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ABSTRACT
Ensemble filter methods for combining model prior estimates with observations of a system to produce improved
posterior estimates of the system state are now being applied to a wide range of problems both in and out of the geophysics
community. Basic implementations of ensemble filters are simple to develop even without any data assimilation expertise.
However, obtaining good performance using small ensembles and/or models with significant amounts of error can be
more challenging. A number of adjunct algorithms have been developed to ameliorate errors in ensemble filters. The most
common are covariance inflation and localization which have been used in many applications of ensemble filters. Inflation
algorithms modify the prior ensemble estimates of the state variance to reduce filter error and avoid filter divergence.
These adjunct algorithms can require considerable tuning for good performance, which can entail significant expense.
A hierarchical Bayesian approach is used to develop an adaptive covariance inflation algorithm for use with ensemble
filters. This adaptive error correction algorithm uses the same observations that are used to adjust the ensemble filter
estimate of the state to estimate appropriate values of covariance inflation. Results are shown for several low-order
model examples and the algorithm produces results that are comparable with the best tuned inflation values, even for
small ensembles in the presence of very large model error.

1. Introduction

Ensemble filter methods for data assimilation are Monte Carlo
algorithms designed to merge prior information from model in-
tegrations with observations to produce improved posterior es-
timates. These methods emerged in ocean (Evensen, 1994) and
atmospheric science (Houtekamer and Mitchell, 1998) applica-
tions, but have been spreading rapidly to a wide range of fields
in geophysics. An application of particular interest is global nu-
merical weather prediction where enormous effort has been ex-
pended building high-quality variational assimilation methods
(Derber et al., 1991; Courtier et al., 1994; Rabier et al., 2000).

Ensemble methods are appealing because simple implementa-
tions require little effort or expert knowledge. Variational meth-
ods (Le Dimet and Talagrand, 1986; Talagrand and Courtier,
1987; Derber, 1989), on the other hand, continue to require sig-
nificant expert knowledge for the development of tangent linear
and adjoint versions of models and forward observation opera-
tors (Geiring et al., 2005). However, experience has suggested
that it is not trivial to match variational assimilation performance
with ensemble methods (Houtekamer et al., 2004). Ensemble
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filters are subject to errors originating from a variety of sources
(Lorenc, 2003). Model (Hansen, 2002) and observation repre-
sentativeness (Hamill and Whitaker, 2004) error are shared with
variational techniques (Li and Navon, 2001). Others, like sam-
pling error resulting from small ensembles, are unique to ensem-
ble methods (Anderson, 2007).

Good filter performance, even in low-order perfect model
applications, can require tuning several adjunct algorithms de-
signed to ameliorate the impacts of errors. The two most common
are covariance inflation (Anderson and Anderson, 1999) and lo-
calization (Hamill et al., 2001; Houtekamer and Mitchell, 2001).
Most error sources in ensemble filters are expected to lead to un-
derestimates of the ensemble variance (Furrer and Bengtsson,
2006). Insufficient variance can lead to poor performance and,
in severe cases, to filter divergence where the filter no longer
responds to the observations. Covariance inflation algorithms
address this issue by ‘inflating’ the prior ensemble, increasing
its variance by pushing ensemble members away from the en-
semble mean.

Localization algorithms try to correct for errors in the sam-
ple covariance between observations and model state variables
(Mitchell and Houtekamer, 2000). These errors arise both from
small samples and because most ensemble filters described in the
literature assume a least squares fit to represent the relation be-
tween an observation and model state variables. These errors are
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particularly insidious because they lead to systematic underesti-
mates of the posterior ensemble variance. The error is expected
to be largest for an observation that is weakly correlated with
a given state variable. This can be ameliorated by reducing the
impact of an observation on a state variable as a function of the
a priori expected correlation between the two. Often, this ex-
pected correlation is unknown and ad hoc localization is used.
For instance, in numerical weather prediction applications the
impact of observations on state variables is normally reduced as
a function of the physical distance between the two.

Determining good localization functions in concert with ap-
propriate covariance inflation can make tuning ensemble filters
an expensive proposition. Most applications to date have as-
sumed that both localization and inflation are homogeneous in
both space and time. In this paper, a hierarchical Bayesian ap-
proach leads to an adaptive algorithm that can compute appro-
priate values for covariance inflation automatically. The same
observations that are used in the ensemble filter are used to ad-
just an estimate of the covariance inflation factor.

The method developed here assumes that inflation values are
homogeneous in space but adaptive in time. This serves as a
foundation for future work in which inflation can vary adaptively
in both space and time. Results demonstrate that the adaptive
inflation algorithm can automatically produce results that are
nearly as good as the best manually tuned cases. The algorithm
can adapt to cases where the ensemble filter errors are very large,
for instance when model error is enormous.

Section 2 presents a derivation of the Bayesian filter and Sec-
tion 3 reviews ensemble filter methods for this problem. Sec-
tion 4 introduces covariance inflation and Section 5 derives the
adaptive inflation algorithm. Section 6 discusses avoiding fil-
ter divergence while low-order model results are presented in
Section 7.

2. Bayesian filtering

A framework for combining a prior estimate of the state of a
system with observations to produce a conditional estimate of
the state given the observations can be derived from Bayes the-
orem (Jazwinksi, 1970). Let the state of the system be a random
M-vector, x. Sets of scalar observations, yk are available at dis-
crete times, tk, with tj > ti if j > i . The set of all observations
taken up to and including a time tk is Y τ = {yk, k ≤ τ}. As-
sume that at time t a−1, an estimate of the state of the system
given Y a−1 is p(x , t a−1 | Y a−1), referred to as the posterior, or
updated, estimate at t a−1. The next time at which observations
are available is ta, the analysis time in the terminology of at-
mospheric assimilation. To simplify the problem, it is assumed
that the error distributions for observations in different sets are
unrelated. Then, the data assimilation problem can be described
as the sequential solution to two subproblems. First, given p(x ,
t a−1 | Y a−1), find the prior estimate of x at ta given only observa-
tions available at times before ta, p(x , ta | Y a−1). Second, given

the set of Q observations available at time ta, ya = {y1, y2, . . . ,
yQ}, find the posterior estimate at time ta given Ya which is p(x ,
ta | Ya). The algorithm can be applied iteratively to obtain the
prior and posterior estimates at all subsequent observing times.

