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ABSTRACT
The measure developed by Langland and Baker to estimate and compare the utility of arbitrary sets of observations for
reducing forecast error is re-derived here. The formula uses adjoints of both a forecast model and a data assimilation
system. Although the final expression here is nearly identical to that developed by Langland and Baker, the third-order
character of their measure is now explicitly presented. The appropriateness of going beyond first order is explained and
a warning of the measure’s nonlinearity possibly clouding its interpretation is offered.

1. Introduction

In Langland and Baker (2004, hereafter LB), adjoints of a fore-
cast model and data assimilation system (the latter as in Baker
and Daley, 2000) are used to efficiently estimate the reductions
of a forecast-error measure due to arbitrary sets of observations
used by the data assimilation system. Although the utility of
their particular measure is demonstrated in both LB and as yet
unpublished works, there is an apparent misconception regard-
ing what they denote as the gradient of their measure with respect
to values of the observations. Although this does not affect their
primary conclusions, it does affect the precise interpretation of
their results, most notably aspects relying on linearity.

2. Derivation

We begin by considering a forecast model

x f = m(x0), (1)

where x is an atmospheric model state vector with components
x i (also using j, k, l, n as component subscripts), superscripts f
and 0 denote a model forecast and initial condition, respectively,
and m denotes a nonlinear model. The forecast error is measured
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with respect to a verification state xt (considered as ‘truth’) using

e =
∑
i, j

(
x f

i − xt
i

)
ci, j

(
x f

j − xt
j

)
, (2)

where ci, j denotes a symmetric (more typically, diagonal)
weighting matrix. Although e is a quadratic expression in x f ,
it is an even higher-order expression in terms of x0 when m
is nonlinear. The component, rather than vector, form of (2) has
been presented because tensors will be introduced at a later stage.

Usually, xt is an analysis produced at the verification time
using the same sequential data assimilation system that earlier
produced x0 from observations and background information (de-
scribed later). Such an xt therefore also depends on x0. If the
forecast period is sufficiently long, however, such that many ad-
ditional observations have been assimilated during intervening
assimilation cycles, then any such dependence can be ignored.
The dependence will be ignored here even if applied to rather
short forecast periods.

The first goal here is to express changes of e due to changes
of x0 using a Taylor series approximation
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∑
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k δx0
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i + · · · ,

truncated to some order, where δx0 represents a sufficiently small
change to x0 so that a truncated approximation is a good one. By
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gathering the common factor δx0
i , this series can be rewritten as
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)

. (3)

The term in parenthesis may be considered as a vector g. For
computation of the derivatives,

mi, j = ∂x f
i

∂x0
j

(4)

will denote what is sometimes called either the Jacobian of the
forecast model or, more properly, the resolvent matrix of the
tangent linear version of the forecast model. Also,

δmi, j =
∑

n

∂mi, j

∂x0
n

δx0
n (5)

will denote a linear estimate of the change in the resolvent due
to a change in the forecast trajectory about which the nonlinear
model is linearized. This is zero when the model is linear. Also,

δx f
k =

∑
j

mk, jδx0
j (6)

is a linearized estimate of the change in the model forecast given
a change to its initial condition. The derivatives appearing in (3)
are
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= 2
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)
, (7)
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The next goal is to reconsider the various orders of approx-
imations to (3) in terms of a vector of observation values yo.
These observations are used to create an atmospheric analysis

xa = xb + K
[
yo − h(xb)

]
(10)

from a prior (background) estimate xb, where K is the Kalman
gain matrix and h is a possibly nonlinear operator used to relate
the model state to the observations (called the forward observa-
tion operator). The difference

δy = yo − h(xb) (11)

is the innovation vector, with elements denoted by δyi . If h is
either linear or defined only as a function of xb (and not, for
example, based on a linearization about the updated state xa)
then K is independent of the values of yo, which will be assumed
throughout this derivation.

For examining the impacts of observations on e, the appropri-
ate choice for x0 is xb so that

δx0 = xa − xb = Kδy, (12)

in which case when δy = 0, δe = 0, and there is no impact.
For any vector g in state space there is a corresponding vector
g̃ = KTg in observation space such that

(δx0)Tg = (δy)Tg̃ (13)

according to the definition of an adjoint. Various-order approxi-
mations to δe can therefore be expressed in terms of δy.

