously to what is commonly done

in operational weather forecasting (e.g. Molteni et al., 1996).

Consequently, a number of methods for deriving probabilistic

projections of climate change have been proposed (e.g. New and

Hulme, 2000; Räisänen and Palmer, 2001; Giorgi and Mearns,

2003; Räisänen and Alexandersson, 2003; Tebaldi et al., 2005).

The requirements for a good probabilistic climate change fore-

casting method depend, in part, on the period considered. Many

of the studies in the field have focused on climate change in the

relatively distant future, for example, the late–21st-century. On

that timescale, uncertainties due to differences between climate

models and emissions scenarios tend to dominate over natural

climate variability. This makes issues such as weighting between

different models (e.g. Giorgi and Mearns, 2003) and emissions
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scenarios (New and Hulme, 2000) important. For projections of

climate change in the early–21st-century, however, differences

between emission scenarios are unimportant, and uncertainty as-

sociated with climate models is also smaller than in longer-term

forecasts (e.g. Räisänen, 2001). Conversely, the relative impor-

tance of forced and unforced natural climate variability becomes

larger.

In a recent study, Räisänen and Ruokolainen (2006; here-

after RR06) derived probabilistic forecasts of near-term climate

change, focusing on temperature and precipitation changes from

the period 1971–2000 to the decade 2011–2020. To achieve a suf-

ficient sample size, they used a resampling ensemble technique

based on the assumption that the probability distribution of local

climate changes is, at least to a first approximation, determined

by the change in the global mean temperature averaged over

a large number of climate models. By using cross-verification,

they demonstrated that the enlarged sample of natural variability

allowed by the resampling outweighs the errors that might arise

due to the violation of this basic assumption. Nevertheless, there

are some methodological issues in the technique of RR06 that

deserve a closer investigation. In this paper we study the sen-

sitivity of the resulting probabilistic forecasts to two choices in

the methodology: a correction to take into account differences
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between simulated and observed natural variability, and the se-

lection of the baseline period from which the climate changes

are calculated.

The need for a realistic estimate of natural climate variability

in short-term climate change forecasts is obvious. For example,

if the model simulations that are used as the basis of the proba-

bilistic forecasts underestimate natural variability, this tends to

make the derived probability distributions too narrow and thus

give a misleading impression of certainty. Conversely, if models

overestimate variability, the reverse happens. It is therefore im-

portant to compare simulated and observed variability with each

other and, if there is evidence of differences, to try to adjust the

derived probability distributions accordingly. In practice, this is

not a straightforward task because natural variability on decadal

and longer scales is difficult to estimate from observations. In this

study, we use a technique based on a comparison of simulated

and observed variability on interannual time scales. Although

the basic assumption of this technique—namely, that variability

on longer timescales is directly proportional to the interannual

variability—may not be exactly valid, a cross-verification test

indicates that the adjustments based on this technique are likely

to be better than no adjustments at all.

The potential importance of the choice of the baseline pe-

riod is best illustrated with an example. The winter climate

in northern Europe in the late–20th-century exhibited strong

interdecadal variability, with a pronounced warming from the

1960s to the 1990s that accompanied an increase in westerly

flow from the Atlantic Ocean (e.g. Räisänen and Alexanders-

son, 2003; Scaife et al., 2005). For example, in a grid box in

southern Finland (60◦N, 25◦E), the January mean temperatures

for the decades 1951–1960, 1961–1970, 1971–1980, 1981–1990

and 1991–2000 were −6.3, −8.6, −6.2, −7.0 and −3.7◦C, re-

spectively, as inferred from the Climate Research Unit (CRU)

TS 2.1 data set (Mitchell and Jones, 2005). The variability in mul-

tidecadal means was smaller but far from negligible (Table 1).

For example, of the two overlapping 30-yr periods 1961–1990

Table 1. An illustration of the sensitivity of climate scenarios to the

choice of the baseline period. T obs = observed January mean

temperature in southern Finland (60◦N, 25◦E) for five alternative

baseline periods; �T mean = Change in January mean temperature

between the various baselines and the decade 2011–2020, as averaged

over simulations by 21 climate models; T scen = ‘best-estimate’

temperature scenarios for 2011–2020, obtained as the sum of the

observed baseline temperature and simulated temperature change.

Baseline T obs �T mean T scen

1951–2000 −6.3 2.1 −4.2

1961–2000 −6.4 2.0 −4.4

1971–2000 −5.6 1.7 −3.9

1981–2000 −5.4 1.7 −3.7

1961–1990 −7.2 2.1 −5.1

and 1971–2000, the latter was 1.6◦C warmer than the former.

In addition to these two 30-yr periods, Table 1 also gives the

mean temperatures for the 20-, 40- and 50-yr periods ending in

2000, all of which could be conceivably used as baselines when

deriving climate scenarios. In particular, although 30 yr is the

most commonly used baseline length in climatology, the Arc-

tic Climate Impact Assessment (ACIA, 2005) and the Fourth

Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC, 2007) both chose a 20-yr baseline.

Now, let us assume that we need a scenario for the mean

January temperature in, for example, the decade 2011–2020. A

usual way for deriving such a scenario is to take the observed

mean temperature during the baseline period and add to this a

model-simulated change from the baseline period to the forecast

period. For the latter, Table 1 uses the mean change over the 21

model simulations specified in Section 2. The simulated change

also depends on the baseline period, but because the averaging

over several model simulations largely eliminates internal cli-

mate variability, this dependence is much smoother than the vari-

ation in the observed temperatures. The warming to 2011–2020

is larger from baseline periods centred earlier in time, but the

differences are relatively modest. The resulting ‘best-estimate’

scenario for the January mean temperature in 2011–2020 varies

from −5.1◦C for the baseline 1961–1990 to −3.7◦C for the base-

line 1981–2000.

