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ABSTRACT
The relative entropy is compared with the previously used Shannon entropy difference as a measure of the amount of
information extracted from observations by an optimal analysis in terms of the changes in the probability density function
(pdf) produced by the analysis with respect to the background pdf. It is shown that the relative entropy measures both the
signal and dispersion parts of the information content from observations, while the Shannon entropy difference measures
only the dispersion part. When the pdfs are Gaussian or transformed to Gaussian, the signal part of the information
content is given by a weighted inner-product of the analysis increment vector and the dispersion part is given by a
non-negative definite function of the analysis and background covariance matrices. When the observation space is
transformed based on the singular value decomposition of the scaled observation operator, the information content
becomes separable between components associated with different singular values. Densely distributed observations can
be then compressed with minimum information loss by truncating the components associate with the smallest singular
values. The differences between the relative entropy and Shannon entropy difference in measuring information content
and information loss are analysed in details and illustrated by examples.

1. Introduction

Analyses of irregularly distributed observations, especially large
amounts of remotely sensed observations are common in geo-
physical research and play increasingly important roles in en-
vironmental monitoring and operational weather predictions
(Daley, 1991; Bennett, 1992). Remotely sensed observations
such as those from satellites and ground-based radars are char-
acterized by their huge amounts and dense spatial and/or tem-
poral distributions. Over their covered areas, remotely sensed
observations are often much denser than the analyses grids. For
example, the operational (WSR-88D) Doppler radar wind ob-
servations have typically a resolution of 250 m in the direction
along the radar beam and a resolution of 1◦ in the azimuthal
direction of the radar scan (Doviak and Zrnic, 1993), while the
analysis grids used for current operational tests at the National
Centers for Environmental Predictions (NCEP) have horizon-
tal resolution in the range from 5 to 10 km (Liu et al., 2005b).
A development plan to transmit level-II data real-time from all
158 WSR-88D radars and assimilate them into the operational
numerical weather prediction (NWP) models has been imple-
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mented at the NCEP. Since each radar scans continuously every
5–10 min per volume and each volume scan can contain 105

observations, the amount of data received from all the radars
over each 6-hr analysis time window is huge (up to 150 × 36 ×
105). Even though such a huge amount of data can be processed
real time with quality controls (Gong et al., 2003; Zhang et al.,
2005; Liu et al., 2005a), it is not feasible to assimilate all the
radar data operationally. Since the spatial and temporal densities
of radar data are far in excess of the resolution of the analysis
systems, there can be a significant degree of information redun-
dancy. It is not only unfeasible but also unnecessary to assimilate
all the radar data with the current analysis systems. Similar situa-
tions are seen for satellite observations, although the information
redundancy is caused mainly by linearly dependent weighting
functions in case of passive satellite sounders (Peckham, 1974;
Eyre, 1990; Huang and Purser, 1996).

Redundant observations not only impose unnecessary com-
putational burdens on a data analysis system but can also cause
the cost function used in the analysis ill-conditioned (especially
in the presence of nearly collocated and/or correlated observa-
tions). To reduce or eliminate information redundancy from ob-
servations for data assimilation, it is important to know (i) how
to measure the information content extracted from observations
(or compressed observations) by an optimal (or presumably opti-
mal) analysis and (ii) how to quantify the degree of information
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redundancy from observations. It is also necessary to address
practical issues concerning (iii) how to compress observations
(such as densely distributed radar data) to eliminate or reduce
information redundancy with minimum possible loss of infor-
mation and thus to minimize possible degradation of the oth-
erwise ‘optimal’ analysis. These issues are not new, and simi-
lar issues were raised and examined in early studies of satellite
observations of the atmosphere (Peckham, 1974; Eyre, 1990;
Huang and Purser, 1996). These previous studies advocated the
use of the Shannon entropy (Shannon, 1949) of probability den-
sity function (pdf) as a measure of information content and, in
particular, they used the Shannon entropy difference between
the analysis pdf and background pdf to measure the information
content extracted from observations by the analysis. Purser et
al. (2000) further refined the use of the Shannon entropy differ-
ence in quantifying the information content from observations,
and proposed some general methods for constructing surrogate
observations or, say, super-observations. As an extension these
previous studies, the current study is intended to revisit the above
issues by considering the relative entropy versus the Shannon en-
tropy difference in terms of measuring information content from
observations.

The Shannon entropy has some unique features in quantifying
the uncertainty of a pdf (see section 15.1 of Papoulis, 1991; and
section 6.2 of Majda and Wang, 2006). The original expression
of Shannon entropy is not invariant with respect to a variable
transformation and thus does not provide a consistent measure
of the information content. The Shannon entropy difference is in-
variant with respect to a linear variable transformation but not to
a nonlinear transformation. The relative entropy, also known as
the Kullback–Liebler (non-symmetric) distance, is non-negative
definite and invariant respect to any smooth invertible transfor-
mation of variables and thus provides a consistent measure of
the information content of a pdf with respect to another pdf. The
Shannon entropy difference is additive for successive inclusions
of observations into the analyses as pointed out by James Purser
(personal communication 1 Aug. 2006), but it measures only the
dispersion part of the information content. The relative entropy
is not additive and thus is less convenient than the Shannon en-
tropy difference in computing cumulative information content
from successive group of observations, but it measures both the
signal and dispersion parts. Such a signal-dispersion combined
measure has received considerable attention in the statistics liter-
ature (see Bernardo and Smith, 1994 for an overview). Recently,
Kleeman (2002) and Majda et al. (2002) advocated the use of
the relative entropy of the prediction and climatological pdfs as
a measure of the utility of a particular statistical prediction. Ad-
vantages of using the relative entropy for predictability studies
are further demonstrated in subsequent studies (Kleeman and
Majda, 2005; Haven et al., 2005). Inspired by these previous
studies, this study examines the use of the relative entropy, in
comparison with the Shannon entropy difference, as a measure
of the amount of information extracted from observations (or

compressed super-observations) by an optimal analysis with a
prior background pdf.

The paper is organized as follows. The Shannon entropy and
relative entropy are reviewed briefly in the next section. The rela-
tive entropy is compared with the Shannon entropy difference in
measuring the information content from observations in Section
3. The relative entropy is used to quantify possible information
redundancy from observations and to measure information loss
caused by super-observations in Section 4. Examples are given
in Section 5 to illustrate the differences between the relative en-
tropy and Shannon entropy difference in measuring information
content and information loss. Conclusions follow in Section 6.