The first-order approximation to δe expressed in terms of δy
is

δe1 = 2(δy)TKTMTC(x f − xt ), (14)

where M and C are the matrices with elements m and c, re-
spectively. Note that both x f and M here are formally those
computed for the model forecast trajectory initialized using xb,
although using the trajectory initialized with xa would only cre-
ate a second-order change to this first-order approximation. In
(14), 2 KTMTC (x f − xt ) is formally ∂e/∂y. For an x f deter-
mined by xb, ∂e/∂y is independent of δy.

For the higher-order approximations it is useful to formally
label x f for the forecast initialized with xb as x f

b . Correspond-
ingly, the resolvent for that model trajectory is denoted as Mb.
Then

x f
a = x f

b + δx f , (15)

Ma = Mb + δM, (16)

where δM has the elements δm. These may be interpreted as re-
spective approximations to the forecast produced from the anal-
ysis and the resolvent produced by the trajectory of that forecast.
With this notation, the second-order approximation may be writ-
ten as

δe2 = (δy)TKT
[
MT

b C
(
x f

a − xt
) + MT

a C
(
x f

b − xt
)]

. (17)

It is derived by substituting (7) and (8) into (3), simplyfing by
using (5) and (6), and finally applying (12). This approximation is
like eqs (7) and (A10) in LB, except that the adjoint of the forecast
model evaluated for the forecast begun from xb is applied to the
forecast error evaluated for the distinct forecast begun from xa ,
and vice versa. This is the opposite of what LB describe in their
text. The expression that is multiplied with δy in (17) may be
interpreted as a general weighting vector g̃ as in (13) but not as
a formal gradient, unlike as denoted in LB.

The third-order expression is

δe3 = (δy)TKT
[
MT

b C
(
x f

b − xt
) + MT

a C
(
x f

a − xt
)]

+ term involving
∂3m
∂x3

, (18)

derived analogously to (17). This expression is exactly like
eqs (7) and (A10) in LB except for the term involving ∂3 m/∂x3
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and the fact that in LB both Ma and x f
a are computed using the

full nonlinear forecast trajectory rather than the linear approxi-
mations (15–16). If the model nonlinear terms are restricted to
quadratic ones (a restriction that does not omit the dominant
advective terms) then the missing term in (18) vanishes. Thus,
eq. (7) in LB may be considered as a third-order approximation
to δe due to the consideration of observations at the analysis time.
As for δe2, the implied vector appearing as an inner product with
δy in (18) is not a formal gradient, contrary to what is indicated
by the notation in eqs (7) and (A11) in LB.

3. Discussion

If the distinction between Ma and Mb is ignored,

δe3 − δe1 = (δy)TKTMTC
(
x f

a − x f
b

)
. (19)

This expression looks like that for e1 except for the missing
factor of 2 and the fact that the last factor on the right hand
side is now the difference between the two forecasts rather than
the background forecast and truth. The approximation appearing
as (19) is second-order in δy since the difference between the
forecasts is proportional to δy when the model is linear:

δe3 − δe1 = (δy)TKTMTCMK(δy). (20)

As smaller magnitudes of δy are considered, (20) generally
becomes negligibly smaller than (14). When (20) is compared
to (14) in the context of current operational data assimilation
systems, however, the sizes of the first- and second-order terms
are in practice not greatly different: For a 2-day forecast, for
example, the magnitude of x f

a − x f
b is approximately half that

of x f
b − xt , as shown in Appendix B. It should therefore not be

expected that (14) is necessarily an adequate approximation to
the change of e due to analysed observations. In contrast, if the
model nonlinearity is insignificant, (17–18) are both essentially
exact expressions of the δe.

The quadratic (or higher) order nature of (18) has another
critical consequence. Although (18) can be written in component
form as

δe3 =
∑

i

δyi g̃
3
i , (21)

where superscript 3 indicates the weights for the third-order ap-
proximation, it hides the fact that these g̃3

i are also functions of
δy (as revealed in (20)). Consequently, while (21) appears to per-
mit the formal consideration of partial sums for arbitrary subsets
of observations i ∈ S, those partial sums generally depend on
components of δy that are not included in the subset S. In other
words, it is problematic to attribute

δe3S =
∑
i∈S

δyi g̃
3
i (22)

entirely to the effect of the observations included in S, as sug-
gested by the presentation in LB. The loss of independent con-
tributions to the approximation δe3 by independent subsets of

observations contrasts with such independence for the approxi-
mation δe1.