As illustrated by this example, projections of future climate

are in some cases quite sensitive to the baseline period used in

the calculations. The heart of this problem is internal climate

variability, which may make the climate of any period either

warmer or colder than on the average expected for the exter-

nal conditions during this period. If internal climate variability

made the selected baseline period warmer (colder) than on the

average expected, this will introduce a warm (cold) bias in pro-

jections of future climate beginning from this baseline period.

This conclusion is valid even when the projections are expressed

in probabilistic terms, rather than as single ‘best-guess’ numbers

as in Table 1. Although the resampling ensemble technique de-

veloped in RR06 takes into account the effects of internal climate

variability in the baseline period as well as the forecast period, it

is only able to make this in a statistical sense. In other words, the

method accounts for the fact that the baseline period may have

been ‘too warm’ or ‘too cold’, but it assumes that both of these

alternatives were equally likely.

In this paper, we will study the impact of the chosen baseline

period in more detail, focusing on climate changes in south-

ern Finland (60◦N, 25◦E). Furthermore, we will use cross-

verification to study the optimal choice of the baseline period.

Here, there are two conflicting issues. On one hand, a longer

baseline period tends to make the impact of internal variabil-

ity smaller. On the other hand, a longer baseline period extends

further into the past, which implies larger uncertainty in the ex-

ternally forced climate change from the baseline period to the

forecast period.
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As in RR06, we assume that uncertainty in modelling climate

response to anthropogenic forcing is sufficiently captured by dif-

ferences between existing climate models. This is an unverified

and debated assumption (e.g. Allen and Ingram, 2002). However,

as illustrated by a sensitivity study in Section 6, the uncertainty

in forecasts of near-term climate change is dominated by natural

variability and our results should, therefore, be relatively insen-

sitive to a possible misrepresentation of modelling uncertainty.

2. Data

As in RR06, we used coupled atmosphere ocean general circula-

tion model simulations produced for the Fourth Assessment Re-

port of the Intergovernmental Panel on Climate Change (IPCC

AR4). The 21 models are listed in RR06. For each model, a

simulation covering the 20th century (20C3M) and forced by a

mixture of anthropogenic and (in most models) natural forcing

factors was combined with a scenario simulation of the 21st cen-

tury climate, to obtain continuous time-series covering at least

the years 1901–2098. For the 21st century, simulations based

on the SRES A1B emissions scenario (Nakićenović and Swart,

2000) were used; note, however, that the choice of the scenario

is unimportant for the present study that focuses on near-term

climate changes. Although parallel runs started from slightly dif-

ferent initial conditions are available for some models, we used

(as in RR06) only one combined 20C3M + A1B simulation for

each model. Also in common with RR06, we gave in our proba-

bilistic calculations the same weight for each of the 21 models.

We use in our analysis a common 2.5◦ × 2.5◦ latitude–

longitude grid, which is representative of the typical resolution

of the models. To avoid interpolation-induced smoothing, the re-

gridding to the analysis grid was made by using, for each model,

the values of the nearest original grid point. This differs from

RR06, in which bilinear interpolation was used. However, a com-

parison of the results labelled as ‘Res’ in Fig. 3 of this paper with

fig. 4 of RR06 indicates that the effects of this difference are quite

modest.

The variance correction technique discussed in Section 3.1

below requires data on the observed interannual variability of

climate. For this purpose, the CRU TS 2.1 data set (Mitchell and

Jones, 2005) was used.

3. Methods

The motivation and implementation of the resampling ensem-

ble method were described in some detail in RR06. Briefly, the

method assumes that the probability distribution of the climate

changes that result from a combination of anthropogenic forcing

and natural variability is determined by the simulated multi-

model mean change in the global mean temperature. This allows

one to select, for any transient climate change simulation, sev-

eral different pairs of periods that can be used as a surrogate

for estimating the climate change between the actual baseline

(e.g. 1971–2000) and forecast periods (e.g. 2011–2020). As a re-

sult, a larger sample for probabilistic forecasts of climate change

is achieved. For example, by subsampling the 10-yr forecast

period with a 5-yr interval, we found from the time-series ob-

tained from the 20C3M and A1B simulations (years 1901–2098)

20 pairs of periods which shared essentially the same 21-model

mean global warming as simulated from 1971–2000 to 2011–

2020. As we have 21 models, this gives a nominal sample size of

420, although the subsampling means that the effective sample

size is smaller. By using cross-verification, RR06 showed that

the increased sample size allowed by the resampling results in

potentially better probabilistic forecasts of climate change.

In this study we examine the sensitivity of probabilistic cli-

mate change forecasts to two details in our resampling methodol-

ogy: a simple correction to model-simulated variability (which

was not used in RR06) and the choice of the baseline period

used in estimating the changes. These methodological details

are discussed in more depth in the following two subsections.

In this paper, we focus entirely on climate change from the

late–20th-century to the near future (2011–2020), counting in

climate change both the gradually emerging anthropogenic cli-

mate change signal and the effects of natural variability.

3.1. Variance correction

The resampling ensemble method developed in RR06 attempts

to derive a probability distribution for the combination of forced

anthropogenic climate change and natural climate variability.