The first problem, advancing the state in time, requires a
model, here a possibly stochastic function, F , that computes
a state vector, xa at time ta given a state vector x a−1 at time t a−1,

xa = F(xa−1, ta−1, ta) = f (xa−1, ta−1, ta) + g (xa−1, ta−1, ta) ,

(2.1)

where f is a deterministic function and g is a stochastic function.
For assimilation, x is a random vector and (2.1) must be applied
in an appropriate fashion so that p(x , ta | Y a−1) is computed
from p(x , t a−1 | Y a−1). This can be done via the Fokker–Planck
equation. It can also be done by Monte Carlo methods or in an
ad hoc fashion; these two possibilities are addressed below.

Several additional simplifying assumptions are made in solv-
ing the second problem. Assume that observations in ya are re-
lated to the state vector by the scalar forward observation oper-
ators, hi, so that

yi = hi (x) + νi , i = 1, . . . , Q (2.2)

with observational error distribution

νi ≈ Normal
(
0, σ 2

o,i

)
(2.3)

and errors for different observations are unrelated (subscript o
indicates an ‘observational’ error variance). Then, hi produces
the expected value of yi given a state vector. Gaussian kernel
methods allow the methods here to be extended to non-Gaussian
distributions if desired but with a large computational overhead
(Anderson and Anderson, 1999).

The impact of the observations on the prior estimate condi-
tioned on all previous observations is obtained from Bayes rule
as

p(x, ta | Ya) = p(x, ta | Ya−1, ya)

= p(ya | x, Ya−1)p(x, ta |Ya−1)/p(ya | Ya−1). (2.4)

Assuming that observation errors for observations in set ya

are independent of any other set implies that

p(ya | x, Y a−1 ) = p(ya | x). (2.5)

This is referred to as the observation likelihood. The denom-
inator of the right-hand side of (2.4) is a normalization and can
be written as an integration of the numerator over the range of
possible values of the state vector

p(ya | Ya−1) =
∫

p(ya | x)p(x, ta | Ya−1)dx ≡ norm. (2.6)

The result is that (2.4) becomes

p(x, ta | Ya) = p(ya | x)p(x, ta | Ya−1)/norm. (2.7)

The algorithm can be further simplified by assuming that ob-
servations within the set ya also have independent observation

Tellus 59A (2007), 2



212 J . L . ANDERSON

errors. The posterior estimate at ta can be written as

p(x, ta | Ya) = p(x, ta | Ya−1, ya)

= p(x, ta | Ya−1, y1 , y2 , . . . , yQ ). (2.8)

Defining

p(x, ta,i ) ≡ p(x, ta | Ya−1, {yk, k ≤ i}) (2.9)

leads to

p(x, ta,i ) = p(yi | x)p(x, ta,i−1)/norm (2.10)

and

p(x, ta | Ya) = p(x, ta,Q). (2.11)

Sequential application of 2.10 to each observation in ya in turn
leads to a solution of 2.7 (Anderson, 2003).

3. Ensemble filters

Ensemble filters use Monte Carlo methods to approximate the
solution to (2.7, 2.10) and to advance estimates of the state prob-
ability distribution function in time using (2.1). Assume that an
N-member sample, referred to as an ensemble, of the posterior
distribution, p(x , t a−1 | Y a−1) is available. Prior estimates of
p(x , ta | Y a−1) are computed by applying (2.1) independently to
each posterior ensemble state. If F has a stochastic component,
g, an independent sample of the stochastic component should be
used when advancing each ensemble member.

Ensemble methods for computing (2.7, 2.10) can be derived
starting with the Kalman filter (Kalman, 1960) and applying
a Monte Carlo approximation (Burgers et al., 1998). Methods
can also be derived directly from (2.7, 2.10) as in Anderson
(2003) resulting in identical algorithms in many cases. Here, the
sequential Ensemble Adjustment Filter derived in (Anderson,
2001) is described briefly to highlight error sources that require
correction. This filter is a member of the class of ensemble square
root filters (Whitaker and Hamill, 2002; Tippet et al., 2003).
Other ensemble filter algorithms in the literature (Pham, 2001;
Keppenne and Rienecker, 2002; Ott et al., 2004) may have some
different properties but are still subject to these errors.

To further simplify notation, subscripts indexing the time and
the observation number (in the set) are dropped from (2.10).
Assimilation of a single scalar observation, y, suffices to describe
the whole algorithm.

p(x | Y , y) = p(y| x)p(x, | Y )/norm. (3.1)

A prior ensemble estimate of y is created by applying the
forward operator h (subscript dropped since a single observation
is being discussed) to each sample of the prior state. An updated
ensemble estimate of y conditioned on the observation can be
computed from the prior ensemble estimate of y, the observed
value yo and the observation’s error variance, σ 2

0 using (3.1).
The result can be used to compute an increment for each of the

N prior ensemble estimates of y. Details of the computation of
the increments distinguish most ensemble filter variants in the
atmospheric and oceanic literature (Anderson, 2003).

In the Ensemble Adjustment Filter, the prior ensemble esti-
mate of y is approximated as Normal(ȳp, σ

2
p ) where ȳpand σ 2

p are
the sample mean and variance. The product of Normal(ȳp, σ

2
p )

and Normal (yo, σ 2
o) in (3.1) is computed resulting in a Gaussian

updated distribution for y, Normal(ȳu, σ
2
u ) with

σ 2
u =

[ (
σ 2

p

)−1 + (
σ 2

o

)−1
]−1

(3.2)

and

ȳu = σ 2
u

[(
σ 2

p

)−1
ȳp + (

σ 2
o

)−1
yo

]
. (3.3)

The prior ensemble distribution of y is then shifted and linearly
compacted to create an updated ensemble with sample statistics
ȳu and σ 2

u . Increments are

	yi =
√

σ 2
u

/
σ 2

p (yp,i − ȳp) + ȳu − yp,i , i = 1, . . . , N , (3.4)

where i subscripts the ensemble member. Other ensemble fil-
ters calculate these increments differently, for instance via the
perturbed observation approach of the ensemble Kalman filter
(Evensen, 1994).