4. Conclusion

The expression used in LB to describe the impact of sets of ob-
servations on decreasing forecast error has been shown to be a
partial sum of quadratic or higher order expressions in terms of
the observation innovations. If the model were linear, it would be
exactly quadratic. The difference between this expression and a
first order expression can be substantial as applied in LB because
the magnitude of an error of a forecast generated from a back-
ground is not much greater than the magnitude of a difference
between forecasts generated from an analysis and its correspond-
ing background. This assertion is based partly on the assump-
tions and experience in using time-lagged or perturbed-analysis
techniques to estimate forecast skill. Although formally of dif-
ferent orders in Taylor series expansion, the first-order terms
are not, in application, strongly dominant. Thus, in the appli-
cation described in LB, considerations beyond first-order may
be necessary in order to get a reliable estimate of the effect of
observations, as implied by their eq. (7).

The necessity of considering non-linear approximations to
the skill improvement unfortunately means that a measure of the
impact due to a particular set of observations using a simple par-
tial sum as in (22) is rendered somewhat ambiguous because it
includes cross products of innovations within and outside the
particular subset. This is a trade-off of obtaining greater ac-
curacy with the higher-order approximation. Experience with
the measure in LB and their subsequent, as yet unpublished
work, suggests that attribution of their measure to distinct sub-
sets yields reasonable interpretations. Potential ambiguity in the
partial sums is not reasonably explained by postulating a lack
of correlation between innovations due to distinct observation
types. Innovations by distinctly different observations are gen-
erally correlated, even if the observation errors are uncorrelated
because, at least for nearby locations, the background errors are
correlated.

Due to nonlinearity, without evidence to the contrary, it is
conceivable that bad observations could alter the estimated im-
pact of nearby good observations computed as a partial sum,
or vice versa. It would be useful if experiments could be de-
signed to explore the consequence of the nonlinear nature of (17–
18) and (22) so that interpretations of their partial sums could
be more unequivocal. If no confusion due to innovation cross
products occurs, an explanation is desirable since it may reveal
something as yet unclear about how a data assimilation system
behaves.
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6. Appendix A

As an example to show that the magnitude of x f
a − x f

b is not
an order smaller than that of x f

b − xt , results from four pairs
of forecasts are presented in Table 1. The forecasts and analy-
ses were produced using the state of the art forecast model and
3-D variational data assimilation system employed at the Global
Modelling and Assimilation Office at the United States National
Aeronautics and Space Administration (GMAO/NASA). The
grid resolution was 1◦ latitude by 1.25◦ longitude by 55 levels.
The four x f

a were produced from 24 and 36 h forecasts begun
from two analyses begun at 00 UTC on the two randomly selected
days 21 January 2005 and 17 February 2005. The correspond-
ing x f

b were produced from forecasts begun from analyses 6 hr
earlier but valid at the same times as the corresponding x f

a .
The measures used to evaluate the differences were square

roots of the northern hemisphere, area- and mass- weighted mean
squared differences in either the temperature T or northward
wind component v. The mass-weighting was fractional, using
the ratio of the pressure thickness of each model layer to the
surface pressure at each grid point. The results indicate that for

Table 1. The root mean squared values of the indicated differences.
The superscripts indicate the forecast durations in hours as begun from
each corresponding analysis. Each x f

a − x f
b should be compared with

the x f
b − xt value immediately below it

Case January January February February
rms field v(m s−1) T(K) v(m s−1) T(K)

x24
a −x30

b 1.65 0.68 1.50 0.64
x30

b −xt 3.18 1.33 3.05 1.30

x36
a −x42

b 1.98 0.77 1.75 0.73
x42

b −xt 4.16 1.68 3.66 1.55

both cases, forecast times, and sets of fields, the magnitudes of
x f

a − x f
b are approximately one-half those of the corresponding

x f
b − xt . Although this will tend to make (14) smaller than (20),

it will not render it negligible.
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