2. Shannon entropy and relative entropy

Consider a discrete pdf p(x) = ∑
piδ(x − xi ) with pi ≥ 0 (i =

1, 2, . . . n) and
∑

pi = 1, where δ(x − xi ) is the delta function
at point xi. The Shannon entropy of this pdf is expressed by

S(p) = −〈ln p〉 = −
∑

pi ln pi , (2.1)

where 〈〉 denotes the statistical average (expectation). Accord-
ing to Shannon’s intuition from the theory of communication
(Shannon, 1949), this entropy can be thought as a measure of
how un-informative the pdf is about the state of x ε {xi | i = 1,
2, . . . I}. This intuition can be illustrated by a simple example
as reviewed in section 6.2 of Majda et al. (2006). Consider the
set of all binary data with digit length n. Clearly, this set has
N = 2n elements, and log2N = n measures the amount of infor-
mation needed to completely determine an element in the set,
that is, a n-digit binary datum. The nature of this measure does
not change when it is scaled by an constant factor such as ln 2.
This implies that lnN = (ln2)log2N can be used to quantify the
total information needed to determine an element in a set A that
contains N elements. If we know that an element of A belongs to
the ith disjoint subset Ai that contains N i elements of A, then lnN i

is the amount of information needed to determine this element.
Thus, lnN − lnN i = –ln pi measures the lack of information
relative to the total information lnN. Note that pi = N i/N is the
probability of an element belonging to Ai, so the average lack of
information is the Shannon entropy in (2.1).

When p(x) is a continuous pdf of x ε R, the Shannon entropy
is still expressed by –〈ln p〉 but takes the following integral form:

S(p) = −〈ln p〉 = −
∫

dx p(x) ln p(x). (2.2)

Apart from an linear transformation with an arbitrary constant
factor (such as ln 2), the logarithmic rule used in (2.2) is the
unique impartial, symmetric, proper scoring rule (see sections
2.54–2.58 of O’Hagan, 1994). With this rule, −∫

dxp(x)lnq(x)
can measure the expected loss in using an arbitrary pdf q(x)
as an approximation of p(x), and this measure is minimized at
q(x) = p(x) with the minimum given by the Shannon entropy of
p(x) (see section 15-4 of Papoulis, 1991). The Shannon entropy is

Tellus 59A (2006), 2



200 XU

essentially unique as it increases monotonically with increasing
uncertainty and satisfies the composition law (see section 6.2 of
Majda et al., 2006, or section 15-1 of Papoulis, 1991). It is also
known that the Shannon entropy is not invariant with respect to
a smooth invertible transformation from x ε R to x′ ε R, because
p(x′) = p(x)|dx/dx′| and this implies that dxp(x) is invariant but
lnp(x) is not in (2.2).

The relative entropy, also known as the Kullback–Liebler dis-
tance, is defined by

R(p, q) =
∑

pi ln (pi/qi )

for discrete pdfs p(x) = ∑
piδ(x − xi ) and q = ∑

qiδ(x − xi )
with qi ≥ 0 (i = 1, 2, . . . n) and

∑
qi = 1 similar to pi in (2.1). In

this case, if qi = 1/n is used as an approximation of p = ∑
piδ(x

− xi) with pi = 1/n, then the average lack of information is
increased from –

∑
pilnpi to the maximum –

∑
qilnqi = ln(n).

This implies that q with qi = 1/n is a non-informative pdf and
the ‘absolute’ information content of p can be defined by its
relative entropy with respect to this non-informative pdf, that is,
R(p, q) = ∑

piln(pi/qi) = ln(n) − S(p) with S(p) given by (2.1).
However, since S(q) = ln(n) →∞ as n →∞, the concept of non-
informative pdf and associated ‘absolute’ information measure
cannot be extended systematically to the infinite case (n → ∞
or x ε R). The amount of information is thus a relative concept
in general and can be always properly measured by the relative
entropy.

When p(x) and q(x) are continuous pdfs of x ε R, the relative
entropy takes the following integral form:

R(p, q) =
∫

dx p(x) ln[p(x)/q(x)]. (2.3)

This entropy provides a natural and consistent measure of the
information content of p with respect to another pdf q which is
considered as an approximation of p. Note that both dxp(x) and
ln[p(x)/q(x)] in (2.3) are invariant with respect to any smooth
invertible variable transformation, and so is their composed in-
tegral – the relative entropy defined in (2.3). Note also that R(p, q)
is defined in (2.3) as the difference between the aforementioned
expected loss, –

∫
dxp(x)lnq(x), and its minimum given by the

Shannon entropy, so the relative entropy is non-negative definite
and becomes zero if and only if p = q. Clearly, both R(p, q) and
R(q, p) are positive but not equal to each other unless p = q, so
the relative entropy is a non-symmetric measure of the distance
between two pdfs in the function space. As a distance from q
to p, R(p, q) quantifies how informative q is about p. When q is
considered as an approximation of p, this distance measures the
information content of p with respect to q.

In the next section, the relative entropy will be used to measure
the information content of the pdf produced by an optimal anal-
ysis of observations (or compressed super-observations) with
respect to a prior background pdf used by the analysis. When
observations are given with a pdf, the optimal analysis produces
a posterior conditional pdf which is an improvement upon a prior

background pdf. Thus, the background pdf can be always con-
sidered as an approximation of the analysis pdf. The information
content extracted from the observations by an optimal analysis
can be then measured by the relative entropy of the analysis pdf
with respect to the background pdf. In this sense, the relative en-
tropy measures indirectly the information content provided by
the observations in terms of the changes produced in the pdf by
the analysis. Clearly, with this measure, the information content
from observations is not independent of the background pdf used
by the analysis.

3. Information content from observations

When observations are assimilated into a NWP model by an op-
timal analysis scheme (Daley, 1991, Jazwinski, 1970), such as
the statistical interpolation (often called the optimal interpolation
or, simply OI), three-dimensional variational method (3dVar), or
Kalman Filter (KF), the background mean field, denoted by vec-
tor b ε Rn, is provided by the prediction of the NWP model and the
background pdf is assumed to be Gaussian with an pre-estimated
(in OI or 3dVar) or predicted (in KF) covariance matrix, denoted
by B. With the predicted mean b and estimated covariance ma-
trix B, the background Gaussian pdf has the following general
form:

q(x) = [(2π )nDet(B)]−1/2 exp[−(x − b)TB−1(x − b)/2].

(3.1a)

Since the observation pdf is also assumed to be Gaussian, the
pdf of the analysed field (obtained with a linear or linearized
observation operator) is thus also Gaussian and can be expressed
by

p(x) = [(2π )nDet(A)]−1/2 exp[−(x − a)TA−1(x − a)/2],

(3.1b)

where a and A denote the mean and covariance of the analysis,
respectively. Substituting (3.1) into the vector form of (2.3) gives
(see appendix A)

R(p, q) = (a − b)TB−1(a − b)/2 + [ln Det(B1/2A−1B1/2)

+Tr(B−1/2AB−1/2) − n]/2, (3.2)

where Det() and Tr() denote the determinant and trace of (),
respectively. The right-hand side of (3.2) consists of two parts.
The first part is caused purely by the analysis increment, a − b,
that updates the mean (from b to a), and it is called the signal
part of R(p, q). The second part is caused purely by the change
of the covariance (from B to A) and is called the dispersion part
of R(p, q). Such a signal-dispersion partition can be generalized
for non-Gaussian pdfs (see section 3 of Majda et al., 2002).