Finally, increments for each component of the prior state vec-
tor are computed independently using linear regression with the
prior joint sample statistics. Increments for the jth component
are computed as

	x j,i = (
σp, j

/
σ 2

p

)
	yi , j = 1, . . . , M, i = 1, . . . , N ,

(3.5)

where σ p, j is the prior sample covariance of the observed vari-
able, y, and the jth element of the state vector, x, and M is the
size of the model state vector.

Error is associated with each step in ensemble filter algo-
rithms. Error in the model can be a large term in many applica-
tions (Buizza et al., 1999; Dee and Todling, 2000). When com-
puting the forward operators, errors of representativeness (Daley,
1993; Dee et al., 1999) can be introduced if the model state does
not adequately represent all the spatial/temporal scales and phys-
ical processes that take place in the system being observed. For
instance, global atmospheric models do not resolve small scale
convection, but radiosonde observations can be significantly im-
pacted by the presence of a thunderstorm. Additional errors may
be involved with more complicated forward observation opera-
tors like those for satellite radiances (Eyre et al., 1993).

The observations themselves are often contaminated by er-
rors that are not adequately represented by a specified Gaussian
distribution. For instance, ‘gross’ errors made through human
error plague operational numerical weather prediction and at-
mospheric reanalyses (Kistler et al., 2001; Uppsala et al., 2005).

When the prior observation ensemble and the observation like-
lihood are combined using (3.1), sampling error from finite en-
sembles is a source of error. Characterizing this error can be
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extremely complex, even when using very simple models in
perfect model settings. For large models, the nature of these
sampling errors remains largely unknown. Assuming that the
prior distribution and the observation likelihood are Gaus-
sian in the observation space update step may also introduce
error.

Errors can also occur during the regression that is used to up-
date state variables given increments for the observation prior
eq. (3.5). Sampling error is again an issue since ensemble statis-
tics are used to compute the regression coefficients. Assuming
a linear relation between the observation and the state variables
may be inappropriate leading to additional regression errors. If
the model is not perfect, the prior joint statistics may be unable
to represent the appropriate relation between an observation and
state variables even if linearity is valid and sampling error is
negligible. Again, it is very difficult to characterize these errors
in large model applications.

4. State space covariance inflation

All error sources are normally expected to produce ensemble
estimates with insufficient variance which can in turn lead to in-
creased error in the mean. Unrealistically confident priors cause
observations to receive insufficient weight in the update eq. (3.1)
leading to further errors in the mean and increasingly underesti-
mated error variance. Prior estimates may become so confident
that further observations are essentially ignored and the filter
solution depends only on the model. This is referred to as filter
divergence.

To avoid filter divergence and improve assimilation qual-
ity, ensemble filters can employ heuristic methods to increase
variance estimates. One common method is ‘covariance in-
flation’ (Anderson and Anderson, 1999) in which the prior
ensemble state covariance is increased by linearly inflating
each scalar component of the state vector before assimilating
observations:

x inf
j,i =

√
λ(x j,i − x̄ j ) + x̄ j , j = 1, ..., M ; i = 1, . . . N , (4.1)

where j indexes the state vector component and i the ensemble
member, the overbar is an ensemble mean and N is the ensemble
size, M is the model size, and λ is referred to as a covariance
inflation factor. The sample variance of each component xj is
increased by λ while sample correlations between any pair of
components remain unchanged. Covariance inflation has been
applied in many studies with both low-order models and large
atmospheric prediction models. Frequently, ensemble filters di-
verge without covariance inflation. Good assimilations can re-
quire careful tuning of λ, an expensive proposition in large sys-
tems. Other methods of increasing variance have been explored
more recently including using additive instead of multiplicative
inflation (Tom Hamill 2005, personal communication).

5. Adaptive inflation

Covariance inflation can be viewed as a simple model to correct
the unknown deficiencies in an ensemble filter that lead to under-
estimated prior variance. The inflation factor, λ, can be viewed
as a one-dimensional state vector for this model of variance er-
ror, and observations in conjunction with Bayes theorem can be
used to improve the estimate of λ. In an ensemble filter, the prior
ensemble estimate of an observation, y, (the result of applying
the forward operator to each ensemble member), the observa-
tion, yo, and the observational error variance, σ 2

o, can be used to
estimate whether λ is too big or too small. The Bayesian filtering
update eq. (2.7) can be used to compute probability distributions
for λ given a sequence of observations. The approach here is
closely related to adaptive error variance algorithms developed
for non-ensemble assimilation systems (Dee, 1995; Dee and Da
Silva, 1999; Dee et al., 1999).

Using the notation of Section 2, a prior distribution for λ

p(λ, ta | Ya−1) (5.1)

is required along with a method for computing a prior distribution
from a posterior,

p(λ, ta−1 | Ya−1), (5.2)

at the previous observation time

λa = Fλ(λa−1, ta−1, ta)= fλ (λa−1, ta−1, ta) + gλ (λa−1, ta−1, ta) .

(5.3)

Here, the prior distribution of λ is assumed to be normal

p(λ, ta | Ya−1) = Normal
(
λ̄p, σ

2
λ,p

)
(5.4)

with mean λ̄pand variance σ 2
λ,p . Initially, it is assumed that the

‘model’ time tendency for λ is 0. In other words, the prior distri-
bution at ta is identical to the posterior distribution at t a−1; f λ (λ,
t 1, t 2) = λ and gλ (λ, t 1, t 2) = 0, ∀ {λ, t 1, t 2}. The only changes
to the distribution for λ are caused by the impact of observations.

As in Section 2, observations can be assimilated sequentially
given independence of the observational errors. In this case, an
algorithm for applying (2.10) for a single scalar observation is
sufficient to describe the entire Bayesian update for λ.

The state vector x in (2.10) is replaced by λ, giving

p(λ, ta,i ) = p(yi | λ)p(λ, ta,i−1)/norm (5.5)

and a similar transformation can be made to (2.11). The ensemble
samples of the x state vector are parameters of the assimilation
problem for λ, just as λ is a parameter of the ensemble assimi-
lation problem for x when covariance inflation is used.

An expression for the observation likelihood, the first term in
the numerator of (5.5) is required. To simplify notation, use of
only a single observation is described and subscripts referenc-
ing the observation number/time are dropped. Suppose the prior
observation ensemble is given by

yp,k = h(xk), k = 1, . . . , N (5.6)
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with sample mean and variance ȳpand σ 2
p . The observation is

yo with error variance σ 2
o. The observation likelihood expresses

the probability that yo would be observed given a value of the
inflation, λ.

