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ABSTRACT
We present a modified ensemble Kalman filter that allows a non-Gaussian background error distribution. Using a
distribution that decays more slowly than a Gaussian allows the filter to make a larger correction to the background
state in cases where it deviates significantly from the truth. For high-dimensional systems, this approach can be used
locally. We compare this non-Gaussian filter to its Gaussian counterpart (with multiplicative variance inflation) with
the three-dimensional Lorenz-63 model, the 40-dimensional Lorenz-96 model, and Molteni’s SPEEDY model, a global
model with ∼105 state variables. When observations are sufficiently infrequent and noisy, the non-Gaussian filter yields
a significant improvement in analysis and forecast errors.

1. Introduction

An ensemble Kalman filter (EnKF) estimates the state of a sys-
tem from a time-series of noisy observations by minimizing a
quadratic cost function in the space spanned by an ensemble of
forecast model states. Typically, this ensemble space is much
lower dimensional than the model state space. Instead of us-
ing the Kalman filter equations, which analytically minimize the
quadratic cost function, here we numerically minimize a non-
quadratic cost function. Our approach is similar to the maximum
likelihood ensemble filter (MLEF) of Zupanski (2005), which
minimizes a cost function based on a non-Gaussian observa-
tion error distribution with a pre-conditioned conjugate gradient
method (Fletcher and Zupanski, 2006). In this paper, we show
that using a non-quadratic background error distribution can also
improve results.

Now we review the Bayesian probabilistic argument (see
Lorenc, 1986) for finding the best estimate of the true state xt of
a system, such as the atmosphere, given noisy observations

yo = H (xt ) + εo, (1)

at the current and past times, where H is the observation operator,
and εo is the observation error. Typically, the true state xt and its
underlying dynamics are unknown. We assume that the evolution
of xt is modelled by a chaotic dynamical system governed by a
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deterministic differential equation

dxt

dt
= f (xt, µ), (2)

where µ is a vector of parameters.
From the probabilistic point of view, we want not just a spe-

cific estimate of xt at a given time, but a probability distribution
p(x) representing the likelihood that a particular model state x is
equal to xt . Assuming that prior observations and the model
(2) have yielded a background distribution p(x), the goal of
data assimilation is to find the analysis probability distribution
p(x |yo) given the current observations yo in addition to the back-
ground information. The analysis state xa is typically chosen to
be the mode of this distribution, that is, the most likely state.
If the distribution of observation errors is known, then applying
Bayes rule gives

p(x|yo) ∝ p(x)p(yo|x). (3)

Kalman filters generally assume Gaussian background and ob-
servation error distributions: p(x) ∼ N (xb, B) and p(yo|x) ∼
N (H (x), R), respectively. Here, xb is the background state ob-
tained by feeding the prior analysis state into (2), B is the back-
ground error covariance matrix and R is the observation error
covariance matrix. Thus, taking the logarithm of (3), maximiz-
ing (3) is equivalent to minimizing the cost function:

J (x) = J b(x) + J o(x)

= 1

2

(
x − xb

)T
B−1

(
x − xb

)

+ 1

2
(yo − H(x))T R−1 (yo − H(x)) . (4)
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Notice that the background term J b(x) is quadratic in x as a
consequence of the Gaussian distribution assumption. For linear
H, the observation term J o(x) is quadratic in x as well. For a non-
linear observation operator H, Kalman filters typically make a
linear approximation in order to analytically approximate the
minimum of the cost function (see Section 2).

A classical approach that is employed by the National Cen-
ters for Environmental Prediction (NCEP) uses the same B
for each analysis; this method is known as 3D-VAR (Courtier
et al., 1998). However, the background uncertainty can vary con-
siderably from time to time, so it is desirable to allow B to
vary from one analysis to the next. The extended Kalman filter
(Ghil et al., 1981) dynamically varies the background covari-
ance matrix using the linear tangent model of (2). However, this
background covariance matrix update is not practical for large
models. Evensen (1994) introduced an EnKF, which samples the
background distribution with an ensemble of background states
{xb(i), i = 1, . . . , k}. The ensemble size k is typically much less
than the model dimension m. In the last decade, many variations
of EnKF have been introduced (Anderson, 2001; Bishop et al.,
2001; Houtekamer and Mitchell, 1998, 2001; Keppenne, 2000;
Whitaker and Hamill, 2002; Ott et al., 2004).

In this paper, we introduce a non-quadratic (hence non-
Gaussian) convex and symmetric background cost term J b(x)
into the framework of a particular type of EnKF, namely the
ensemble transform Kalman filter (ETKF, Bishop et al., 2001),
which we re-formulate for this purpose. Our approach can re-
place the local analysis in the LEKF (Ott et al., 2004) when local-
ization is appropriate. The LEKF is designed to be computation-
ally efficient for large systems, and this is not negatively affected
by the non-Gaussian modification, which changes only the com-
putations done within the relatively low-dimensional ensemble
space. We choose the non-Gaussian background term J b(x) to
grow linearly as x → ∞, corresponding to a distribution with
density proportional to exp(−J b(x)). Thus, the background dis-
tribution decay exponentially as x → ∞, which is more slowly
than a Gaussian. This allows the filter to weight the observations
more heavily than the Gaussian filter does when they disagree
significantly from the background. We will show that compared
to the Gaussian filter, our non-Gaussian filter yields smaller er-
rors when observations are sufficiently infrequent, in case both
with and without model error.