As mentioned in the introduction, the Shannon entropy dif-
ference between the analysis pdf and background pdf was
used to measure the information content from observations
(Peckham, 1974; Eyre, 1990 Huang and Purser, 1996; Purser
et al., 2000). The Shannon entropy of p(x) can be derived by
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substituting (3.1b) into the vector form of (2.2) and the result is

S(p) = [− ln Det(A) + n + n ln(2π )]/2. (3.3)

As explained in the previous section, the Shannon entropy is not
invariant with respect to a smooth invertible transformation. As
we can see from (3.3), even with respect to a linear transfor-
mation, say, from x ε Rn to x′ = Lx ε Rn, lnDet(A) is changed
to lnDet(LALT) = lnDet(A) + lnDet(LLT) according to (A.11)
and hence S(p) is altered by the amount of [lnDet(LLT)]/2. By
using (3.3) and (A.11), the Shannon entropy difference between
p and q can be expressed by

S(q) − S(p) = [ln Det(B1/2A−1B1/2)]/2. (3.4)

This entropy difference is invariant with respect to a linear trans-
formation but not to a nonlinear transformation [that transforms
q(x) and p(x) from Gaussian to non-Gaussian or vice versa].
The Shannon entropy difference in (3.4) is the same as the first
term in the dispersion part of the relative entropy in (3.2) and,
clearly it does not have the signal part. On the other hand, the
relative entropy is strictly invariant and measures both the signal
and dispersion parts. A comprehensive comparison between the
relative entropy and Shannon entropy difference was given in
section 2.4 of Majda et al. (2002), and it shows that the relative
entropy is superior to the Shannon entropy difference in quanti-
fying predictive information content. In the case of predictability,
there is a very clear interpretation of the signal term and in fact
the terminology ‘signal’ derives from the interpretation. For the
applications that concern this study, we need to re-examine the
meaning and significance of the signal term in the present con-
text and explore the advantages and disadvantages of the relative
entropy versus the Shannon entropy difference.

The signal part of the relative entropy in (3.2) is a quadratic
form of the analysis increment vector weighted by B–1. When
an optimal analysis scheme (such as OI, 3dVar or KF) is used,
this increment vector is given by

a − b = BHT(HBHT + R)−1d, (3.5)

where d = y − H(b) is the innovation vector, y is the observation
vector (composed of m observations used by the analysis) in the
observation space Rm, H() denotes the observation operator that
transforms the state vector from the background space Rn to the
observation space Rm, H is the linearized H() at x = b, and R is
the covariance matrix of the observation pdf. Substituting (3.5)
into the signal part of the relative entropy in (3.2) gives

(a − b)TB−1(a − b)/2

= dT(HBHT + R)−1HBHT(HBHT + R)−1d/2

= dTR−1/2
(
MMT + Im

)−1
MMT

(
MM

T + Im

)−1
R−1/2d/2

= d′T(
Λ2 + Im

)−1Λ2
(
Λ2 + Im

)−1
d′/2

=
∑

d ′2
i λ

2
i

(
1+λ2

i

)−2
/2. (3.6)

Here, Im is the m×m identity matrix; M ≡ R−1/2HB1/2 is a
m×n matrix for the scaled observation operator (with the range
and domain of H scaled by R1/2 and B−1/2, respectively);
Λ ≡ diag{λ1, ..., λµ} = UTMV is a diagonal matrix composed
of the singular values of M with λ1 ≥ λ2 ≥ . . . ≥ λµ ≥ 0 and
µ ≡ min(m, n); U and V are orthogonal matrix composed of the
left and right singular vectors of M, respectively (see theorem
2.3-1 of Golub and Van Loan, 1983); d′ = UTR−1/2d; d′

i denotes
the ith element of d′;

∑
denotes the summation over i from 1 to

µ.
For the optimal analysis in (3.5), the covariance matrix of the

analysis pdf is given by the following two equivalent forms (see
chapter 7 of Jazwinski, 1970):

A−1 = B−1 + HTR−1H, (3.7a)

A = B − BHT (HBHT + R)−1HB. (3.7b)

Either of the two forms can be used to analyse the dispersion part
of the relative entropy in (3.2), and they yield the same result.
The first form in (3.7a) was used by Peckham (1974) and Huang
and Purser (1996) and the second form in (3.7b) was used by
Purser et al. (2000) to analyse the Shannon entropy difference in
(3.4). Here, it is convenient to use (3.7a) and (3.7b) to analyse the
two matrix terms B1/2A–1B1/2 and B−1/2AB−1/2, respectively, in
the dispersion part of the relative entropy in (3.2). Substituting
(3.7a) into B1/2A–1B1/2 gives

B1/2A−1B1/2 = In + MTM = In + VΛ2VT, (3.8a)

where In the n×n identity matrix. Substituting (3.7b) into
B−1/2AB−1/2 gives

B−1/2AB−1/2 = In − MT
(
MMT + Im

)−1
M

= In − VΛ
(
Λ2 + Im

)−1ΛVT. (3.8b)

Substituting (3.8a) into (3.4) gives

S(q) − S(p) = ln Det(B1/2A−1B1/2)]
/

2 =
∑

ln(1 + λ2
i )

/
2.

(3.9)

Substituting (3.8a) and (3.8b) into the dispersion part of the rel-
ative entropy in (3.2) gives

[ln Det(B1/2A−1B1/2) + Tr(B−1/2AB−1/2) − n]
/

2

=
∑ [

ln
(
1 + λ2

i

) − λ2
i

(
1 + λ2

i

)−1]/
2. (3.10)

The singular-value form of the Shannon entropy difference in
(3.9) is essentially the same as the eigenvalue forms presented in
the literature [see section 3 of Peckham, 1974, (2.12) of Huang
and Purser, 1996, or (4.14) of Purser et al., 2000]. Note that both
ln(1 + λ2

i ) and ln(1 + λ2
i ) − λ2

i (1 + λ2
i )−1 become zero at λi = 0

and increase monotonically with λi, so either (3.9) or (3.10) can
be used as a measure of the dispersion part of the information
content from observations. The derivative of (3.9) with respect
to λi is one at λi = 0. The derivative of (3.10) with respect to
λi is zero at λi = 0, so the ith term in (3.10) has a smooth zero
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minimum at λi = 0. Thus, as λi approaches to zero, the ith term
in (3.10) decreases faster than that in (3.9). This difference is
also illustrated by the examples in Section 5 (see Dsi and SDi
curves in Figs. 2 and 4).