Let θ be the expected value of the distance between ȳp and
yo, given a value of λ. If the prior observation distribution is
unbiased as assumed in (2.3),

θ =
√

λσ 2
p + σ 2

o . (5.7)

This implicitly assumes that inflating all the state variable
components in x using λ leads to an inflation of the observation
prior variance, σ 2

p , by the same factor. This is equivalent to the
assumption of gaussianity that is made when the linear regres-
sion is used to update state variables given observation variable
increments (3.5) in the ensemble filter. This assumption is vio-
lated if, for instance, the relation between the observed variable
prior and the state variables is not linear over the range of the
prior ensemble samples.

The actual distance between the prior ensemble mean and the
observed value is D = |ȳp − yo|. The assumption that the prior
sample and observation are unbiased implies that D is drawn
from a distribution that is Normal (0, θ2). By the definition of
the normal

p(yo | λ) = (
√

2πθ )−1 exp(−D2/2θ2) (5.8)

is the observation likelihood term. In this case, (5.5) becomes

p(λ, ta,i ) = (
√

2πθ )−1 exp(−D2/2θ2) N
(
λ̄p, σ

2
λ,p

)
/norm.

(5.9)
Although both the observation likelihood (5.8) and the prior

(5.4) are Gaussian, the former has a variance that is a function of
λ while the latter has a mean that is a function of λ so the product
is not Gaussian (unlike 3.1 for the ensemble filter). Nevertheless,
the algorithm here assumes a Gaussian for the posterior since it
is equivalent to the next prior which is assumed Gaussian.

Figure 1a shows an example of an observation likelihood (5.8)
and a prior probability distribution for λ (prior divided by 300
and shifted upwards by 0.195 so that it can be viewed on the same
axes). This case is from an experiment described in more detail in
Section 7. The likelihood is skewed toward larger values of λ and
is extremely flat compared to the prior. If not divided by 300 the
prior would be a high, narrow spike compared to the likelihood,
so variations in the posterior are dominated by the prior. Figure 1b
shows the posterior minus the prior. The difference is very small,
consistent with Fig. 1a, with the mean of the posterior shifted
towards the mode of the observation likelihood as expected. In
this case, the distance D between the prior ensemble mean and
the observed value was larger than expected so the distribution
of λ is shifted slightly towards larger values. The variance of
the posterior is also slightly reduced although this is not clearly
visible in the figure. The fact that the observation likelihood is
so flat compared to the prior indicates that there is very little
information about λ available from a single observation.

Fig. 1. The prior distribution function divided by 300 and shifted
upward by adding 0.195 (solid) and the observation likelihood (dashed)
for the adaptive inflation for the first observation assimilated at the
assimilation time 2001 of a 10-member ensemble assimilation of 40
randomly located observations in the Lorenz-96 model is in panel (a).
Panel (b) shows the posterior minus the prior probability distribution
functions for this observation.

Although the posterior distribution computed via (5.9) is not
Gaussian, it is generally very nearly Gaussian as shown by the
small differences in Fig. 1b. A posterior mean and variance must
be found so that Normal(λ̄u, σ

2
λ,u) closely approximates the result

of (5.9). One could try to find the mean of the product through
analytic integration, but this is difficult because λ is associated
with the mean in the prior and the variance in the likelihood terms.
Instead, the algorithm used here sets λ̄u equal to the mode of the
exact posterior from (5.9). The mode can be found analytically
by differentiating the numerator of (5.9) and setting the result
equal to 0 (Appendix A). If the resulting cubic equation has
a single real root (by far the most common case in the results
here), this root is the mode. If there are multiple real roots, the
root closest to λ̄p is chosen. Computing λ̄u requires a number of
multiplications, several square roots, and two cube roots.

The variance of the posterior is found by a naı̈ve numerical
technique. The ratio, R, of the value of the numerator of (5.9)
at λ̄u + σλ,p to the value at λ̄u is computed by evaluating the
numerator of (5.9) at both points. It is assumed that the posterior
is Normal(λ̄u, σ

2
λ,u) and expressions for the values of the nor-

mal evaluated at λ̄u + σλ,p and λ̄u can be computed using the
definition of the normal density. Taking the ratio of these two
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expressions, one can solve for the updated variance as

σ 2
λ,u = −σ 2

λ,p

/
2 ln(R). (5.10)

Other methods could be used to approximate the updated vari-
ance. One could compute ratios as just outlined for a large num-
ber of points and compute the mean value of the approximate
variances to account for the impact of higher order moments
in the posterior. Another method uses quadrature and an opti-
mization to find the value of the variance so that the integrated
area between the exact posterior and the Gaussian approxima-
tion is minimized. The approximate method used here is biased
to produce slightly larger values of σ 2

λ,u in the mean over many
observations. This is a convenient property as noted in the dis-
cussion of filter divergence in the next section.

The most direct implementation of the ensemble filter algo-
rithm computes the adaptive inflation filter independently before
the ensemble filter as follows:

1. The ensemble estimate of the model state, x, is advanced
to the time of the next observation using the model.

2. The posterior estimate of the inflation from the time of
the previous observations is advanced to the time of the next
observation using a model. As noted earlier, one may often not
know how to advance the inflation in time and this step may
simply entail using the previous posterior inflation estimate as
the new prior estimate.

3. Each observation is processed sequentially to update the
prior inflation estimate.

(a) The forward observation operator is computed for each
ensemble member.

(b) The expected distance between the prior ensemble mean
of the observation and the observed value is computed with (5.7).

(c) The cubic formula is used to solve (A.8) for x and (A.7) is
used to compute the approximate posterior mean for the inflation.

(d) The estimated variance of the updated inflation distribu-
tion is computed using (5.10).

Once the inflation distribution has been updated with all ob-
servations at this time, the prior state estimate is inflated using λ̄u

in 4.1. The ensemble filter is then used to sequentially assimilate
the observations available at this time.

A variety of modifications can be made to the algorithm to en-
hance computational efficiency. For certain parallel implemen-
tation of filters and for some types of observations, it can be
very expensive to compute forward observation operators at dif-
ferent points in the filter algorithm. Instead, the algorithm can
be modified to compute the ensembles of forward observation
operators for all observations available at a given time at once
before beginning the sequential assimilation algorithms. An im-
plementation of this variant of the hierarchical filter proceeds as
follows:

1. The state vector ensemble is advanced to the time of the
next observation and the prior distribution for the inflation is
computed.