More generally, our point is that within the framework we
describe, one can experiment with background probability dis-
tributions of arbitrary form within the space spanned by the
ensemble perturbations. The particular form we use is advan-
tageous in the scenario we study, but we do not presume it to be
optimal.

In Section 2, we derive the ETKF from the cost function
(4) and review the localization of Ott et al. (2004). In Sec-
tion 3, we introduce a non-quadratic J b(x) into the computa-
tional framework of Section 2. In Section 4, we present pre-
liminary results obtained for the three-variable Lorenz (1963)

model and, using a local filter, for both the 40-dimensional
Lorenz (1996) model and the SPEEDY model (Molteni, 2003).
We show results in a perfect model scenario for all three mod-
els, where the ‘truth’ is generated from (2) and the filter uses
(2) with the same parameter set µ as its ‘model’. For both
Lorenz models, we also show experiments with deterministic
model error, where the filter uses a different parameter set.
Finally, we conclude with a short summary and discussion in
Section 5.

2. Variational Formulation of the Ensemble
Transform Kalman Filter

EnKFs approximate the true state xt by an ensemble whose mean
and covariance represent respectively an estimate of xt and the
uncertainty in the estimate. In the cost function (4), we replace
the background state xb by the sample mean x̄b of the background
ensemble, and the background error covariance matrix B by the
sample covariance matrix

Pb = (k − 1)−1Xb(Xb)T , (5)

where k is the number of ensemble members and

Xb = [xb(1) − x̄b|xb(2) − x̄b| . . . |xb(k) − x̄b], (6)

is an m × k matrix with columns representing the background
ensemble perturbations. Notice that this approximation is prob-
lematic for k < m since Pb is not a full rank matrix, and hence
is not invertible. However, (Pb)−1 is well defined on the ‘ensem-
ble subspace’ spanned by the columns of Xb. Thus, ensemble
Kalman filters minimize the cost function on this subspace where
it is well defined.

Let us employ a pre-condition (or a coordinate change) by
expressing the deviation of a state x from the background mean
state x̄b as a linear combination of the background ensemble of
perturbations, that is,

x = x̄b + Xbw, (7)

where the weight w ∈ R
k is to be determined, and we approxi-

mate the observation vector corresponding to the model state x
by:

H (x) = H (x̄b + Xbw) ≈ H (x̄b) + Ybw ∈ R
s, (8)

where s denotes the number of observations. Here the ith column
vector of the s × k matrix Yb is the deviation of H (xb(i)) from
its ensemble average; that is,

Yb = [H (xb(1)) − ȳb|H (xb(2)) − ȳb| . . . |H (xb(k)) − ȳb], (9)

with ȳb = 1
k

∑k
i=1 H (xb(i)).1 Replacing xb with x̄b and B with

Pb, and using (5), (7) and (8), reduce the cost function (4)

1If H is linear, then ȳb = H (x̄b), but for non-linear H these quantities
are different. One could use either ȳb or H (x̄b) in (8). We always use ȳb

in forming Yb , so that the sum of the columns of Yb is zero.
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to:

J (w) = 1

2
(k − 1)wT w

+ 1

2

(
yo − H (x̄b) − Ybw

)T
R−1

(
yo − H (x̄b) − Ybw

)
.

(10)

That is, we reduce the m-dimensional minimization problem to
a k-dimensional minimization problem, assuming the ensemble
size k is less than the number of model variables m. Notice that in
the w coordinate system, the background error covariance matrix
becomes identity and hence we do not have to invert it.

The minimum of (10) is obtained by setting

∇ J (w) = (k − 1)w − (Yb)T R−1(yo − H (x̄b) − Ybw) = 0.

(11)

The solution of this equation is the analysis weight vector

wa = P̃a(Yb)T R−1(yo − H (x̄b)), (12)

where

P̃a = (
(k − 1)I + (Yb)T R−1Yb

)−1
. (13)

The analysis error covariance matrix P̃a in the ensemble space is
the inverse of the Hessian of the cost function (10) (see Fisher and
Courtier, 1995; Zupanski, 2005). The analysis state is obtained
by substituting (12) into (7):

x̄a = x̄b + Xbwa = x̄b + XbP̃a(Yb)T R−1(yo − H (x̄b)). (14)

In the case that H is linear, equations (13) and (14) are equivalent
to the standard Kalman filter equations, which minimize J in
closed form.

To complete the analysis, we generate an analysis ensemble
of model states whose mean is x̄a and whose error covariance
matrix in the model space is Pa = XbP̃a(Xb)T . In this paper, we
update the ensemble using

xa(i) = x̄a + XbWa(i) = x̄b + Xb(wa + Wa(i)), (15)

where Wa(i) is the ith column of the symmetric square root Wa

of (k − 1)P̃a . This symmetric square-root together with (13),
(14) and (15) is equivalent to the spherical-simplex ensemble

Algorithm 1 ETKF pseudo-code with Kalman filter equations

1. Generate xb(i) at the current analysis time by feeding xa(i) from
the previous analysis time into model (2).
2. Form the background ensemble average x̄b and matrix of pertur-
bations Xb given by (6).
3. Form Yb according to (9).
4. Evaluate P̃a using (13) and wa using (12).
5. Take the symmetric square root of (k − 1)P̃a and call its columns
Wa(i).
6. Compute the analysis ensemble members xa(i) at the current anal-
ysis time with (15).