As shown by (3.9) [also see (3.7a) and (A.11)], the Shannon
entropy difference is additive for successive inclusions of ob-
servations into the analyses. The relative entropy is not additive
and thus is not as convenient as the Shannon entropy difference
in computing cumulative information content from successive
groups of observations. The major difference between the two
measures, however, is the signal term in (3.6). As shown by (3.2)
and (3.6), this term measures the (signal) part of the information
content from observations that improves the mean through the
analysis. When the innovation vector happens to be zero [that
is, d = y − H(b) = 0], the analysis has the same mean as the
background (that is, a = b), so the mean is not improved and
the signal part becomes zero. The error covariance of the anal-
ysis, however, is always improved by observations (unless M =
R−1/2HB1/2 = 0 which means that the observations are infinitely
inaccurate relative to the background and thus become useless).
The dispersion term in (3.10) or the Shannon entropy difference
in (3.9) measures the (dispersion) part of the information con-
tent from observations that improves the covariance through the
analysis. This part depends on the observation operator but is
independent of the observation vector and associated innovation
vector. The significance and utilities of these terms in measuring
information loss caused by super-observations are examined in
the next two sections.

4. Information redundancy and information loss

The sum of (3.6) and (3.10) gives the following singular-value
form of the relative entropy:

R(p, q)

=
∑

r

[
d ′2

i λ2
i

(
1 + λ2

i

)−2+ ln
(
1 + λ2

i

) − λ2
i

(
1 + λ2

i

)−1]/
2,

(4.1)

where
∑

r denotes the summation over i from 1 to r, and r =
rank(Λ) = rank(M) ≤ µ ≡ min(m, n). Since λi = 0 for i >

r, only the first r components of d′ can contribute to the signal
part in (3.6), and the original equation (3.5) can be rewritten
into

a − b = B1/2MT
(
MMT + Im

)−1
R−1/2d

= B1/2VΛ(Λ2 + Im)−1d′

= B1/2V�
(
Λ2 + I j

)−1
d′

j for m ≥ j = r , (4.2)

where Ij is the j×j identity matrix, d′
j is a truncated vector com-

posed of the first j components of d′, and j is the truncation
number. There will be no truncation if j = m. Applying Ij (as a
projection onto the truncated subspace Rs) to d′ gives d′

j = Ijd′ =

IjUTR−1/2d = UT
j R−1/2d, where UIj = Uj ≡ (u1, u2, . . . uj) and

ui denotes the ith column vector of U. Hence, d′
j can be viewed as

a truncated linear transformation of the scaled innovation vector
R−1/2d and the transformation is implemented by IjUT. We may
call d′

j the super-innovation vector, y′
j ≡ UT

j R−1/2y the super-
observation vector, H′

j() ≡ UT
j R−1/2H() the super-observation

operator, and H′
j ≡ UT

j R−1/2H the linearized super-observation
operator. Here, the truncated linear transformation IjUT is ap-
plied consistently to all the vectors and operators in the obser-
vation space scaled by R1/2, so d′

j = y′
j−H′

j(b). It is easy to
see that the scaled observation covariance matrix is given by
R−1/2RR−1/2 = Im and the super-observation covariance matrix
is given by R′

j = IjUTImUIj = Ij.
By using the above super-observation notations, (3.5) or (4.2)

can be further rewritten into

a j = b + BH′
j
T(

H′
j BH′T

j
+ R′

j

)−1
d′

j . (4.3)

This equation has the same form as the original (3.5) except that
the original-observation notations y, R, H() and H are replaced
by their respective super-observation counterparts and thus a is
replaced by aj. Similarly, (3.7a) and (3.7b) can be rewritten,
respectively, into

A−1
j = B−1 + H′T

j R′
j
−1H′

j (4.4a)

and

A j = B − BH′T
j

(
H′

j BH′T
j + R′

j

)−1
BH′

j . (4.4b)

These two equations have the same forms as those in (3.7) ex-
cept that the original-observation notations are replaced by their
respective super-observation counterparts and thus A is replaced
by Aj. When j ≥ r, aj in (4.3) is exactly the same as a in (3.5) and
Aj in (4.4) is exactly the same as A in (3.7). When j < r, (4.3)
and (4.4) still give the optimally analysed mean and covariance,
although they are no longer the same as their (non-truncated)
counterparts in (3.5) and (3.7).

The results in (4.3) and (4.4) indicate that the truncated linear
transformation IjUT will cause no information loss as long as j ≥
r. Thus, the degree of information redundancy can be quantified
by (m − r)/m in terms of reducible percentage, and m−r is the
reducible number of observations. Clearly, if m is larger than n,
then the degree of information redundancy will be at least as large
as (m − n)/m. Note that rank(M) is the dimension of the range
of M and the range of M is the complement of the null space
of MT in Rm (see section 1.2 of Golub and Van Loan, 1983), so
the dimension of the null space of MT is m − rank(M) = m −
r and hence gives the reducible number of observations. If the
observations are sufficiently dense (relative to the background
resolution) and the background covariance is local or virtually
local (becomes zero or or virtually zero beyond a certain range of
spatial separation), then the null space of MT can be non-empty
and the observations can be redundant (even if m ≤ n). In this
case (m ≤ n), n − r is the dimension of the null space of M.
If the observations are locally distributed and the background
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covariance is local or virtually local, then the dimension of the
null space of M, that is, n − r can be very large or even close to
n. If the observations are also dense in this case, then r can be
smaller than m. This is another scenario that can cause redundant
observations (even if m < or � n).

If the truncation number j becomes smaller than r, then the
above truncated linear transformation IjUT will cause an infor-
mation loss according to (4.1)–(4.4). The information loss (IL)
can be quantified by

IL j = SIL j+DIL j ≡
∑

j,r

[
d′2

i
λ2

i

(
1+λ2

i

)−2]/
2

+
∑

j,r

[
ln

(
1 + λ2

i

) − λ2
i

(
1 + λ2

i

)−1]/
2,

(4.5)

where
∑

j,r denotes the summation over i from j +1 to r. The
first summation is the signal part of ILj, called signal infor-
mation loss and denoted by SILj, while the second summation
is the dispersion part of ILj, called dispersion information loss
and denoted by DILj. The signal information loss SILj depends
not only on the truncated non-zero singular values but also on
the truncated components of d′

j,r ≡ (d′
j+1, d′

j+2, . . . d′
r)

T. Here,
d′

j,r = UT
j,rR

−1/2d is the projection of the scaled innovation vec-
tor R−1/2d onto the truncated subspace spanned by Uj,r ≡ (uj+1,
uj+2, . . . ur). If R−1/2d happens to be orthogonal to Uj,r, then
d′

j,r = 0 and thus SILj = 0 according to (4.5). On the other hand,
if R−1/2d happens to be completely in Uj,r, then d′ = d′

j,r and SILj

is maximized to the total amount in (3.6). As we will see in the
next section, SILj measures the information loss that degrades
the analysis mean.