However, this aim may be compromised if the amplitude of

variability in the models is too low or too high. To alleviate

this potential problem, a simple adjustment (hereafter: variance

correction) for biases in simulated variability was devised.

Because our main interest here is on changes in decadal

mean climate, the variance correction should be ideally based

on comparison of simulated and observed variances on the in-

terdecadal timescale. Unfortunately, small sample sizes make

such a comparison practically meaningless. We therefore com-

pared the simulated and observed variances on the interannual

timescale and assumed that an overestimate (underestimate) of

interannual variability is accompanied by an equally large rel-

ative overestimate (underestimate) of interdecadal variability.

This assumption will only be exactly valid if the simulated and

observed time-series share the same autocorrelation structure,

which may not always be the case. To try to reduce this prob-

lem, we also tested using the variance of longer-term (2- to 5-yr)

averages of temperature and precipitation, but cross-verification

indicated that this had no advantage over the use of interannual

variability (see Section 4.2).

Having calculated the observed and simulated variances (as

detailed in the end of this subsection), we made the variance

correction separately for each individual model. The resampling

method gives, for each model i, n possible realizations of cli-

mate change. In doing the variance correction for temperature
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changes, we first calculated for each model the mean mi of these

n realizations. Then each individual realization of change was

adjusted using the formula

�ai j = mi +
√

vo

vi

(
�oi j − mi

)
, (1)

where v o and v i denote the observed and simulated variances,

�oij (where 1 ≤ j ≤ n) the original realization of climate change

and �aij the adjusted realization of change. As a result of this

adjustment, the variance of the original realizations �oij, which

was assumed to be wrong by the factor v i/v o, becomes multiplied

by v o/v i, but the mean of the realizations remains unchanged.

For precipitation changes, the same idea was used with two

modifications. First, because precipitation changes are expressed

here in per cent units, the squared coefficient of variation was

used in the comparison instead of the absolute variance. Second,

the mean change mi in eq. (1) was replaced by the quantity

m Pi = 100% ×
(

Pf

Pc
− 1

)
, (2)

where Pf and Pc are the mean values of precipitation averaged

over all the n forecast (f ) and control (c) periods used in the

resampling method. The replacement of mi by mPi is motivated

by the expectation that mPi should give a better estimate of the per

cent precipitation change that would be obtained in the absence

of internal variability. However, the difference mainly matters

in arid areas with a very irregular precipitation climate and is

unimportant for the results discussed in this paper.

The observed variances v o were calculated from linearly de-

trended 100-yr (1901–2000) time-series of temperature and pre-

cipitation using the University of East Anglia CRU TS 2.1 data

set (Mitchell and Jones, 2005). Similarly, 100-yr detrended time-

series for the period 1901–2000 were used for calculating the

variance in the models. Despite the detrending, the simulated

and the observed variance estimates may both be slightly af-

fected by forced anthropogenic climate change. However, the

analogous treatment of the model simulations and the observed

time-series should minimize the effect that this contamination

may have on the comparison of their variances.

The CRU data set has a much higher resolution (0.5◦ × 0.5◦)

than the model simulations. Consequently, we calculated the

variances v o in two different ways. In the first method, the CRU

temperature and precipitation time-series were first averaged to

the same grid boxes (2.5◦ × 2.5◦) that were used for analysing the

model data, after which the variances of these time-series were

calculated. In the second method, the variances were calculated

directly in the 0.5◦ × 0.5◦ grid and then averaged over the 2.5◦ ×
2.5◦ grid boxes. The results shown in Sections 4 to 5 below use

the first method, which provides a more fair comparison with

the model simulations. On the other hand, the second variance

estimate comes closer to truly local climate variability, which

is relevant in many climate impact studies. The sensitivity of

our probabilistic forecasts to the use of this second estimate is

discussed briefly in Section 6.

3.2. Choice of the baseline period

In RR06, climate changes were calculated against the 30-yr

baseline period 1971–2000. As illustrated in Section 1, how-

ever, scenarios of future climate may be affected by the choice

of the baseline. We therefore repeated our probabilistic climate

change calculations using three other baseline periods extending

to the year 2000 (1951–2000, 1961–2000, 1981–2000), and also

the baseline 1961–1990. The period 1961–1990 was included

because it is still used as the baseline of present-day climate at

some occasions, for example in climate impact research (e.g.

Mearns et al., 2001).

To make the forecasts obtained with the various baselines com-

parable with each other, all results are expressed as temperature

and precipitation differences relative to our reference baseline

1971–2000. To do this, we combine the model-simulated cli-

mate changes with the observed differences (from the CRU data

set) in climate between 1971 and 2000 and the other baselines.

The adjusted temperature changes �T are then defined as

�T = �Ts − �To, (3)

where �Ts is the simulated change from the selected base-

line (e.g. 1951–2000) to the decade 2011–2020 and �To is

the observed temperature difference between the reference base-

line and the alternative baseline, for example �To = T (1971 −
2000) − T (1951 − 2000).

For changes in precipitation, the modification is different be-

cause we examined relative changes. The adjusted precipitation

change becomes

�P = 100% × �Ps − �Po

�Po + 100%
, (4)

where �Ps is the simulated per cent change representing the

difference between the forecast period (e.g. 2011–2020) and the

alternative baseline (e.g. 1951–2000), and �Po is the observed

per cent difference between this baseline and the reference base-

line (1971–2000).