2. The ensemble is inflated using λ̄p .
3. All forward observation operators are computed for each

ensemble member.
4. The prior variance of each observation is computed and

‘uninflated’ to account for the fact that inflation has already been
done in state space.

5. Each observation is then processed sequentially.

(a) The inflation distribution is updated using the ‘unin-
flated’ prior variance computed in 4).

(b) The ensemble filter is used to compute observation in-
crements for this observation.

(c) All state variables are updated by regression with these
increments.

(d) The ensemble distributions of all remaining obser-
vation priors are also updated by regression with these
increments.

6. Avoiding inflation filter divergence

The adaptive inflation algorithm consists of two inter-related fil-
ters: an ensemble filter for the state vector x; a continuous filter
for λ. Adaptive inflation is used to avoid filter divergence and im-
prove performance for the state vector ensemble filter. Although
the λ filter uses a continuous probability function representation,
it is still subject to the same concerns about filter divergence as
the ensemble filter. Every time an observation is assimilated in
the λ filter, the variance estimate σ 2

λ is expected to decrease (Chui
and Chen, 1987). In the discussion so far, the prior value of λ

at the next time is equal to the posterior at the previous time, so
there will be a systematic loss of variance that can lead to filter
divergence.

Figure 2 shows σ 2
λ,p and λ̄p as a function of assimilation time

from an experiment described in detail in Section 7. The initial
σ 2

λ,p is 0.25 and after assimilating observations at 2000 different
times, this is reduced to about 0.06 (Fig. 2a). If the assimilation
continued, σ 2

λ,p would continue to decrease, and the adaptive
inflation filter would give progressively less weight to observa-
tions. This behavior is also apparent in the time evolution of
λ̄p (Fig. 2b), which shows that the timescale of variability in the
estimate of λ̄pis increasing as σ 2

λ decreases. Eventually, observa-
tions would have negligible impact on the estimate, and λ̄p would
become nearly constant in time. This would not be a problem
if the underlying errors in the ensemble filter were constant in
time. The filter would presumably converge to the correct value
and stay there. In general, however, the ensemble filter assimila-
tion errors may not be constant in time and one might prefer that
the estimate of λ̄p continue to evolve in response to additional
observations. In other words, the systematic loss of variance for
λ could eventually lead to filter divergence.
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Fig. 2. Value of standard deviation (a) and mean (b) of adaptive
inflation distribution during first 2000 steps of a 10-member ensemble
assimilation of 40 randomly located observations in the Lorenz-96
model.

If desired, this loss of variance could be addressed in several
ways. One could apply covariance inflation to the λ filter and
construct yet another filter, which would itself be subject to filter
divergence, to determine the values for this second inflation fac-
tor. This hierarchical Bayesian approach is somewhat reminis-
cent of hierarchical turbulence closures in atmospheric modeling
(Mellor and Yamada, 1982); it has to be closed somewhere. One
could also use some sort of variance growing model for f and g
in (5.3) to compute the prior from the previous posterior for λ.
For most results here, σ 2

λ,p is fixed in time,

σ 2
λ,p = σ 2

c , (6.1)

where the subscript c indicates a value that is constant in time.
σ 2

c must be selected empirically and this only makes sense if it
is less difficult and costly to find appropriate values than it is
to find good values of λ itself. Results below indicate that good
performance can be obtained for a wide range of ensemble filter
errors using a single value of σ 2

c . Roughly equivalent perfor-
mance is found for a wide range of choices for σ 2

c meaning that
tuning is not generally required. This is not always the case for
empirically tuning λitself as seen in Section 7.5.

7. Low-order model results

The adaptive inflation algorithm is applied to synthetic observa-
tion experiments using the 40-variable model of Lorenz (Lorenz,
1996; Lorenz and Emanuel, 1998; Appendix B) to see how it

responds to various sources and magnitudes of ensemble filter
errors. Small ensemble assimilations in this model are subject
to large sampling error from the regression step. Localization
is used to reduce this sampling error. The 40 state variables are
defined to be equally spaced on a periodic (0, 1) domain. Ob-
serving stations are placed at locations on (0, 1) and forward
operators are linear interpolation between the two nearest state
variable locations. When the regression of increments from an
observation located at zo onto a state variable at zs is performed
with (3.5), the regression coefficient is multiplied byζ (d, c)
where

d = min (|zo − zs | , 1 − |zo − zs |) ,

is the distance between the observation and state variable and ζ

is the fifth order polynomial function of Gaspari and Cohn (1999)
with half-width c. For d ≥ 2c, the observation has no impact on
the state variable. For d < 2c, ζ approximates a Gaussian.

A set of observing stations with spatial locations randomly
drawn from U(0, 1) and fixed in time is used in all experiments.
Synthetic observations are taken every time step by linearly in-
terpolating to each observation location and adding a draw from
Normal (0, σ 2

o)to simulate observational error. The specified ob-
servational error variance σ 2

o is set to 1.0 in all experiments.
Initial conditions for the ensemble assimilation are ‘climato-

logical’, randomly chosen states from long free integrations of
the model used to generate the observations. The assimilating
model (not always the same as the model used to generate ob-
servations) is used to assimilate for 4000 observation times but
results are only reported for the last 2000 times. Transient be-
havior appears to have disappeared after the 2000 initial steps in
all experiments. When the adaptive inflation algorithm is used,
the initial value for λ̄ is 1.0 and λ̄ is constrained to be no less
than 1. Allowing λ̄ to become less than 1.0 has negligible impact
on the results shown here.