The dispersion information loss DILj depends only on the
truncated non-zero singular values and it measures the informa-
tion loss that degrades the analysis covariance. Since the trun-
cation is made to the smallest non-zero singular values in the
transformed observation space, it causes the minimum informa-
tion loss in the dispersion part for a given truncation number
j (<r). This information loss can be used as a benchmark to
evaluate possible additional information loss in the dispersion
part caused by any other truncated linear transformations (ver-
sus IjUT) used in producing super-observations. From (3.9), it is
easy to see that the information loss measured by the Shannon
entropy difference is

SDIL j ≡
∑

j,r

[
ln

(
1 + λ2

i

)]/
2. (4.6)

Since SDILj also measures the dispersion information loss that
degrades the analysis covariance, SDILj is similar to DILj

but different from SILj. The difference between SDILj and
SILj is thus the main difference between SDILj and ILj. This
main difference will be illustrated by examples in the next
section.

5. Illustrative examples

5.1. Direct measures of analysis mean degradation
and covariance degradation

In this section, radar observed velocities and model produced
background velocity fields are used to illustrate the differences
between the relative entropy and Shannon entropy difference in
measuring information content and information loss. To evaluate
how closely SILj measures the information loss that degrades the
analysis mean caused by the truncation in (4.3), we quantify the
analysis mean degradation (MD) by

MD j ≡ |a j |, (5.1)

where aj = aj − a, aj is given in (4.3), and |aj| denotes
the absolute value of vector aj (which is also the l2-norm of
aj). To evaluate how closely DILj (or SDILj) measures the
information loss that degrades the analysis covariance caused by
the truncation in (4.4), we quantify the covariance degradation
(CD) by

CD j ≡ ||A j ||F, (5.2)

where Aj = Aj−A, Aj is given in (4.4), and ||Aj||F denotes
the Frobenius norm of Aj defined by the square root of the
sum of the squared absolute values of all the elements in Aj

[see (2.2-4) of Golub and Van Loan, 1983]. As functions of the
truncation number j, SILj and MDj are expected to have similar
variations with j, because they both measure the degradation of
the mean. Similarly, DILj (or SDILj) and CDj are expect to have
similar variations with j, because they both measure the degra-
dation of the covariance. These similarities will be illustrated by
the examples in Sections 5.3 and 5.4.

5.2. Descriptions of the data

The observational data are selected from the radial-component
velocities scanned by the NSSL phased array radar from 2100
to 2200 UTC when a four-quadrant electronic-scan strategy was
tested on 2 June 2004. During this period, a squall line moved
southeastward through the central Oklahoma area in the radial
range (140 km) of the phased array radar scans (see Fig. 1 of Xu
et al., 2005). The original radar data have a spatial resolution of
240 m in the radial direction and 1.6o in the azimuthal direction.
The data are processed through quality control (as in Xu et al.,
2005) and then thinned to 3 km resolution along the radar beam
(see Fig. 1). The thinned observations are not correlated and
the estimated observation error variance is σ b2

o = 6.4 m2 s–2

according to Xu et al. (2005). For the illustrative purpose in this
section, a single beam of radial-velocity observations is used.
This beam was scanned at 2108 UTC along 0.75◦ elevation angle
and 97.8◦ azimuthal angle (positive clockwise from the north),
and it contain 40 thinned observations. The observation error
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Fig. 1. Thinned radial-velocity observations
(with m = 40 and 3 km resolution) along a
single beam from the radar (shown by the
thin solid curve with solid triangles as
denoted by ‘ob’ in the legend); background
radial-velocity field on an one-dimensional
grid of 5 km resolution along the radar beam
with n = 24 grid points (shown by the thin
solid curve with solid squares as denoted by
‘bk’ in the legend); optimally analysed field
by using the total 40 observations, that is, a
in (3.5) (shown by the thick solid curve with
‘+’ signs as denoted by ‘a’ in the legend);
optimally analysed fields by using
super-observations, that is, aj in (4.3) with
j = 1, 2 and 3 (shown by the thin dashed
curves as denoted by ‘a1’, ‘a2’ and ‘a3’,
respectively, in the legend). The horizontal
coordinate r is the radial distance from the
radar.

covariance matrix is thus given by R = σ b2

o Im with m = 40 (the
number of observations).

The background field is produced by the Coupled
Ocean/Atmosphere Mesoscale Prediction System (COAMPS,
Hodur 1997). The model is configured with three nested do-
mains centred over the state of Oklahoma with resolutions of 54,
18 and 6 km for the coarse, medium and fine grids, respectively,
and 30 levels in the vertical. The predicted wind fields on the
6 km grid are projected onto the aforementioned radar beam to
obtain the background field on an one-dimensional grid of 5 km
resolution with n = 24 grid points (see Fig. 1). Since the rota-
tional and divergent parts of the estimated background vector
velocity error variance are roughly the same (see section 4 of
Xu et al., 2005), the background radial-velocity error covariance
in the above one-dimensional grid space along the radar beam
can be modeled approximately by the Gaussian function, that
is, σ 2exp[−(r)2/(2L2)] according to (2.7) and (3.2) of Xu and
Gong (2003), where r is the distance between two correlated
points (along the radar beam), σ 2 and L denote the background
radial-velocity error variance and de-correlation length scale,
respectively. The estimated variance is σ 2 = 70 m2 s−2 and the
estimated de-correlation length is L = 40 km (see section 4 of
Xu et al., 2005). The above data and parameter values will be
used by the first example-1 in the next section. These data and
parameter values will be also used by the second example in
Section 5.4 except that the de-correlation length is reduced from
L = 40 to 15 km.

5.3. Example-1

By using the data and parameter values described in the previous
section, M ≡ R−1/2HB1/2 is constructed and decomposed into
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Fig. 2. Scaled singular value SVi in (5.3), signal term Sgi in (5.4),
dispersion term Dsi in (5.5) and Shannon entropy difference term SDi
in (5.6) plotted as functions of i for example-1, where i is the sequential
number associated with the ith the singular value. The curves are
denoted by their respective symbols in the legend.