3.3. Cross-verification

For obvious reasons, forecasts of future climate change cannot be

verified directly. However, under the assumption that the differ-

ences between the model simulations give a meaningful measure

of uncertainty, the potential quality of the forecasts can be esti-

mated by using cross-verification (RR06). In cross-verification

the climate changes in one model are treated as a pseudo-

truth and the probabilistic forecasts obtained by using the other

20 models are verified against it. This is repeated for all individ-

ual models, and the verification statistics are averaged over all

cases and over the global area. When we calculated changes with
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the variance correction in cross-verification mode the variance

in the verifying model was assumed to be correct and was thus

substituted for v o in eq. (1).

The cross-verification results are expressed by using the con-

tinuous ranked probability score CRPS (Stanski et al., 1989;

Hersbach, 2000; Candille and Talagrand, 2005). A lower CRPS

indicates a better forecast. In this study, the cross-verification

results are given separately for annual, seasonal (mean of CRPS

in the four standard 3-month seasons) and monthly (mean of

CRPS in the 12 calendar months) temperature and precipita-

tion changes. By comparing the CRPS scores for the resampling

method without and with the variance correction, and between

different baseline periods, we wished to test which choices in the

forecast methodology are likely to produce the best forecasts.

Obviously, cross-verification is a relative rather than absolute

measure of forecast quality. It gives advice on how well differ-

ent forecast strategies use the information available in the mul-

timodel ensemble. However, if the ensemble as a whole would

turn out to be substantially biased when compared with the real

climate system, then the actual quality of the forecasts would be

lower than the cross-verification suggests. The extent to which

multimodel ensembles like the one used in this study capture

the actual uncertainty in anthropogenic climate change is still

actively debated (e.g. Allen and Ingram, 2002). We therefore in-

clude in Section 6 a test which illustrates the sensitivity of our

probabilistic forecasts to an artificial amplification of intermodel

differences.

4. Impact of variance correction

We first consider differences between the simulated and observed

variability of temperature and precipitation. Figure 1a illustrates

the ratio between the simulated and the observed standard de-

viation of annual mean temperature in Europe. The standard

Fig. 1. (a) Ratio (×10) between the simulated and the observed interannual standard deviations (STDs) of annual mean temperatures in Europe.

Dark (light) shading indicates areas where the simulated standard deviation is at least 5% larger (smaller) than the observed standard deviation.

(b) as (a) but for the coefficient of variation of annual precipitation. See text for further details.

deviation in the models is represented by Sim = √
vs , where vs

is the 21-model mean interannual variance. In most of Europe,

excluding the southernmost parts of the area, the simulated tem-

perature variability exceeds the observed variability. For pre-

cipitation (Fig. 1b), the situation is quite different. In most of

northern and Western Europe, the simulated interannual coef-

ficient of variation of precipitation is notably smaller than the

observed coefficient of variation. The reverse only happens in

the Mediterranean area.

To adjust the derived probability distributions of temperature

and precipitation change for the biases in the simulated vari-

ability, we applied the variance correction described in Sect-

ion 3.1. The effect of this correction on the width (taken here as

the difference between the 95th and 5th percentiles) of the proba-

bility distributions of annual mean temperature and precipitation

change from 1971–2000 to 2011–2020 is illustrated in Fig. 2.

In northern and Eastern Europe, the variance correction pro-

duces slightly narrower distributions of temperature change than

the basic resampling method without the correction, whereas in

southernmost Europe the distribution grows wider (Fig. 2a). For

changes in precipitation (Fig. 2b), the variance correction makes

the distribution wider in northern and Western Europe and in

some areas of Eastern Europe. These results are consistent with

the differences between the observed and simulated variability

shown in Fig. 1.

4.1. Probability forecasts of climate change from
1971–2000 to 2011–2020 in southern Finland

In the following we introduce probability forecasts for tem-

perature and precipitation changes from 1971–2000 to 2011–

2020 for a grid box in southern Finland (60◦N, 25◦E). We

used both the basic resampling method of RR06 and the resam-

pling method with the variance correction for monthly, seasonal
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Fig. 2. Effect of the variance correction on the distribution width (difference between the 95th and 5th percentiles) of forecasts of annual mean (a)

temperature and (b) precipitation change from 1971–2000 to 2011–2020. The numeric values give the ratio (×10) between the widths of the

variance-corrected (Var) and uncorrected (Res) forecast distributions. Shading as in Fig. 1.

Fig. 3. Probabilistic forecasts for monthly

(a–b), seasonal (c–d) and (e–f) annual mean

temperature (left) and precipitation changes

(right) from 1971–2000 to 2011–2020, in

southern Finland. The whiskers show the

2.5st, 5th, 10th, 25th, 50th, 75th, 90th, 95th

and 97.5th percentiles of the distributions, as

indicated for the leftmost whiskers in each

panel. The two rows of numbers in the

bottom of the panels denote medians of the

estimated probability distributions (in◦C for

temperature and in % for precipitation

change) and the probabilities of increase (%).

The whiskers in (a–d) and the two leftmost

whiskers in (e–f) compare the distributions

obtained without (Res) and with (Var) the

variance correction, using 1971–2000 as the

baseline. The five rightmost whiskers in

(e–f) compare the distributions of annual

mean temperature and precipitation change

obtained by using different baseline periods

in the calculations (with the variance

correction included in all cases). Note that

the vertical scales in the three rows differ.