Algorithm 2 ETKF pseudo-code with variational formulation

4a. Perform the same steps as Algorithm 1 except replace Step 4
with: 4a. Minimize cost function (10) to obtain wa . One may use any
unconstrained minimization scheme such as the conjugate gradient
method.
4b. Evaluate P̃a as the inverse of the Hessian of cost function (10) at
wa .

transform Kalman filter (Wang et al., 2004); in particular, the
transform matrix TC––T in that paper is equal to our matrix Wa .

Now we give step-by step pseudo-codes for this formulation
of the ETKF: one uses Kalman filter formulas (see Algorithm
1) and the other uses a variational approach (see Algorithm
2). Regarding step 4b, the Hessian of (10) is the same at ev-
ery point, but when we generalize to a non-quadratic cost func-
tion, it becomes important where we evaluate the Hessian. Of
course, in the quadratic case, Algorithm 1 is computationally
faster. However, our main goal is to generalize the ETKF for
non-Gaussian background error distributions where the Kalman
filter equations do not apply. In the next section, we adopt the
framework given in Algorithm 2 for a different background
cost function term that is still convex and symmetric, with the
same Hessian as the quadratic background term at w = 0. Here-
after, by the Gaussian filter we mean the ETKF implemented by
Algorithm 1.

For large systems, local analysis has been used for practical
purposes and to suppress spurious correlations, caused by small
ensemble size, of the model variables between grid points sep-
arated by a large distance (see Houtekamer and Mitchell, 1998,
2001; Keppenne, 2000; Ott et al., 2004). Here, we adopt the
localization as in Ott et al. (2004). In contrast with the global
analysis, the local analysis performs a separate analysis at each
model grid point, using observations only from a local region
surrounding the grid point. The analysis ensembles computed at
each grid point are combined to form a global analysis ensemble.
Therefore, the analysis at each location reflects the observations
within its local region, which presumably are the observations
most correlated to the model state at that location. The local
regions should be large enough that neighbouring grid points
use heavily overlapping sets of observations; otherwise, imbal-
ances in the resulting global analysis state (see e.g. Cohn et al.,
1998) may be problematic. With this approach, each grid point
is updated independently. Thus, the analysis can be performed
in parallel, which dramatically reduces the cost of its implemen-
tation.

3. Non-Gaussian Filter

In practice, even with a perfect model, EnKFs are subop-
timal due to model non-linearity and finite ensemble size.
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Nonetheless, even for large systems, one can obtain reasonable
results with an ensemble of moderate size (less than 100) by spa-
tially localizing the analysis (Houtekamer and Mitchell, 1998,
2001; Keppenne, 2000; Szunyogh et al., 2005). However, re-
gardless of any localization employed, such as Ott et al. (2004),
Houtekamer and Mitchell (1998), or Keppenne (2000), the non-
linearity of the model together with the small ensemble size still
generally cause the analysis ensemble to underestimate its un-
certainty (see e.g. Houtekamer and Mitchell, 1998; Anderson
and Anderson, 1999; van Leeuwen, 1999; Whitaker and Hamill,
2002). A common approach to overcome this problem is to mul-
tiplicatively inflate the background covariance matrix (Anderson
and Anderson, 1999). This type of variance inflation also helps,
in a very simple way, to overcome the effect of model error, at
least to the extent that the model error projects into the space
spanned by the ensemble.

In the ETKF, a way of applying variance inflation is to mul-
tiply the background covariance matrix P̃b = (k − 1)−1I in the
ensemble space by a constant 1 + r with r > 0. This changes
the term (k − 1) I of (13) to (k − 1) I/(1 + r ). Thus in prac-
tice, we use Algorithm 1 with the following equation in place of
(13):

P̃a =
(

(k − 1)

1 + r
I + (Yb)T R−1Yb

)−1

.

In the variational formulation (see Algorithm 2), the variance
inflation changes the first term of the cost function J (w) to

J b(w) = 1

2

(k − 1)wT w
1 + r

. (16)

In a given scenario, we determine the value of r empirically, tun-
ing it to achieve the best results. If the best value of r is small, this
suggests that the Gaussian assumption approximates the back-
ground statistics reasonably well. However, the best results are
obtained with relatively large r when model errors are significant
and/or the observations are infrequent. (In the latter case, both
model non-linearity and model error have a greater effect from
one analysis to the next.) In such cases, the Gaussian assumption
probably does not fit the background statistics well. For such sit-
uations, we introduce a new background term by replacing (16)
with

J b(w) = 1

2

(k − 1)wT w

1 + α
√

wT w
, (17)

where α is a constant to be determined empirically. Notice
that when w is small, (17) behaves like the quadratic function
1
2 (k − 1)wT w, and for large w, (17) grows close to linearly. Func-
tion (17) corresponds to a Gaussian-like background error dis-
tribution with longer tails (see Fig. 1 for an illustration). This
non-Gaussian error distribution approaches a Gaussian error dis-
tribution when α → 0. On the other hand, the tail distribution
gets thicker as α increases. Furthermore, this symmetric func-
tion remains convex with the same Hessian (k − 1) I at w = 0
for all α. This non-Gaussian filter can be easily implemented by
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Fig. 1. Density of a one-dimensional Gaussian (solid) error
distribution with mean 0 and variance 1 and non-Gaussian (dashed)
error distribution with α = 1. The standard Gaussian density is
proportional to exp{− 1

2 wT w}, while the non-Gaussian pdf is

proportional to exp{− 1
2

wT w
1+α

√
wT w

}.

applying the variational approach (Algorithm 2) to the following
cost function instead of (10):

J (w) = 1

2

(k − 1)wT w

1 + α
√

wT w

+ 1

2

(
yo − H (x̄b) − Ybw

)T
R−1

(
yo − H (x̄b) − Ybw

)
.