U�VT. The largest singular value of M is λ1 = 7.45. The remain-
ing singular values are scaled by λ1 and plotted as a function of
i in Fig. 2, where

SVi ≡ λi/λ1 (5.3)

denotes the ith scaled singular value. Individual signal terms in
(3.6), dispersion terms in (3.9) and Shannon entropy difference
terms in (3.10) are scaled by their respective sums and plotted
as functions of i in Fig. 2, where

Sgi ≡ d ′2
i λ

2
i

(
1+λ2

i

)−2
/(2Sg), Sg ≡

∑
[d ′2

i λ
2
i

(
1+λ2

i

)−2
]−1

/
2;

(5.4)
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Dsi ≡ [
ln

(
1+λ2

i

) − λ2
i

(
1+λ2

i

)−1]/
(2Ds),

Ds ≡
∑ [

ln(1+λ2
i

) − λ2
i

(
1+λ2

i

)−1]/
2; (5.5)

SDi ≡ [
ln

(
1+λ2

i

)]
/(2SD), SD ≡

∑ [
ln

(
1+λ2

i

)]/
2. (5.6)

As shown in Fig. 2, SVi decreases monotonically to nearly
zero (<10–3) as i increases from 1 to 7. This indicates that the
rank of M can be virtually as small as 6. With r = 6, the re-
ducible number of observations is m − r = 34 and the degree of
information redundancy is (m − r)/m = 85%, so the observa-
tions are highly redundant even though they have been thinned
from 512 to 40. Fig. 2 also shows that as i increases from 1 to
7, SDi decreases monotonically to virtually zero (10–4 at i = 6
and 5 × 10–6 at i = 7), and Dsi decreases even more rapidly
(to 10−7 at i = 6 and 5 × 10−9 at i = 7). The signal term Sgi,
however, increases rapidly and reaches the peak value of 0.75
as i increases from 1 to 3, and then drops very rapidly to vir-
tually zero (4 × 10–4 at i = 6 and 5 × 10−7 at i = 7) as i
increases further to 7. For the dispersion part measured by Dsi

(or SDi), the first two terms (i = 1 and 2) contain most (>80%)
of the information content. For the signal part, the third term
contains most (75%) of the information content. The computed
values for the sums in (5.4)–(5.6) are Sg = 14.86, Ds = 3.01 and
SD = 4.54. The total information content measured by the rela-
tive entropy in (4.1) is thus given by R(p, q) = Sg + Ds = 17.87.
As Sg = 14.86 � Ds = 3.01, the signal part is much larger
than the dispersion part and thus contributes dominantly to the
total.

When the truncation number j is zero, all the terms in (4.5) and
(4.6) are truncated, so SILj and DILj in (4.5) and SDILj in (4.6)
reach their maxima, that is, SIL0 = Sg, DIL0 = Ds and SDIL0 =
SD, respectively, according to (5.4)–(5.6). When j = 0, the anal-
ysis mean degradation MDj in (5.1) and covariance degradation
CDj in (5.2) also reach their maxima MD0 ≡ |a0| = |b − a|
and CD0 ≡ ||A0||F = ||B − A||F, respectively, where a0 = b
and A0 = B are used according to (4.3) and (4.4). In Fig. 3, SILj,
DILj and SDILj are scaled by their respective maxima and plot-
ted as functions of the truncation number j in comparison with
the scaled analysis mean degradation MDj/MD0 and covariance
degradation CDj/CD0. As shown in Fig. 3, the scaled signal in-
formation loss SILj/Sg varies with j in the same way as the scaled
analysis mean degradation MDj/MD0. Thus, as expected, SILj

does indeed measure the information loss that degrades the anal-
ysis mean. As j increases, the scaled dispersion information loss
DILj/Ds decreases smoothly following the scaled covariance
degradation CDj/CD0. Thus, as expected, DILj does measure
the information loss that degrades the analysis covariance. The
scaled Shannon entropy difference information loss, SDILj/SD,
also decreases smoothly following CDj/CD0 but not as closely
as DILj/Ds. Clearly, SDILj/SD is larger than DILj/Ds while the
latter is larger than CDj/CD0.
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Fig. 3. Scaled signal information loss SILj/Sg, dispersion information
loss SILj/Ds and Shannon entropy difference information loss
SDILj/SD plotted as functions of the truncation number j in
comparison with the scaled analysis mean degradation MDj/MD0 and
the scaled covariance degradation CDj/CD0 for example-1. The curves
are denoted by their respective symbols in the legend, and the symbols
are defined in (4.5)–(4.6) and (5.1)–(5.2).

Note again that Sg = 14.86 � SD = 4.54 > Ds = 3.01, so
the total information loss ILj measured by the relative entropy in
(4.5) is dominated by its signal part SILj. When j ≥ 3, SDILj/SD
is very close to ILj/(Sg + Ds) ≈ SILj/Sg, so the Shannon entropy
difference and relative entropy both indicate that the information
loss is small as long as j > 2. However, when j = 2, SILj/Sg =
0.80, ILj/(Sg + Ds) = 0.69 and SDILj/SD = 0.22. In this case,
the relative entropy indicates that the information loss is large (in
the signal part), but the Shannon entropy difference indicates that
the information loss is still small (because it does not measure
the signal part). With j = 2, the scaled analysis mean degradation
is MDj/MD0 = 0.66 and the scaled covariance degradation is
CDj/CD0 = 0.06. The analysis mean degradation caused by the
truncation to j = 2 (or 1) is also clearly illustrated by the deviation
of the truncated super-observation analysis a2 (or a1) from the
total-observation analysis a in Fig. 1.

5.4. Example-2

This second example is the same as the above first example ex-
cept that the background error de-correlation length is reduced
to L = 15 km. In response to the reduction of L, the largest
singular value of M is reduced from λ1 = 7.45 to 5.24 and the
virtual rank of M is increased from 6 to 14 (since SVi ≤10–3 as
i ≥14 in this case). The reducible number of observations is thus
m − r = 40 − 14 = 26, and the degree of information redun-
dancy is (m − r)/m = 65% which is still high but not as high as
in example-1. As shown in Fig. 4, when i increases from 1 to 15,
SDi decreases to virtually zero (1.7 × 10−6 at i = 15), and Dsi

decreases more rapidly (to 6.8×10−7 at i = 12). The signal term,
Sgi, reaches the first peak value of 0.34 as i increases from 1 to
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Fig. 4. As in Fig. 2 but for example-2.
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Fig. 5. As in Fig. 3 but for example-2.

3, then drops to nearly zero (0.002) at i = 4 and stays below 0.06
until i increases to 9 and Sgi reaches the second main peak value
(0.18 at i = 9). The computed values for the sums in (5.4)–(5.6)
are Sg = 9.93, Ds = 5.04, and SD = 8.29. The total informa-
tion content measured by the relative entropy is thus given by
R(p, q) = Sg + Ds = 14.97. The signal part is still larger than
the dispersion part but not as much as in example-1.

Figure 5 shows that the scaled signal information loss SILj/Sg
varies with j basically in the same way as the scaled analysis mean
degradation MDj/MD0, while the scaled dispersion information
loss DILj/Ds decreases as j increases in the same way as the
scaled analysis covariance degradation CDj/CD0. Thus, again
as expected, SILj measures the information loss that degrades
the analysis mean, while DILj measures the information loss that
degrades the analysis covariance. The scaled Shannon entropy
difference information loss SDILj/SD also decreases following
CDj/CD0 but not as closely as DILj/Ds. Since Sg = 9.93 >

SD = 8.29 > Ds = 5.04, the total information loss measured by
ILj in (4.5) is still dominated by its signal part SILj.