(DJF = December–January–February, MAM = March–April–

May, JJA = June–July–August, SON = September–October–

November) and annual climate changes. As already shown in

RR06, the probability distribution of temperature change in win-

ter is much wider than the distributions for the other seasons or

for the annual mean change. This is a consequence of larger

temperature variability in winter than in the other seasons. In

the case of precipitation change, the distributions in individual

months are much wider than the seasonal and annual distribu-

tions (note that Figs. 3a–b, 3c–d and 3e–f have different scales).
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For each of the four individual months studied (Figs. 3a–b), for

the four 3-month seasons (Figs. 3c–d) and for the annual mean

(left of Figs. 3e–f), Fig. 3 shows two probability whiskers: the

one on the left for the basic resampling method (Res) and the one

on the right for the resampling with the variance correction (Var).

A comparison of these two adjacent whiskers indicates that the

variance correction has in most cases only modest effects of the

derived probability distributions of temperature change. How-

ever, the effect is mostly towards narrowing the distributions,

particularly so in spring (MAM) and April and to a slightly lesser

extent in winter (DJF) and January. On the other hand, the dis-

tributions of precipitation change grow in most cases wider by

using the variance correction, which indicates increased uncer-

tainty. This also means in general that the estimated probabilities

of precipitation increase become smaller but the differences are

only a few percentage units. For example, the probability of

annual precipitation increase diminishes from 79% to 75%; sea-

sonal and monthly differences are equal or slightly smaller. The

probability of annual mean warming is very high both without

(95%) and with (96%) the variance correction.

4.2. Cross-verification

Is it justified to assume that the probability distributions includ-

ing the variance correction are more realistic than those derived

with the basic resampling method without the correction? To ob-

tain at least a tentative answer to this question, cross-verification

was conducted as detailed in Section 3.3 and in RR06. CRPS

scores were calculated both without and with the variance cor-

rection, and they were averaged over the global area and over

all 21 choices of the verifying model. The leftmost column in

Table 2 gives the resulting ratios of CRPS between the two

methods, with values below one indicating that the variance

correction leads to a potential improvement of the probabilistic

forecasts.

The results suggest that the variance correction generally im-

proves the forecasts, at least in the cross-verification framework.

Table 2. Cross-verification CRPS ratios between climate change forecasts with the variance correction and without it (Var/Res), and between

calculations based on five different baselines and the reference baseline period 1971–2000 (last five columns). The first three rows give the ratios of

globally averaged CRPS scores for annual, seasonal and monthly temperature changes, and the last three the same for precipitation changes. Ratios

below one indicate improvement. The forecast period is 2011–2020 and emission scenario is A1B in all calculations. See text for further details.

1951–2000/ 1961–2000/ 1981–2000/ 1991–2000/ 1961–1990/

Var/Res 1971–2000 1971–2000 1971–2000 1971–2000 1971–2000

�T Annual 0.998 1.053 1.020 0.986 1.011 1.094

Seasonal 0.994 1.035 1.012 1.001 1.059 1.080

Monthly 0.991 1.019 1.003 1.014 1.097 1.064

�P Annual 0.979 0.992 0.984 1.046 1.171 1.019

Seasonal 0.978 0.976 0.974 1.040 1.172 1.010

Monthly 0.974 0.967 0.967 1.037 1.175 1.004

However, the improvement in the globally averaged CRPS scores

is modest particularly for temperature changes. For changes in

precipitation, the improvement is larger, but still only a half of

the improvement obtained when replacing the straightforward

method of only using one realization of climate change per one

model with the basic resampling method (RR06).

For changes in precipitation, the variance correction leads to

a decrease in the cross-verification CRPS scores in about 80%

of the global area (not shown). For changes in temperature, how-

ever, there are wide areas particularly in low latitudes where the

variance correction worsens the cross-verification performance

(as illustrated for seasonal data in Fig. 4). It is probably not a

pure coincidence that the largest deterioration in CRPS is seen

over the Tropical Pacific. A basic assumption in our variance

correction method is that the frequency spectrum of variability

has similar shape for all models (and between models and obser-

vations), so that the correction factors needed on the interdecadal

timescale can be derived directly from a comparison of interan-

nual variances. This is probably not a good assumption in the

Tropical Pacific where temperature variability is strongly domi-

nated by the El Niño phenomenon and the timescale of El Niño

varies markedly between different models and between many

models and observations (AchutaRao and Sperber, 2006).

We also tested the variance correction method by replacing

the interannual variances by the variances of longer-term (2- to

5-yr) averages of temperature and precipitation. However, cross-

verification indicated that this had no advantage over the use of

interannual variances (not shown). Although the use of longer-

term averages is expected to reduce the errors associated with the

non-universal frequency spectrum of variability, this advantage

appears to be more than compensated by the disadvantage of

reduced sample size.

Despite its limitations, the variance correction method appears

in the light of the cross-verification results generally preferable

over the basic resampling method. Consequently, we include the

variance correction when studying the impact of the choice of

the baseline period in the next section.
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Fig. 4. The ratio of cross-verification CRPS

scores of seasonal mean temperature change

between the resampling method with the

variance correction (Var) and without it

(Res). Where the ratio is below one

(unshaded areas) the variance correction

improves the cross-verification performance.

See text for further details.

5. Role of the baseline period

5.1. Probability forecasts of climate change to
2011–2020 as estimated by using different baselines

The impact of the chosen baseline period on the probability dis-

tributions of annual mean temperature and precipitation change

in southern Finland (60◦N, 25◦E) is illustrated with whisker plots

in Figs. 3e–f. In addition, Tables 3 and 4 give, for each of the

five baselines studied, the median estimates of change and the

estimated probabilities of increase from 1971–2000 to 2011–

2020 for monthly, seasonal and annual means of temperature

and precipitation. To facilitate the discussion of these results,

the observed (CRU) temperature and precipitation differences

between the other baselines and 1971–2000 are given in Table 5.