With one exception, the deterministic square root filter
(Tippett et al., 2003) update method called the ensemble ad-
justment filter described in Section 2 is used for the observation
space scalar update. The primary metric of filter performance is
the time mean (prior) ensemble mean rms innovation in obser-
vation space

I =
√√√√ M∑

j=1

[
N∑

i=1

h j (xi ) /N − yo, j

]2 /
M (7.1)

and the associated expected value of the rms innovation given
the prior ensemble

S =
√√√√ M∑

j=1

N∑
k=1

{[
N∑

i=1

h j (xi )/N − h j (xk)

]2

+ σ 2
o, j

}/
M N

(7.2)

where N is the ensemble size and M is the total number of ob-
servations in the 2000 assimilation step verification period. The
quantity in (7.2) is referred to as the ‘innovation spread’. For an
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optimally performing filter, the innovation values should be con-
sistent with the spread. These statistics are computed by applying
the forward observation operator for all observations available
at a given time before any of the observations from that time are
assimilated. The prior rms innovation compares only to inde-
pendent observations and can be evaluated in real assimilation
experiments where the ‘truth’ is not known. Values of the ensem-
ble mean time mean rms error from the truth for the state vector
(7.3) (not available in real assimilations) are given in some cases
for comparison to previous studies on the Lorenz-96 model.

7.1. Varying ensemble size

The first results examine the response of the adaptive infla-
tion algorithm to varying the ensemble size while holding
other parameters constant. Forty randomly located observing
stations are used and the localization half-width c is 0.15.
This c is too small (large) for optimal filter performance for
large (small) ensembles. Ensemble sizes of {5,6,7,8,9,10,12,14,
16,18,20,25,30,35,40,50,60,70,80,90,100} were tested; Fig. 3
plots the time mean value of λ̄ over 2000 assimilation steps, the
maximum and minimum values of λ over the 2000 steps, and the
rms innovation and innovation spread as a function of ensemble
size. As the ensemble gets smaller, sampling error in the ensem-
ble filter increases and λ increases (Fig. 3a). The range of the
values of λ̄ also increases as the ensemble size decreases. The
rms innovation and innovation spread generally have roughly
consistent values and are approximately constant for ensemble
sizes between 8 and 100. Ensembles smaller than 4 were unsta-
ble while no significant change occurred for ensembles larger
than 100.

7.2. Varying localization for fixed ensemble size

Next, the ensemble size is fixed at 10 and the localization half-
width, c, is varied among {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 and 1.0}. The optimal c for this ensemble size
and observation set is about 0.15. Larger values lead to increased
sampling error in the regression (3.5) while smaller values lead to
increased error in the mean because valid observational informa-
tion is ignored and state space increments are not appropriately
correlated for adjacent state variables. Figure 4 shows the 2000
step statistics of λ and the time mean observation space error
and spread as c is varied. λ is smallest when the half-width is
0.15 and increases for larger and smaller values. The values of
λ̄ vary from approximately 1.05 to 1.10 over the range in which
rms innovation is roughly constant.

7.3. Model error

The Lorenz-96 model is a forced dissipative model with a pa-
rameter F that controls the strength of the forcing (B.1). Integer
values of F greater than 3 produce chaotic time-series, values

Fig. 3. Panel (a) shows the minimum, mean and maximum values of
the adaptive inflation, λ, as a function of ensemble size when
assimilating 40 randomly located observations in the Lorenz-96 model.
Results are averaged over the last 2000 steps of a 4000 step
assimilation. Panel (b) shows the time-mean rms innovation and
ensemble innovation spread for the prior ensemble estimates of the
observations.

from 1 to 3 produce periodic time-series, and F = 0 produces a
damped time-series. The time evolution of model state variable
x1 for F = 0, 3, 5, 8 and 11 is shown in Fig. 5, all cases starting
from identical initial conditions at t = 0. The model behavior is
quite different for these different values of F.

To simulate model error, observations at the 40 randomly
located stations are produced by a model with F =8. These obser-
vations are then assimilated by 20 member ensemble filters that
use models with F = 4, 5, . . . , 12. Cases with F < 3 and > 13 led
to models that became numerically unstable. Figure 6 plots the
minimum, maximum and mean of λ over 2000 assimilation steps
and the rms innovation and innovation spread for the 9 cases.
As F becomes increasingly different from 8, the values of λ and
the innovation and spread grow. The adaptive algorithm is able to
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Fig. 4. As in Fig. 3, but as a function of the Gaspari-Cohn localization
half-width in a 10-member ensemble assimilation.

Fig. 5. Time evolution of state variable x3 for different values of
forcing F: F = 11 (thick solid), 8 (thick dashed), 5 (dot-dashed), 3 (thin
solid) and 0 (thin dashed).

produce successful assimilations over a wide range of model
errors. Searching for time constant inflation factors for these
cases (see Section 7.5) required a large number of iterations for
each value of F.

Fig. 6. As in Fig. 3 but as a function of forcing, F, in assimilating
model for 20-member ensemble with 40 randomly located
observations.

Since the uncertainty, and hence the range of the prior ensem-
ble, gets larger as the error in F is increased, the error in the
regression step is also expected to increase. The linear approxi-
mation used for the regression becomes increasingly suspect as
the range of the prior ensemble sample becomes larger. Also,
the relation between state variables in the imperfect assimilat-
ing models becomes increasingly different from the relation in
the model that produced the observations. The result is that the
assimilating model is unable to produce the correct relation be-
tween the state and observed variables (Mitchell et al., 2002).

To separate the impact of increased regression error from
model error, the model error experiments are repeated with 100
randomly located observing stations. The increased observation
density reduces the assimilation error in all cases and therefore
the impact of the regression errors. Fig. 7 plots the time mean
values of λ and the rms innovation and innovation spread for
the denser observation case. Again, all increase as the error in F
increases, but the rms innovation increases more slowly than in
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Fig. 7. As in Fig. 6 but for assimilation of 100 randomly located
observations. Note the extended horizontal axis when comparing to
Fig. 6.

the 40 observation case. On the other hand, the inflation is larger
due to the increased number of observations which lead to more
spurious reduction of the variance estimates. Results are shown
for F = 1, 2, . . . , 16 in this case.

7.4. Sensitivity to fixed inflation variance

As noted in Section 6, the inflation variance, σ 2
c (6.1), is held

fixed in each experiment. In all cases discussed in Section 7 so
far, it has been set to 0.05. Assimilations of 40 randomly located
observing stations with a 10 member ensemble were performed
for values of σ c = {0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3, 0.4,
0.5}. The time mean values of λ and the rms innovation and
innovation spread are plotted in Fig. 8. While there is some
fluctuation in the values, the filter performance is roughly the
same through nearly two orders of magnitude change in σ c, or
four orders of magnitude for σ 2

c . σ 2
c controls how sensitively

Fig. 8. As in Fig. 3 but as a function of the standard deviation of λ for
assimilations with 10 members with 40 randomly located observations.