In Fig. 5, the Shannon entropy difference and relative entropy
both indicate that the information loss is nearly zero (<0.003)

for j ≥ 10. The two measures, however, start to become differ-
ent when j decreases to 9, and in this case ILj/(Sg + Ds) ≈
SILj/Sg = 0.04 but SDILj/SD = 0.004. When j decreases fur-
ther to 8 and then to 5, SILj/Sg becomes significantly larger
than SDILj/SD. In this case, although SDILj/SD is closer to
MDj/MD0 than SILj/Sg, its variation (with j) does not follow
the variation of MDj/MD0, and the reason is because SDILj

does not measure the information loss that degrades the analysis
mean.

The main features of SILj, DILj and SDILj and their differ-
ences illustrated by the examples in this and previous subsections
are also seen from other examples not presented in this paper. In
these additional examples, radial-velocity observations are sam-
pled along different beams from not only the NSSL phased array
radar but also the Oklahoma City operational KTLX radar dur-
ing the stormy weather on 2 June 2004, while the background
fields are provided by COAMPS predictions with the observa-
tion and background error covariances estimated as in (Xu et al.,
2005, 2007). The examples so far examined are one-dimensional.
When radar radial-velocity observations are analysed for practi-
cal applications, analyses often need to be performed either on
each two-dimensional conical surface of the radar scans (Xu et
al., 2006) or in a full three-dimensional volume of the radar scans.
In this case, the information content from observations can still
be measured differently by the relative entropy (with the signal-
dispersion partition) and the Shannon entropy difference, but the
detailed differences between the two measures and their related
features are expected to be more complex than illustrated by the
one-dimensional examples in this paper.

6. Conclusions

In this paper, the relative entropy is compared with the
Shannon entropy difference as a measure of the amount of in-
formation extracted from observations by an optimal analysis.
The main differences between the two measures can summa-
rized as follows: (i) The relative entropy measures both the
signal and dispersion parts of the information content from ob-
servations, but the Shannon entropy difference measures only
the dispersion part; (ii) The relative entropy provides a consis-
tent measure as it is strictly invariant with respect to any smooth
invertible transformation of variables, but the Shannon entropy
difference is invariant only to a linear transformation and (iii)
the Shannon entropy difference is additive for successive inclu-
sions of observations into the analyses while the relative entropy
is not additive and thus is not as convenient as the Shannon
entropy difference in computing cumulative information con-
tent from successive groups of observations. The first two dif-
ferences are among those summarized in section 2.4 of Majda
et al. (2002) that favor the relative entropy over the Shannon
entropy difference for quantifying predictive information con-
tent. The third difference was pointed out by James Purser (per-
sonal communication). The first difference appears to be the most
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significant one in terms of measuring information content from
observations. The significance of this difference is illustrated by
examples in which radar radial-velocity observations are anal-
ysed in one-dimensional numerical model produced background
velocities.

The information content can be defined only in a relative sense
in general (except for a finite discrete case as discussed in the
last paragraph of Section 2). The information content extracted
from observations by an optimal analysis with a prior back-
ground pdf is thus indirectly measured in terms of the changes in
the pdf produced by the analysis with respect to the background
pdf. Hence, the information content from observations depends
not only on the observation pdf but also on the background pdf.

When the observation and background pdfs are Gaussian (or
transformed to Gaussian if doable), the integral form of the rel-
ative entropy yields an explicit formulation in which the signal
part is given by the inner-product of the analysis increment vec-
tor weighted by the inverse of the background covariance matrix
[see (3.6)] and the dispersion part is a non-negative definite func-
tion of the analysis covariance matrix multiplied by the inverse
of the background covariance matrix [see (3.10)].

The above formulation can be further simplified via a linear
transformation (in the observation space scaled by R1/2) by us-
ing the left orthogonal matrix obtained from the singular value
decomposition (SVD) of the scaled observation operator [that
is, M ≡ R−1/2HB1/2 = UΛVT, see (3.6)]. With this transforma-
tion, the information content becomes separable between dif-
ferent components associated with different singular values [see
(4.1)], so the observations can be compressed without infor-
mation loss by discarding the components associated with zero
singular values, that is, the components in the null space of the
scaled observation operator.

A further compression can be made to observations, but not
without information loss, by discarding the components asso-
ciate with the smallest non-zero singular values. The signal part
of the information loss, also called signal information loss, de-
pends on the truncated non-zero singular values and truncated
components of the scaled innovation vector in the transformed
observation space. The dispersion part of the information loss,
also called dispersion information loss, depends only on the trun-
cated non-zero singular values. As the truncation is made to the
smallest non-zero singular values in the transformed observa-
tion space, its causes the minimum information loss in the dis-
persion part of the information content for a given truncation
number.

As illustrated by the examples in Section 5, the signal infor-
mation loss (SIL) can be closely related to the analysis mean
degradation (MD) (see SILj/Sg and MDj/MD0 curves in Figs.
3 and 5) while the dispersion information loss (DIL) can be
closely related to the analysis covariance degradation (CD) (see
DILj/Ds and CDj/CD0 curves in Figs. 3 and 5). The Shannon
entropy difference information loss (SDIL) can be also related
to CD but not as closely as DIL (see SDILj/SD curves in Figs. 3

and 5). As the truncation number increases from zero (that is, the
number of singular-value terms retained by the truncation), the
SIL often decreases slowly in the first few steps and then drops
at one or two irregular large steps. The stepwise irregularity de-
pends on the innovation vector. Contrary to SIL, DIL and SDIL
are independent of the innovation vector, so they decrease rapidly
and approach zero smoothly as the truncation number increases.
Since DIL and SDIL do not measure the signal part, they tend to
underestimate the information loss. When DIL (or SDIL) is used
alone to determine the super-observation truncation, the actual
information loss can be significantly larger than DIL (or SDIL).
It is thus safer to use SIL and DIL in combination to measure
the information loss and determine the super-observation trun-
cation. A simple and natural combination is given by the sum of
SIL and DIL, that is, the total information loss measured by the
relative entropy.