Whereas the impact of the variance correction is largely lim-

ited to the width of the probability distributions, the choice of

the baseline period affects both the location and the width of

the distributions but generally more the former than the latter.

Table 3. Probabilistic forecasts of temperature change in southern Finland from five different baselines to the period 2011–2020. The changes are

expressed as temperature differences from the reference period 1971–2000. The medians (◦C) of the derived probability distributions and the

probabilities of warming (%; in parenthesis) are given for four months, four seasons and the annual means. The variance correction is included in all

cases (see text).

Baseline period
�T
Med (Prob) 1951–2000 1961–2000 1971–2000 1981–2000 1961–1990 Ranges

Jan 1.0 (79) 0.9 (75) 1.4 (84) 1.4 (84) 0.1 (54) 0.1–1.4 (54–84)

Apr 0.7 (81) 0.8 (83) 0.9 (84) 1.1 (91) 0.7 (81) 0.7–1.1 (81–91)

Jul 0.5 (71) 0.6 (75) 0.6 (82) 0.6 (77) 0.5 (75) 0.5–0.6 (71–82)

Oct 1.1 (87) 1.1 (89) 0.8 (85) 1.2 (91) 1.3 (91) 0.8–1.3 (85–91)

DJF 1.1 (85) 1.0 (83) 1.3 (90) 1.3 (88) 0.5 (68) 0.5–1.3 (68–90)

MAM 0.6 (77) 0.8 (86) 0.9 (90) 1.0 (93) 0.7 (84) 0.6–1.0 (77–93)

JJA 0.7 (90) 0.7 (92) 0.7 (90) 0.5 (84) 0.7 (89) 0.5–0.7 (84–92)

SON 1.1 (95) 1.0 (94) 0.9 (92) 0.9 (92) 1.1 (96) 0.9–1.1 (92–96)

ANN 0.9 (92) 0.9 (94) 1.0 (96) 1.0 (94) 0.8 (90) 0.8–1.0 (90–96)

In the case of the annual mean temperature change, however,

the sensitivity of the forecast to the choice of the baseline is rel-

atively modest (Fig. 3e). The median estimate of the warming

from 1971–2000 to 2011–2020 varies from 0.8◦C for the base-

line 1961–1990 to 1.0◦C for the baselines 1971–2000 and 1981–

2000, and the probability of temperature increase from 90% to

96% (for the baselines 1961–1990 and 1971–2000, respectively).

Forecasted changes in annual mean precipitation (Fig. 3f) are

more sensitive to the choice of the baseline period than the fore-

casts of temperature change. The estimated probability of precip-

itation increase from 1971–2000 to 2011–2020 varies from 71%

for the 1961–2000 baseline to 84% for the 1981–2000 baseline.

These differences reflect the observed variations of precipitation

given in the bottom row of Table 5; in particular the period 1981–

2000 was about 3.5% wetter than the 1961–2000 as a whole. In

addition, the shortest (20-yr) baseline results in notably wider

probability distribution of precipitation change than the longer

ones, which is caused by the increasing random variation of pre-

cipitation amount with decreasing averaging period.
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Table 4. As Table 3 but for precipitation changes. The median changes are given in per cent of the mean precipitation in 1971–2000.

Baseline period
�P
Med (Prob) 1951–2000 1961–2000 1971–2000 1981–2000 1961–1990 Ranges

Jan 6 (67) 2 (56) 5 (63) 17 (85) −3 (42) −3 to 17 (42–85)

Apr 7 (66) 8 (66) 5 (60) −1 (47) 7 (65) − 1 to 8 (47–66)

Jul 7 (70) 4 (59) 3 (58) 5 (60) 7 (71) 3–7 (58–71)

Oct 1 (55) 4 (58) 4 (57) 9 (67) 0 (49) 0–9 (49–67)

DJF 7 (76) 3 (63) 5 (69) 11 (87) −1 (47) −1 to 11 (47–87)

MAM 3 (63) 4 (67) 3 (63) 5 (69) 3 (63) 3–5 (63–69)

JJA 4 (67) 2 (57) 3 (63) 6 (70) 4 (65) 2–6 (57–70)

SON 2 (59) 3 (64) 4 (62) 3 (58) 6 (71) 2–6 (58–71)

ANN 4 (75) 3 (71) 4 (75) 6 (84) 4 (74) 3–6 (71–84)

Table 5. Observed (CRU) mean temperature and precipitation differences between four different baselines and the reference period 1971–2000, in

southern Finland. For temperature the absolute (◦C) and for precipitation the relative (%) baseline minus 1971–2000 differences are given.

Baseline period 1951–2000 1961–2000 1981–2000 1961–1990 1951–2000 1961–2000 1981–2000 1961–1990

�OBS �T (◦C) �T �T �T �P (%) �P �P �P

Jan −0.7 −0.7 0.3 −1.6 2.3 −2.3 12.4 −7.8

Apr −0.3 −0.1 0.3 −0.3 2.2 2.6 −4.8 1.6

Jul −0.2 −0.2 0.0 −0.3 3.3 1.1 1.6 4.3

Oct 0.1 0.2 0.5 0.2 −2.0 −0.6 5.3 −4.2

DJF −0.6 −0.5 0.2 −1.1 1.3 −1.8 7.0 −5.6

MAM −0.5 −0.2 0.3 −0.4 −0.4 0.9 2.5 −0.9

JJA −0.1 −0.1 0.0 −0.1 −1.3 −2.0 3.1 −0.3

SON 0.1 0.1 0.2 0.1 −1.4 0.2 −0.4 1.6

ANN −0.3 −0.2 0.2 −0.4 −0.6 −0.8 2.7 −0.9

Turning to the changes in seasonal and monthly mean cli-

mate, the numbers in Table 3 show that, in southern Finland,

the forecasts of temperature change are relatively insensitive to

the choice of the baseline period in spring, summer and autumn.