Fig. 9. Time sequence of values of adaptive inflation λ over last 500
steps of assimilation for different values of standard deviation of λ.

λ̄ responds to observations. The smaller σ 2
c , the less rapid the

response as more weight is given to the prior distribution. The
larger range of minimum to maximum values of λ in Fig. 8a as
σ 2

c is increased is indicative of this sensitivity. Fig. 9 plots the
time-series of λ̄ values from the runs with σ 2

c = {0.01, 0.05,
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0.1}. As σ 2
c increases, the time-series become smoother while

smaller σ 2
c leads to relatively noisy time-series.

As noted in Section 6, there would be little purpose in using
adaptive observation space inflation if it required as much work
to tune σ 2

c as to tune λ for a fixed inflation filter. In cases like
these model error experiments, it requires a large number of
trials to find values of λ that produce assimilations that are of
high quality while the adaptive inflation filter is able to produce
relatively high-quality assimilations without tuning.

7.5. Comparison to fixed tuned physical space inflation

Trial and error was used to find good time constant values of
covariance inflation for the 100-observing-station model error
experiments described in Section 7.3. The optimal time-constant
λ and the time mean adaptive λ are plotted in Fig. 10a; the time-
constant values are always larger. The rms innovation from the
adaptive inflation case along with the rms innovation and spread
from the time-constant cases are shown in Fig. 10b. The innova-
tions for the optimal time-constant cases are smaller and become
progressively more so as the model error is increased. The inno-
vation spread from the time-constant cases is significantly larger
than the rms innovation and is very close to the rms innovation
values for the adaptive cases.

Figure 11 displays the time-mean rms errors and spread in state
space for the 100-observation model error experiments (compare
to Fig. 10b for innovations in observation space). The state space
rms error is defined as the 2000-step time average of E, the
ensemble mean rms difference from the truth for the state vector

E =
√√√√ M∑

j=1

[
N∑

i=1

x j,i

/
N − x̂ j

]2

/M (7.3)

and the associated prior spread

S =
√√√√ M∑

j=1

N∑
k=1

[
N∑

i=1

x j,i/N − x j,k

]2/
M (N − 1) (7.4)

where the hat represents the true value from the model integration
that generated the observations and M is now the model size. The
best tuned time-constant value still produces smaller errors, but
the differences are smaller than for innovations in observation
space. This reflects the fact that the fixed inflation values were
tuned to minimize innovations in observation space. The tuned
inflation values also result in state space spread that is much too
large. The adaptive spread is also larger than the adaptive rms
error, but it is not nearly as inconsistent as in the fixed inflation
case.

The time-constant results are expected to be better because
the adaptive cases know nothing about errors that occur when
computing how much a change in λ should inflate the observed
variable prior variance. The observation likelihood term (5.8)

Fig. 10. Panel (a) shows the time mean value of adaptive inflation and
the value of optimal fixed state space inflation as a function of forcing.
Panel (b) shows the time mean rms innovation for the adaptive filter
and the rms innovation and innovation spread for the optimal fixed
inflation as a function of forcing. Both are for the case with 100
randomly located observations and 20 member ensembles.

implicitly assumes that the prior relation between the observation
and the state variables is Gaussian and that the prior ensemble
sample statistics accurately summarize the linear relation. Errors
here naturally reduce the variance of the state variables compared
to what would be expected in the limit of large ensembles. If the
assumption of a linear relation between the observation priors
and the state variable priors is incorrect, these errors lead to er-
rors in the state variable estimates which are also consistent with
too little spread in state space. The trial and error cases over-
come this error source by overinflating to correct these errors.
The observations are then weighted more heavily than in the
adaptive filters which acts to reduce the impact of the model and
assimilation system error.
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Fig. 11. Time mean prior rms error and spread in state space for same
case shown in Figure 10 for an adaptive inflation filter and the best
fixed inflation filter.

7.6. Ensemble Kalman filter

The adaptive inflation algorithm can be applied in concert with
other observation space update methods like ensemble kernel
filters or the classical stochastic update algorithm, the perturbed
observations ensemble Kalman filter (EnKF) (Evensen, 1994).
All of the cases performed here were repeated with the EnKF
instead of the ensemble adjustment filter and the results were
compared. For almost all cases, the time mean values of λ were
slightly less, the rms state space error and observation space in-
novations were slightly larger, and the spreads in state space and
observation space were slightly lower for the EnKF. It is unclear
why the EnKF performed in this fashion. Previous research has
shown that the relative performance of the EnKF and the en-
semble adjustment filter can vary between different models and
observation sets. The results here should not be interpreted as
indicating that one method is superior, but do indicate that the
adaptive algorithm can be applied with a variety of ensemble
filter algorithms.

8. Discussion

The adaptive inflation algorithm developed here is able to pro-
duce improved assimilations and variance estimates for problems
with a wide range of error magnitudes and sources. Assimilating
in the presence of significant model error is especially signifi-
cant. This is a challenging test for assimilation methodologies
in general and filters in particular. Many filters as developed
in the literature have assumed that models are perfect, clearly
far from the case for many applications like numerical weather
prediction. More traditional algorithms like 3D-var and earlier
optimal interpolation algorithms implicitly introduced a capabil-
ity to deal with model error through specified background error

statistics. These statistics were tuned for particular applications
and ended up correcting for a variety of error sources including
background error. For ensemble filters to be applied without a
need for extensive application-specific tuning, adaptive methods
that detect and compensate for model error are essential. The fact
that the filter can adapt to such a wide range of errors using a
single value of the parameter σ 2

c is important. Especially for the
model error cases, it is non-trivial to find values of time-constant
inflation that are as good as the adaptive filter. In large model ap-
plications, the cost of repeated assimilations to determine good
values of fixed inflation may be prohibitive.

The cost of the adaptive inflation algorithm is small compared
to the cost of the rest of an ensemble filter for many applications.
The cost of the standard filter for one observation is O(NC) where
N is the ensemble size and C is the number of state variables that
are impacted by the observation. The computation tends to be
dominated by the cost of computing N forward observation op-
erators, but even more by computing C regression coefficients
from N member samples. The additional cost of the inflation
algorithm for one observation is constant and is dominated by
the cost of solving (A.8) with the cubic formula and (5.10). The
cost of solving (A.8) is dominated by evaluating a cube root and
two trigonometric functions while the cost of solving (5.10) is
dominated by a natural logarithm. As ensemble size N and/or
the number of state variables impacted by each observation C
increases, the relative cost of the inflation will decrease. In the
experiments described here with the Lorenz-96 model, the infla-
tion algorithm takes less than 5% of the total computation time.
In experiments assimilating 200,000 real observations a day with
a 5 million variable atmospheric GCM, the inflation cost is less
than 1% of the total computation cost.