(18)

Notice that when minimizing J, one can easily compute its gra-
dient analytically as in (11).

Based on the discussion above, we see that (18) is very close to
(10) when w is small, but the background term grows more slowly
when w is large. Small w corresponds to model states close to the
background mean x̄b. Thus, if the background mean agrees well
with the observations, both (10) and (18) will be minimized for
small w, and will produce very similar analyses. But when the
background mean and observations differ significantly, (18) will
be minimized for larger w, and hence allows a larger analysis
increment than (10).

Notice that we still use the linear approximation (8) to the
observation operator in (18). When H is non-linear, for greater
accuracy one can replace H (x̄b) + Ybw with H (x̄b + Xbw) in
(18), as in the MLEF (Zupanski, 2005). Using the linear approx-
imation in (18) does have the potential computational advantage
that J(w) has a relatively simple algebraic dependence on w, and
we can compute its gradient analytically, In our numerical results
below, we consider only cases in which H is linear, so that the
only difference between the two filters we compare is the form
of the background term.
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4. Results

4.1. Numerical simulations with the Lorenz-63 model

In this section, we compare the performance of our proposed
non-Gaussian filter with the Gaussian filter described in Section
2 for the three-dimensional Lorenz (1963) model:

dx

dt
= σ (y − x)

dy

dt
= ρx − y − xz

dz

dt
= xy − bz, (19)

where the parameter set µ (as in (2)) is the triplet (σ , b, ρ). We
integrate the model using the fourth-order Runge–Kutta method
with time step 0.01.

In our numerical simulations, we generate the true state by run-
ning the model for 500 non-dimensional time units (i.e. 50 000
steps) with µ = (10, 8/3, 28), which results in a ‘butterfly’-
like attractor Lorenz (1963). With these parameters, the attrac-
tor has one positive Lyapunov exponent that corresponds to a
doubling time of 0.78 time units. The Kaplan–Yorke dimen-
sion is 2.06. Both the leading Lyapunov exponent and dimen-
sion are obtained via software ‘Dynamics’ (Nusse and Yorke,
1997). In our simulation, we generate infrequent ‘observations’
every 0.5 time units2 by adding Gaussian noise with mean 0
and variance 4 to each coordinate of the true state xt . Hence,
the observation operator H is linear, equal to the identity and
the observation error covariance matrix R is a diagonal matrix
with all diagonal components equal to 4. This choice of error
variance in the following experiments implies that a typical ob-
servation error is 2; by comparison, the natural variabilities (stan-
dard deviations over time) of x, y and z are 7.91, 8.98 and 8.60,
respectively.

We consider three cases: perfect model (no model error) by
setting the forecast parameter set µ f = µ, small model error by
setting µ f = (10, 8/3, 30), and large model error with µ f =
(10, 8/3, 35). Table 1 shows the rms difference between analysis
and true states for each coordinate, averaged over time and over
10 simulations (where we omit the first 50 analysis steps in
each simulation to remove transient behaviour and compute the
analysis error for the remaining 950 cycles); we refer to this
average rms error as the average analysis error hereafter. Each
simulation was based on a different trajectory for the ‘true’ state
but we used the same trajectories and associated ‘observations’
for each choice of the filter and model error.

All results use an ensemble of size k = 10. In the Gaussian
filter experiments, we use r = 4.5 for the no model error case,
r = 5.5 for experiments with small and r = 10.5 for large model
errors. The non-Gaussian filter simulations with no model error

2A full oscillation around one of the ‘butterfly’ wings corresponds to
roughly 1 time unit.

Table 1. Average analysis error of Gaussian and non-Gaussian filters
with the Lorenz-63 model. Here, the average is calculated over 950 ×
10 analysis cycles in RMS sense. The filters are run with ensemble size
k = 10 and observation error 2. The analysis is performed every 50
steps with time step �t = 0.01/step. In the no model error case, the
forecast model parameter set is similar to the true model parameter set,
µ f = µ = (10, 8/3, 28). Small and large model errors are introduced
by setting µ f = (10, 8/3, 30) and µ f = (10, 8/3, 35), respectively.

Gaussian non-Gaussian
No model error (r = 4.5) α = 2

x 1.38 1.22
y 1.68 1.63
z 1.97 1.63

Small model error (r = 5.5) α = 2

x 1.55 1.33
y 1.84 1.70
z 2.00 1.77

Large model error (r = 10.5) α = 10

x 2.13 1.91
y 2.05 1.84
z 2.26 1.93

and small model error use α = 2, and with large model error uses
α = 10. In each case, these values yielded the smallest average
analysis error among the values we tried (r = 1, 1.5, 2.5, 3.5, 4.5,
5.5, . . . , 10.5 and α = 1, 2, 4, 8, 10). For the large model error,
we stop tuning r since we can replace r → ∞ and the Gaussian
filter is equivalent to direct insertion, that is, directly using the
observations as analysis, for which the average analysis error
would equal the observation error 2. In fact, Table 1 shows that
the Gaussian filter with r = 10.5 is close to but no better than
direct insertion. Table 1 also shows that the non-Gaussian filter
performs better than the Gaussian filter by about 10% in all three
cases of small, large and no model error experiments.