In winter and particularly in January, however, the sensitivity is

much larger. The median estimate of January mean temperature

change from 1971–2000 to 2011–2020 varies from only 0.1◦C

(with the baseline 1961–1990) to 1.4◦C (with the baselines 1971–

2000 and 1981–2000), and the probability of warming from 54

to 84%. For the changes in winter (DJF) mean temperature, the

corresponding ranges of median and probability of warming are

0.5◦–1.3◦C and 68–90%, respectively. The large differences be-

tween the forecasts obtained with the baseline 1961–1990 and

the baselines 1971–2000 and 1981–2000 reflect the strong ob-

served warming of winters in the late–20th-century (see Table 5

and Table 1), which accompanied an increase in westerly flow

from the Atlantic Ocean and greatly exceeded the warming typ-

ically simulated by climate models between these two periods

(e.g. Räisänen and Alexandersson, 2003).

The medians of precipitation change and probabilities of pre-

cipitation increase from 1971–2000 to 2011–2020 obtained by

using the five different baselines are given in Table 4. The two

longest baselines, 1951–2000 and 1961–2000, give results quite

similar to those obtained with the baseline 1971–2000. For all

the four single months considered, for all 3-month seasons and

for the annual mean, the medians of change are positive (by 1–

8%) for these three baselines. The same is in most cases true for

the baseline 1961–1990, but in January and winter (DJF) this

baseline gives median changes of −3% and −1% with probabil-

ities of increase of only 42% and 47%. The forecasts obtained

with the shortest baseline (1981–2000) are in some cases (e.g. in

January and winter) markedly different from those for the refer-

ence baseline 1971–2000.

As a whole, the forecasts of precipitation change appear to

be more sensitive to the chosen baseline than the forecasts

of temperature change. However, regardless of the baseline

used, the probability of annual precipitation increase exceeds

70%.

5.2. Cross-verification

Given that probabilistic forecasts of climate change are in some

cases quite sensitive to the choice of the baseline period, which

baseline period is likely to give the best results? To shed some

light on this issue, we used cross-verification in the same way as

described in Section 4.2. The resulting globally averaged CRPS

values, normalized by the values obtained by using the base-

line period 1971–2000, are shown in the five last columns of
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Table 2. For illustration, we also include in this table one very

short baseline (1991–2000), which was not considered in the

previous subsection.

1. For changes in temperature, the lowest CRPS scores are

obtained by using the baseline 1971–2000 (changes in individual

calendar months) or 1981–2000 (changes in annual mean tem-

perature). Both longer (1951–2000 and 1961–2000) and shorter

(1991–2000) baselines work less well.

2. For changes in precipitation, the best baseline period ap-

pears to be 1951–2000 (monthly changes) or 1961–2000 (annual

mean changes). The shortest baseline, 1991–2000, results in by

far the worst cross-verification CRPS scores.

3. For both variables but particularly for temperature, the

baseline 1961–1990 is worse than 1971–2000.

These results can be understood by considering the following

facts. First, if internal climate variability were the only uncer-

tainty in climate change forecasts, the baseline period should be

as long as possible to reduce the impact of internal variability.

Second, however, the uncertainty in forced (mainly greenhouse-

gas induced) anthropogenic climate change increases with the

difference in forcing conditions between the baseline period and

the forecast period. In broad terms: the further in the past the

baseline period is centred, the larger the uncertainty in the forced

climate change grows. This effect is most clearly illustrated by

the differences between 1961–1990 and 1971–2000. Third, the

relative impact of the uncertainty in the forced climate change

as compared with internal variability is larger for temperature

than for precipitation, the changes of which have a lower signal-

to-noise ratio (e.g. Räisänen, 2001). This tends to make the op-

timal baseline period longer for precipitation than temperature

changes. The same argument explains why the optimal baseline

period appears to be longer for changes in monthly than in annual

mean climate.

Considering the results for both temperature and precipitation,

1971–2000 and 1961–2000 appear to be the best of the tested

baselines. 1961–1990, although still used at some occasions be-

cause lack of suitable data for 1971–2000, is not recommendable

from the cross-verification perspective.

Table 6. 5-to-95% uncertainty ranges of winter (DJF), summer (JJA) and annual (ANN) mean temperature and precipitation changes from

1971–2000 to 2011–2020 in southern Finland. Var = standard variance correction method. Var2 = variance correction method with the alternative

CRU variability estimate (see text). Fact1.5 = as Var, but with an artificial 50% increase in intermodel differences according to Eq. (5). For Var2 and

Fact1.5, the numbers in parentheses give the relative increase in the width of the 5–95% range as compared with Var.