Ensemble filters should be expected to return sample informa-
tion not only about the mean value of the state variables given
the observations, but also about higher order moments, in partic-
ular the variance and covariance of the state variables. Because
of a variety of errors, the variance in state estimates tends to be
underestimated and covariance inflation is an attempt to rectify
this. In the inflation algorithms discussed here, the prior distribu-
tion is inflated just before the application of forward operators.
However, it is obvious that the posterior distribution and any fore-
casts generated from analyses will still have too little variance
due to errors in the assimilation. In order to generate analyses
(posteriors) with appropriate variance, inflation would have to
be performed after the assimilation. It is not clear that this can
be done without with-holding some portion of the observations
and using these independent observations to adjust the variance.

Doing inflation at more than one point in the ensemble al-
gorithm is a possible extension. Errors can be partitioned into
those coming from the assimilation and those from model error.
Inflating after the assimilation step to generate sufficient poste-
rior variance and after the model advance to generate sufficient
prior variance should be possible. This would also help to iso-
late the magnitude of model error which could then be used to
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produce ensemble forecasts with more realistic variance. Obvi-
ously, model error is a function of the time between observations.
If this time is not constant, a more sophisticated model for the
time tendency of inflation would be required.

A major challenge in adaptive inflation algorithms is selecting
an appropriate prior distribution for the inflation. As discussed
above, for a particular application it is not clear if the prior in-
flation variance should be allowed to asymptote to zero or not.
In some applications, it may be appropriate to try to find a time-
constant inflation. In other applications, it may be essential for
inflation to adapt with time, for instance in experiments where
the observation set changes with time or in experiments where
an assimilation must be started from some sort of ‘climatolog-
ical’ or non-equilibrium initial ensemble members. Fixing the
inflation variance has worked for a variety of problems here, but
other solutions might be appropriate. Some model of the way in
which the inflation distribution changes with time (5.3) would
be useful in this context but it might be difficult to develop one.

Selecting the appropriate prior becomes even harder if the as-
similation problem is not homogeneous in time. For instance, if
a large number of observations is available infrequently while
smaller sets are available at intermediate times. After assimilat-
ing the large set, the spurious variance reduction in the ensemble
is expected to be larger. A prior conditioned on a sequence of
smaller observation sets might have inappropriately small infla-
tion. This is the same issue that requires the algorithmic approach
discussed when many observations are available at the same time.
One could attempt to do the inflation in a purely sequential algo-
rithm. Each scalar observation would update the inflation. Then
the state would be inflated before computing the next forward op-
erator. The first prior would have to include inflation to account
for model error. The second would not.

In the sample problems above, it has been assumed that there
exists a (possibly) temporally varying inflation that is appropriate
for all state variables. This is clearly not the case in more real-
istic applications. In fact, one of the problems with traditional
fixed covariance inflation is that it can lead to excessive vari-
ance for poorly observed model state variables. Assimilations of
radiosonde observations with a tropospheric general circulation
model provide an example. Areas over the south Pacific may
be far removed from any observations while areas over North
America may have state variables that are close to a large num-
ber of observations. Inflation is likely to be required for state
variables over North America to avoid filter divergence caused
by errors in regression coefficients. Over the south Pacific, re-
peated application of inflation is never countered by the impact
of observations. Eventually, ensemble members can be inflated
to unrealistic or numerically unacceptable values.

An inflation solution to this problem requires values that vary
spatially, perhaps going so far as to allow each state variable to
have its own inflation value. Adaptive algorithms can be con-
structed for this case. Another possibility is to associate infla-
tion with the observations themselves and perform the inflation

in observation space when the prior estimate of an observation
variable is computed. In this case, only state variables being im-
pacted by observations would be subject to inflation. Research
on these two approaches will be an extension to the results dis-
cussed here.
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10. Appendix A: Finding the mode
of the posterior distribution

The numerator of eq. (5.7) is

(
√

2πθ )−1 exp(−D2/2θ2) Normal
(
λ̄, σ 2

λ

)
(A.1)

The mode of eq. (5.9) is at the maximum value of (A.1) which
can be differentiated with respect to λ. This is

∂

∂λ
(uvw) = uv

∂w

∂λ
+ uw

∂v

∂λ
+ vw

∂u

∂λ
(A.2)

where

u = (
√

2πθ )−1, v = exp(−D2/2θ 2),

w = (
√

2πσλ)−1 exp
[−(λ − λ̄) 2/2σ 2

λ

]
. (A.3)

The individual partial derivatives are:

∂u

∂λ
= −1

2
σ 2

pθ
−2u (A.4)

∂v

∂λ
= 1

2
σ 2

p D2θ−4v (A.5)

dw

dλ
= −σ−2

λ

(
λ − λ̄

)
w. (A.6)

Substituting for λ with

λ = (
θ 2 − σ 2

o

)
/σ 2

p (A.7)

gives a sixth order polynomial in θ which can be rewritten as
a cubic polynomial in x = θ2. Setting this to 0 and removing a
common monomial factor leaves

x3 − (
σ 2

o + λ̄σ 2
p

)
x2 + 1

2
σ 2

λ σ 4
p x − 1

2
σ 2

λ σ 4
p D2 = 0 (A.8)

which can be solved for x by the cubic formula. Substituting the
value of x into eq. (A.7) gives a maximum value of λ;
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11. Appendix B: The Lorenz-96 model

The L96 (Lorenz, 1996) model has N state variables, X1, X2, . . . ,
XN , and is governed by the equation

d Xi

/
dt = (Xi+1 − Xi−2) Xi−1 − Xi + F, (B.1)

where i = 1, . . . , N with cyclic indices. Here, N is 40, F = 8.0
unless otherwise noted, and a fourth-order Runge–Kutta time
step with dt = 0.05 is applied as in Lorenz and Emanuel (1998).
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