We measured the variability of the analysis error in time by
computing the standard deviation of |x̄ a − xt |, |ȳa − yt | and
|z̄a − zt |. In Table 2, we see that the analysis errors of the non-
Gaussian filter are roughly 15% less varied than those of the
Gaussian filter in all three cases. For direct insertion, the anal-
ysis error variability is about 1.83 in each coordinate, which is
significantly larger than both filters in all cases except the Gaus-
sian filter with large model error. Thus the analysis results from
the non-Gaussian filter are more consistent in time than those
from the Gaussian filter, and both filters performed more consis-
tently than direct insertion.

The filter analysis also shows a further advantage over di-
rect insertion when we consider the forecasts they generate. An
important feature of ensemble-based data assimilation is that it
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Table 2. Variability of the analysis error for the experiments of Table
1. Here, the variability at each coordinate (x, y, and z) is defined to be
the temporal standard deviation (of |x̄a − xt |, |ȳa − yt |, and |z̄a − zt |)
over 950 × 10 analysis cycles. For direct insertion this quantity is
about 1.8.

Gaussian non-Gaussian
No model error (r = 4.5) α = 2

x 0.99 0.81
y 1.08 1.03
z 1.32 1.03

Small model error (r = 5.5) α = 2

x 1.09 0.86
y 1.21 1.11
z 1.24 1.07

Large model error (r = 10.5) α = 10

x 1.36 1.17
y 1.32 1.13
z 1.42 1.15

naturally yields initial conditions for an ensemble forecast, and
we find that forecasting from each analysis ensemble member
and averaging the forecasts yields better results than making a
single forecast from the analysis ensemble mean. Thus for both
filters, we measure their forecast error by calculating the rms
difference between the true state and the mean of the forecast
ensemble, where each ensemble member is generated by feed-
ing each analysis ensemble member to the model (2). In Fig. 2,
we show the average forecast errors as functions of time. Here,
the average is taken over the same 9500 analysis cycles as in
Tables 1 and 2, and all three variables in rms sense. We graph
these average errors on a logarithmic scale, so that the distance
between two curves represents a relative (percentage) difference
between their average forecast errors. We observe that after the
first few time steps, the average forecast errors of direct inser-
tion method (dotted) grow faster than those produced by the two
filters. In the small and no model error simulations, the average
forecast error of direct insertion saturates around 8.51, similar to
the climatological error (see top and middle images of Fig. 2).
In these cases, notice also that the average forecast errors of the
non-Gaussian filter (dashed) remain lower than those of Gaus-
sian filter (solid) at all times. When the model error is large, the
non-Gaussian filter analysis error is, on average, only slightly
better than that of direct insertion while the Gaussian is not bet-
ter. However, the average forecast error of direct insertion again
grows more quickly than that of the filters. Here, the model error
is large enough so that the skill of the ensembles produced from
both filters are indistinguishable after time 0.1 unit.
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Fig. 2. Average forecast errors as functions of time for the experiments
in Table 1: no model error (top), small model error (middle) and large
model error (bottom). Each average is taken over 950 × 10 analysis
cycles and 3 model variables in the RMS sense. We use a logarithmic
scale on the vertical axis so that the distance between two curves
represents the ratio between their errors. The average forecast errors of
the initial conditions from direct insertion (dotted) are significantly
worse than both the Gaussian (solid) and non-Gaussian (dashed) filters.
The observation error is 2 (thin dashed horizontal line).

4.2. Numerical simulations with the Lorenz-96 model

In the previous simulations with the Lorenz-63 model, we saw
that our non-Gaussian filter yields better results than the Gaus-
sian filter for a simple temporal chaotic dynamical system, in
a case when a large amount of variance inflation is needed
for the Gaussian filter. Now, we want to show that this result
also holds in a simple spatiotemporal chaotic dynamical system.
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For this purpose, we choose the 40-dimensional Lorenz (1996)
model and perform a local analysis (as described at the end of
Section 2) with the Gaussian and non-Gaussian filters.

The Lorenz-96 model represents an ‘atmospheric variable’ x at
m equally spaced points around a circle of constant latitude. The
jth component is propagated in time following the differential
equation

dx j

dt
= (x j+1 − x j−2)x j−1 − x j + µ, (20)

where j = 1, . . . , m represent the spatial coordinates (‘longi-
tude’). Note that this model is not a simplification of any at-
mospheric system, however, it is designed to satisfy three basic
properties: it has linear dissipation (the −x j term) that decreases
the total energy defined as V = 1

2

∑m
j=1 x2

j , an external forc-
ing term µ that can increase or decrease the total energy, and a
quadratic advection term that conserves the total energy (i.e. it
does not contribute to d

dt V ).
Following Lorenz (1996) and Lorenz and Emanuel (1998), we

choose the external forcing to be µ = 8 and the number of spa-
tial elements to be m = 40. With these parameters, the attractor
has 13 positive Lyapunov exponents, with the leading Lyapunov
exponent corresponding to a doubling time of 0.42 time units,
and a Kaplan–Yorke dimension of 27.1 (Lorenz, 1996). We use
a fourth-order Runge–Kutta scheme for time integration of (20)
with time step �t = 0.05, and we observe the system state and
perform an analysis every six time steps. This is relatively in-
frequent in the following sense. On the basis of doubling time,
Lorenz suggested that 1 time unit of the model is roughly equiv-
alent to 5 d in a global weather model. Thus, performing data
assimilation every six time steps of our model integration corre-
sponds roughly to performing it every 1.5 d in a global weather
model.