Var Var2 Fact1.5

�T DJF −0.5 to 3.1 −0.5 to 3.1 (+1%) −0.5 to 3.1 (+3%)

JJA −0.2 to 1.6 −0.2 to 1.6 (+1%) −0.3 to 1.8 (+12%)

ANN 0.0 to 1.8 0.0 to 1.8 (0%) −0.1 to 1.9 (+14%)

�P DJF −9.7 to 22.3 −10.9 to 23.6 (+8%) −9.8 to 22.5 (+1%)

JJA −13.8 to 21.6 −15.1 to 22.7 (+7%) −14.7 to 23.9 (+9%)

ANN −5.7 to 12.1 −6.5 to 12.9 (+10%) −5.9 to 12.4 (+3%)

6. Further sensitivity tests

As noted in Section 3.1, two estimates of interannual variability

were derived from the CRU data set. For the first one, which

was used in Sections 4 and 5 above, the CRU temperature and

precipitation fields were averaged over the 2.5◦ × 2.5◦ grid

boxes before calculating their interannual variance. For the sec-

ond one, the order of variance calculation and horizontal av-

eraging was reversed, to obtain estimates of variance that are

more representative of climate variability on small horizontal

scales.

As expected, the second method yields higher estimates of

variance and, when substituted to the variance correction pro-

cedure, it results in wider probability distributions of climate

change. In practice, however, this difference only matters for

precipitation, and even for precipitation the effect is relatively

modest. As an illustration, the 5–95% uncertainty ranges of DJF,

JJA and annual mean temperature and precipitation change in the

southern Finland (25◦E, 60◦N) grid box are compared between

the two variance calculation options in the first two columns of

Table 6. In the case of precipitation change, the second method

gives up to 10% wider uncertainty ranges. For changes in tem-

perature, the difference is at most 1%.

Another caveat in our derived probability distributions con-

cerns the ability of the multimodel ensemble to capture the un-

certainty in the noise-free anthropogenic climate change signal,

that is, in the changes that would occur in the absence of natu-

ral variability. To study the potential importance of this issue, a

sensitivity test was conducted in which intermodel differences in

climate change were artificially amplified by the factor 1.5. De-

noting the overall mean of the derived probability distribution as

M, the variance-corrected climate changes �aij were replaced,

for each model i and realization j, with

�bi j = M + 1.5(mi − M) + (�ai j − mi ), (5)

where mi is the mean of �aij for the n realizations from

model i. Thus, this adjustment amplified the differences be-

tween the model-specific mean changes but left the differ-

ences between the individual realizations from each model

unchanged.
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At the limit where intermodel differences dominated over the

uncertainty associated with internal variability, so that the dif-

ferences (mi – M) were much larger than the differences (�aij –
mi), the adjustment (eq. 5) would widen the derived probability

distributions by almost 50%. In practice, the effect was much

smaller (compare the first and third column in Table 6). The

derived 5–95% uncertainty range in annual mean temperature

change became 14% wider, and the relative increase in the cor-

responding seasonal ranges was even smaller. For the changes in

precipitation, the effect was systematically smaller than for tem-

perature changes. Thus, because of the dominant role of internal

variability, probabilistic forecasts of near-term regional climate

change appear to be relatively insensitive to the representation

of modelling uncertainty.

7. Summary and discussion

In an earlier study, RR06 derived probabilistic forecasts of near-

term climate change in southern Finland by using a resampling

ensemble method. Their results included, for example, a 95%

probability of annual mean warming from 1971–2000 to 2011–

2020 and an 80% probability of increasing annual precipitation.

In this paper, we studied the sensitivity of these probabilistic

forecasts to two details in the methodology: a variance correction

attempting to correct biases in the amplitude of model-simulated

natural variability, and the choice of the baseline period. Follow-

ing RR06, we also used cross-verification to study which choices

in the methodology are likely to give the best probabilistic fore-

casts. Our main findings are listed below.

(1) Sensitivity of forecasts to the variance correction. The

variance correction affects the width of the derived probability

distributions. In southern Finland, the variance correction gener-

ally widens the distributions of annual, seasonal and monthly pre-

cipitation change so that the probability of precipitation increase

becomes somewhat smaller. By contrast, the variance correction

has practically no systematic effect on probabilistic forecasts of

temperature change.

(2) Sensitivity of forecasts to the choice of baseline pe-
riod. The selection of the baseline period affects both the lo-

cation and width of the derived probability distributions. The

probability distributions of precipitation change vary in some

cases quite substantially, but the forecasts to temperature change

are sensitive to the chosen baseline only in winter. On the

whole, the forecasts of temperature change are less sensitive

to the details of the methodology than forecasts of precipitation

change.

(3) Cross-verification. Our cross-verification tests suggest

that, in general, the variance correction should improve proba-

bilistic forecasts of near-term climate change, especially in the

case of precipitation change. Secondly, the optimal length of the

baseline period for forecasts of temperature change appears to

be close to 30 yr, and that for forecasts of precipitation change at

least 30 yr. Furthermore, at least from the cross-verification per-

spective, 1971–2000 is a better baseline period than 1961–1990

for both temperature and precipitation.

Our probabilistic forecasts are based on the assumption that

the uncertainty in the response of climate to changes in atmo-

spheric composition is represented adequately by differences

between existing climate models and that the forcing scenario

used in the calculations is realistic. An eventual violation of

these assumptions might to some extent compromise the ac-

curacy of our results, although (as implicated by the results

shown in Section 6) this caveat should be smaller for fore-

casts of near-term than long-term climate change. Regardless of

this, our findings suggest that the amplitude of model-simulated

variability and the choice of the baseline period are issues that

may need careful consideration also when deriving probabilis-

tic forecasts of near-term climate change for other parts of the

world.
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