In our numerical simulations, we compute the true state by
running the model for 6000 time units (i.e. 120 000 steps). We
generate observations every 0.3 time units (six steps) by adding
Gaussian noise with mean 0 and variance 1 to each coordinate of
the true state xt . Hence, both the observation operator H and the
observation error covariance matrix R are the identity matrices.
For this model the natural variability of each coordinate is 3.61,
by comparison with the typical observation error 1. The average
analysis error is defined as in the previous section, where the
error is averaged temporally in the rms sense by omitting the
first 1000 analysis cycles.

We consider two cases: perfect model (no model error)
by setting the forecast parameter µ f to be equal to the
true state parameter µ = 8 and with model error by setting
µ f = 8.5. All results use an ensemble of size k = 10 and we
perform the local analysis at each grid point with localization
distance d = 6, which has been shown to be optimal for this
ensemble size, see Ott et al. (2004); (that is, the local analysis
at each grid point uses all observations from 2d + 1 = 13 grid
points centred at the analysis point). In the Gaussian filter ex-

Table 3. Average analysis error and its variability from the
experiments with the Lorenz-96 model. Both mean (in RMS sense) and
variability are computed over 19000 analysis cycles and 40 variables.

No model error Model error
Mean variability Mean variability

Gaussian 0.61 0.46 0.68 0.48
non-Gaussian 0.56 0.40 0.65 0.45

periments, we obtained the lowest analysis error with r = 1.0
for the no model error case and r = 1.6 for the experiment with
model error. For the non-Gaussian filter simulations without and
with model error, we found the best results with α = 0.6 and 0.8,
respectively.

In analog to Tables 1 and 2, we show the average analysis
error and the analysis error variability in Table 3. Here, the av-
erage (in the rms sense) is not only over 19 000 analysis cycles
but including the 40 model variables since the model is spa-
tially symmetric, that is, each component possesses an identical
dynamics.

Figure 3 shows the average forecast errors as functions of
time. Here, the forecast error is averaged over 19 000 analysis
cycles and 40 variables in rms sense. Note that the quantities in
Table 3 are the respective variables at time 0 in Fig. 3 and 4.
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Fig. 3. Average forecast error (again on a logarithmic scale) as a
function of time: with no model error (top) and with model error
(bottom). Each average is taken over 19 000 analysis cycles and 40
model variables in the RMS sense. The average forecast errors of the
Gaussian filter (solid) are larger than those produced by the
non-Gaussian filter (dashed) by about 10% in the case of no model
error and 5% in the presence of model error. The observation error is 1
(dotted horizontal line). The Gaussian filter uses variance inflation
coefficient r = 1 and 1.6 without and with model error, respectively.
The non-Gaussian filter uses α = 0.6 and 0.8 without and with model
errors, respectively.
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Fig. 4. Forecast error variability (again on a logarithmic scale) as a
function of time: with no model error (top) and with model error
(bottom). Here, the variability is defined as temporal standard deviation
over 19000 analysis cycles and 40 model variables. The forecast error
variability of the Gaussian filter (solid) is about 10% larger than those
produced by the non-Gaussian filter (dashed).

We observe that the average forecast errors of the non-Gaussian
filter (dashed) are about 5% and 10% lower than those produced
by the Gaussian filter (solid) with and without model errors,
respectively. We also calculate the time variability of the forecast
error as a function of time. The forecast error variability is the
standard deviation of ‖x̄b − xt‖, where x̄b denotes the ensemble
average of the forecasts produced by propagating each analysis
ensemble member as initial condition. We find that the non-
Gaussian filter reduces the variation by about 10% (see Fig. 4)
both with and without model errors.

4.3. Numerical simulations with the SPEEDY model

In this section, we test both filters on a primitive-equation Global
Circulation Model (GCM) in a perfect model scenario. This spec-
tral model (nicknamed SPEEDY, for simplified parametrizations
primitive-equation dynamics; see Molteni, 2003, for details) has
seven vertical levels (with sigma level 0.950, 0.835, 0.685, 0.510,
0.340, 0.200, 0.080) and a horizontal resolution corresponding
to a triangular spectral truncation at total wave number 30 (this
yields 96 × 48 grid points in a standard Gaussian grid). There are
five basic prognostic variables: vorticity, divergence, absolute
temperature, specific humidity and logarithm of surface pres-
sure. In addition to these variables, the model includes some di-
agnostic variables (such as saturation specific humidity, relative
humidity, dry and moist static energy and saturation moist static
energy) whose dynamics follow some simple models of physical
processes (such as convection, large-scale condensation, clouds,
short-wave and long-wave radiations and diffusion). With these
simplified parametrizations, the model is designed to be (at least)

Fig. 5. Average analysis errors as functions of vertical pressure levels
(in hPa). The averages (in RMS sense) are taken during January and
February and over 96 × 42 horizontal grid points (excluding latitudes
higher than 75◦) for variables zonal wind, temperature, and height.
Notice that the horizontal scales for January and February differ. In
each subfigure, the dashed curve indicates the RMS average from the
non-Gaussian scheme with α = 0.5 while the solid curve indicates the
RMS average from the Gaussian scheme with r = 20%.

an order of magnitude faster (in CPU time) than an operational
GCM having similar horizontal resolution.

The model dissipation and external forcing are determined
by the following the Northern Hemisphere winter-time climato-
logical fields: sea-surface temperature, surface temperature and
moisture in the top soil layer, snow depth, bare-surface albedo,
fraction of the sea-ice, land-ice and land-surface covered by veg-
etation. The prognostic variables are post-processed into zonal
and meridional wind components (U-wind and V-wind), abso-
lute temperature (T), specific humidity (Q), geopotential heights
(Z) on pressure levels (925, 850, 700, 500, 300, 200, 100 hPa)
and surface pressure (Ps).
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Fig. 6. Average analysis error of temperature
(in degrees Kelvin) at 500 hPa during
February. The top figure is the Gaussian
average analysis error while the bottom one
is the non-Gaussian average analysis error.

We compare both schemes with a 24-hr analysis cycle. A
true trajectory is created by running the SPEEDY model for 2
months starting from the NCEP reanalysis on 1 January 1982.
Then, we generate simulated observations by adding a normally
distributed noise with zero mean to the true states every 24 hr.
Here the standard deviations of the observation errors for each
variable are: 1 m/s for both U and V wind components, 1K for
temperature, 0.0001 kg/kg for specific humidity and 100 Pa for
surface pressure. By comparison, for pressure level 500 hPa,
we compute the natural variabilities of these quantities in the
SPEEDY model to be 6.78 m/s for U-wind, 6.84 m/s for V-wind,
2.92K for temperature, 0.0005 kg/kg for specific humidity, while
for surface pressure the natural variability is 695.05 Pa. All the
results shown in this paper are assimilated with a moderately
sparse observation network, that is, 22 % of the grid points (1008
locations) uniformly distributed excluding latitudes higher than
75◦N and lower than 75◦S at every level.

In each data assimilation experiment, we use a similar initial
ensemble of size 20. The initial ensemble consists of states from
a long integration of the SPEEDY model at 20 randomly chosen

times. For each local analysis, we use observations from a two-
dimensional local region of size 3 × 3 grid points; that is, we use
all observations from the same vertical level and up to one grid
spacing away in both latitude and longitude. Other local region
sizes we tried yield similar or worse results in all the cases we
show. In the results shown below, the Gaussian filter (or LETKF)
is implemented with variance inflation coefficient r = 20% after
comparing simulations with r = 10%, 20%, . . . , 50%. On the
other hand, the non-Gaussian filter is shown with α = 0.5 after
comparing simulations with α = 0.1, 0.25, 0.5, 1, and 1.5.

Figure 5 shows the average analysis errors of the zonal wind,
temperature and height as functions of vertical pressure levels.
Here, the averages are calculated over the month of January (31
analysis cycles) and February (28 analysis cycles), and over 96 ×
42 horizontal grid points (weighted according to the grid spacing
and excluding latitudes above 75◦) in the rms sense. Notice the
differences in the rms scales between January and February, the
errors in January are much larger than in February due to the
initial spin-up time (both filters are initialized with the same
random ensemble). We see that the non-Gaussian filter (dashed)
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Fig. 7. Analysis error variability as functions of vertical pressure levels
(in hPa). The variability is defined as the temporal standard deviation,
where the left column is calculated over January while the right column
is over February. Notice that the horizontal scales for January and
February differ. In each subfigure, the dashed curve indicates the RMS
variability from the non-Gaussian scheme with α = 0.5 while the solid
curve indicates the RMS variability from the Gaussian scheme with
r = 20%.

is more effective than the Gaussian filter (solid curves) in January.
During the month of February, the rms average indicates that both
schemes are comparable. However, if we look at, for example, the
temperature field at 500 hPa during the month of February (see
Fig. 6), we see that the non-Gaussian filter reduces errors across
the southern hemisphere mid-latitude, northern Atlantic ocean,
eastern Australia and near Madagascar while it performs worse
in relatively small regions such as near the northern hemisphere
polar region.

As in Table 2, we also calculate the time variability of the
analysis error. In Fig. 7, we plot the variability of the zonal wind,

Fig. 8. Average forecast errors as functions of vertical pressure levels
(in hPa). The averages (in RMS sense) are taken during January and
February and over 96 × 42 horizontal grid points (excluding latitudes
higher than 75◦) for variables zonal wind, temperature, and height. The
horizontal scales are the same as in Fig. 5. In each subfigure, the
dashed curve indicates the RMS average from the non-Gaussian
scheme with α = 0.5 while the solid curve indicates the RMS average
from the Gaussian scheme with r = 20%.

temperature and height as functions of vertical pressure levels. In
each period of assimilation, the non-Gaussian analysis (dashed
curves) errors are less varied compared to the Gaussian’s (solid
curves).

In Fig. 8 and 10, the average (24-hr) forecast error and fore-
cast error variability are plotted as functions of vertical pressure
levels, respectively. Each average and variability are calculated
in the same manner as in Fig. 5 and 7. From these results, we
see that the non-Gaussian filter yields a better 24-hr forecast
mean, but it only reduces the forecast variability at the later time
(February). Figure 9 shows the average 24-hr forecast error of
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Fig. 9. Average forecast error of temperature
(in degrees Kelvin) at 500 hPa during
February. The top figure is the Gaussian
average forecats error while the bottom one
is the non-Gaussian average forecast error.

the temperature at 500 hPa during February. Here, we see a sig-
nificant error reduction in those regions mentioned earlier in our
discussion of Fig. 6.

5. Summary and Discussion

In this paper, we give a variational formulation of the ETKF
and show that a different type of background error distribution
(other than Gaussian) can be incorporated within this frame-
work. Specifically, we replace the Gaussian distribution with a
non-Gaussian distribution by introducing a non-quadratic back-
ground term in the cost function. The symmetric and convex non-
quadratic term (17) we use is chosen to closely match the usual
quadratic term near its minimum but grow more slowly away
from the minimum. This cost term corresponds to a distribution
with longer tails than the Gaussian distribution. We compare it
to multiplicative variance inflation, which also amplifies the tails
of the background distribution but does not change its shape.

In all three simulations described in Section 4, we used ob-
servation errors that are a significant fraction (roughly from 1/7

to 1/3) of the natural variability of the observed variables. In the
case of the SPEEDY model, the observation errors we used are
comparable in size to the errors present in real data. We expect
that the difference between the non-Gaussian and Gaussian fil-
ters will be larger when the observational errors are larger, and
indeed in cases when we tried smaller observation errors, we
found less difference between the two methods.

The non-Gaussian and Gaussian filters also produced analyses
of more similar quality when we tested them with more frequent
observations. When the observations became more frequent, less
variance inflation is needed, and as we discussed in Section 3,
the two methods become more similar.

We also tested both filters with different ensemble sizes and
found that larger ensembles yield somewhat better analyses,
but do not significantly affect the comparison between the two
schemes (Gaussian and non-Gaussian).

Our results from the Lorenz-63 model simulations show
that when the observations are sufficiently infrequent, the non-
Gaussian filter yields a significantly better analysis, reducing
the analysis error by about 10%. The non-Gaussian filter also
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Fig. 10. Forecast error variability as functions of vertical pressure
levels (in hPa). The variability is defined as the temporal standard
deviation, where the left column is calculated over January while the
right column is over February. The horizontal scales are the same as in
Fig. 7. In each subfigure, the dashed curve indicates the RMS variability
from the non-Gaussian scheme with α = 0.5 while the solid curve
indicates the RMS variability from the Gaussian scheme with r = 20%.

reduces the analysis error time variations and the forecast errors
compared to both the Gaussian filter and direct insertion.

In our simulations with the 40-variable Lorenz-96 model, we
performed the analysis locally. We find that with moderately
infrequent observations, the non-Gaussian filter yields analy-
sis and forecast errors that are 5–10% lower than those of the
Gaussian filter. We also found that the non-Gaussian filter anal-
ysis errors are about 10% less variable in time than those of the
Gaussian filter.

Our simulation with the SPEEDY model suggests that the
non-Gaussian filter has the biggest advantage at the beginning

(in January), when the background ensemble is still far from
the true state. During February, both filters produced compa-
rable analyses. The non-Gaussian filter does reduce the time
variability of analysis error by 5–10%, and it yields a similar im-
provement in the February forecast mean and variability. Each
data assimilation cycle, excluding model integration, takes about
33% longer to compute for the non-Gaussian filter then for the
Gaussian filter.

In the SPEEDY model, we also compared both filters with
a denser observation network (results are not shown), that is,
when observations are available at each model grid point be-
tween 75◦N and 75◦S (4032 locations) at each level. In this ex-
periment, we found that the analysis and forecast errors are lower
for both filters; however, the differences between the two filters
are qualitatively similar to the results shown in Section 4 when
assimilating with sparse network. However, for the Gaussian fil-
ter we need to adjust the variance inflation to r = 40% for best
results, while the non-Gaussian filter still did best with α = 0.5.
In another experiment (results not shown), we tested both filters
with a sparse observation network for a 48-hr analysis cycle and
found similar conclusions hold, with the Gaussian filter needing
variance inflation of r = 50%, while once again α = 0.5 was
best for the non-Gaussian filter.

From these experiments, we conclude that except in the case
of Lorenz-63 with large model error, the non-Gaussian filter
works well with values of α near 1, whereas the optimal values
of r for the Gaussian filter varied widely. Thus, we conclude
that the parameter α in the non-Gaussian filter is less sensitive
to variations of model type and error, observation density and
frequency of observations.

Our decision to compare the non-Gaussian scheme with the
Gaussian (or ETKF) with multiplicative variance inflation is not
because more sophisticated remedies for insufficient ensemble
spread are not available, but simply because the multiplicative
variance inflation is the most closely related approach to ad-
justing the background error distribution. Other approaches to
overcome the underestimation of the background uncertainty and
model errors are discussed, for example, in Mitchell et al. (2002),
Tippett et al. (2003), Evensen (2003) and Hamill and Whitaker
(2005). It may be useful to combine one of these approaches with
a non-Gaussian background term as we describe in this paper.

Finally, as we mentioned in the introduction, one can con-
sider a more general class of non-quadratic terms than (17). For
example,

(k − 1)wT w
γ + α(wT w)β

, (21)

include (17), with β = 1/2 and γ = 1 and have similar proper-
ties for other values of β and γ . In particular, the convexity of
this function is retained for 0 ≤ β ≤ 1/2. The case β = 0 cor-
responds to multiplicative variance inflation. We tested several
different parameters and found that for β = 1/4 we did not get a
better result than what we showed with β = 1/2. However, one
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may want to further explore these parameters or functions more
general than (21) for other models.
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