There can be a significant degree of information redundancy if
the observations are dense (relative to the background resolution)
and the background covariance is local (becomes zero or virtu-
ally zero beyond a certain range of spatial separation). Densely
distributed observations (such as those remotely sensed from
satellites and ground-based radars) can be compressed in prin-
ciple with minimum information loss by truncating the compo-
nents associate with zero and smallest non-zero singular values in
the transformed observation space based on the aforementioned
SVD. The SVD and related matrix computations, however, are
efficient only if the observation space or background space is
not too large. Hence, the SVD-based compression is practical
only if observations are assimilated serially in small batches.
In this case, the background covariance must be also updated
serially as in some of the ensemble Kalman filter techniques
(Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002).
For most operationally used data assimilation techniques, such
as the Grid-point statistical interpolation which is currently be-
ing tested for radar data assimilation at the NCEP (Wu et al.,
2002; Purser et al., 2003; Liu et al., 2005b), the background co-
variance is pre-estimated and not updated with the analysis, so
all the observations collected during each data assimilation cy-
cle are analysed together (rather than serially). In this case, the
observation space and background space are both very large and
the above SVD-based compression becomes impractical unless
it is implemented locally in each properly divided observation
subspaces. Such a localization can greatly improve the compu-
tational efficiency but will cause some additional information
loss.

Purser et al. (2000) proposed some general methods for local-
ized observational data compression based on a Gram-Schmidt
decomposition of the observation operator. Localized observa-
tional data compression techniques may be also designed by
using other types of truncated linear transformations without ma-
trix decomposition to gain further computational efficiency. The
super-obbing strategy proposed by Purser et al. (2000) is based
on the Shannon entropy difference, so it allows the super-obbing
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weights to be formulated beforehand based on the expected ob-
servation locations (observation operator) and observation and
background covariances before the observations are taken. A
super-obbing strategy based on the relative entropy, however,
will depend not only on the observation locations but also on
the observation values, so the super-obbing weights cannot be
formulated before the observations are actually taken. Because
of this, the relative entropy is not suitable for a super-obbing
strategy in which the super-obbing weights must be formulated
before-hand (to increase the computational efficiency). For radar
observations, the exact observation locations and coverage are
often unknown until the observations are actually taken, so the
super-obbing weights cannot be formulated before-hand. In this
case, a super-obbing strategy can be designed based on the Shan-
non entropy difference if the goal is to minimize the information
loss that degrades the analysis covariance. However, if the goal
is to minimize the total information loss that degrades both the
analysis mean and covariance, then the super-obbing strategy
should be designed based on the relative entropy.

The minimum information loss measured by the relative en-
tropy or Shannon entropy difference in the singular-value form
[see (4.5) or (4.6)] can be used as a benchmark to evaluate the
additional information loss caused by a localized observational
data compression technique that is designed to be sufficiently ef-
ficient for operational uses. The relative entropy and especially
its singular-value form may be also used to measure the optimal-
ity of a remote sensing strategy (such as radar scanning strategy)
in terms of maximizing the information content from observa-
tions for a given data assimilation system. This and other related
applications of the relative entropy deserve further studies.
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8. Appendix A

Derivation of Eq. (3.2)
When the scalar variable x is extended to a vector variable x,

the relative entropy defined in (2.3) has the following form:

R(p, q) =
∫

dxp(x) ln[p(x)/q(x)]

= 〈ln p(x)〉p − 〈ln q(x)〉p, (A.1)

where 〈()〉p ≡ ∫
dxp(x)() denotes the expectation of () based on

p(x). From (3.1), we have

ln p(x) = −[n ln(2π ) + ln Det(A) + (x − a)TA−1(x − a)]/2,

(A.2a)

− ln q(x) = [n ln(2π ) + ln Det(B) + (x − b)TB−1(x − b)]/2.

(A.2b)

Note that A is constant with respect to x and
∫

dxp(x) = 1, so

〈n ln(2π ) + ln Det(A)〉p = n ln(2π ) + ln Det(A). (A.3)

Applying 〈()〉p to the last term in (A.2a) gives

〈(x − a)TA−1(x − a)〉p =
∫

dxp(x)(x − a)TA−1(x − a)

= (2π )−n/2

∫
dx[Det(A)]−1/2(x − a)TA−1(x − a)

× exp[−(x − a)T A−1(x − a)/2]

= (2π )−n/2

∫
dx′|x′|2 exp(−|x′|2/2) = n, (A.4)

where x′ = A−1/2(x − a) and dx′ = dxDet(dx′/dx) =
dxDet(A−1/2) = dx[Det(A)]−1/2 are used. Substituting (A.3) and
(A.4) into 〈(A.2a)〉p gives

〈ln p(x)〉p = −[n + n ln(2π ) + ln Det(A)]/2. (A.5)

Applying 〈()〉p to the first two terms in (A.2b) gives

〈n ln(2π ) + ln Det(B)〉p = n ln(2π ) + ln Det(B). (A.6)

The last term in (A.2b) can be expanded into (x − b)TB−1(x − b)
= (x − a)TB−1(x − a) + (a − b)TB−1(a − b) + (x − a)TB−1(a
− b) + (a − b)TB−1(x − a). Applying 〈()〉p to each expanded
term gives

〈(a − b)TB−1(a − b)〉p = (a − b)TB−1(a − b), (A.7)

〈(x − a)TB−1(a − b)〉p = 〈(a − b)TB−1(x − a)〉p = 0,

(A.8)

〈(x − a)TB−1(x − a)〉p =
∫

dxp(x)(x − a)TB−1(x − a)

= (2π )−n/2

∫
dx[Det(A)]−1/2(x − a)TB−1(x − a)

× exp[−(x − a)TA−1(x − a)/2]

= (2π )−n/2

∫
dx′(x′T A1/2B−1A1/2x′)

× exp(−|x′|2/2) = Tr(A1/2B−1A1/2), (A.9)

where x′ = A−1/2(x−a) is used as in (A.2). Substituting (A.6)–
(A.10) into 〈(A.2b)〉p gives

−〈ln q(x)〉p = −
∫

dxp(x) ln q(x)

= [(a − b)T B−1(a − b) + Tr(A1/2B−1A1/2)

+ ln Det(B) + n ln(2π )]/2. (A.10)
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The multiplicative property of determinant gives

Det(B1/2A−1B1/2) = Det(B1/2)Det(A−1)Det(B1/2)

= Det(B)/Det(A), (A.11)

so lnDet(B1/2A−1B1/2) = lnDet(B) − lnDet(A). Since A and
B are real symmetric matrices, we have the following decom-
positions (see theorem 8.1-1 of Golub and Van Loan, 1983):
A = UaΛ2

aU T
a and Λ−1

a UT
a BUaΛ−1

a = C = UcΛ2
cUT

c , where Λ2
a

(or Λ2
c) is the diagonal matrix composed of the eigenvalue of A

(or C) and Ua (or Uc) is the orthogonal matrix composed of the
eigenvectors of A (or C). With these decompositions, we have
A1/2 = UaΛaUT

a and B−1 = UaΛ−1
a UcΛ−2

c UT
c Λ

−1
a UT

a . By using
these expressions, one can verify that

Tr(A1/2B−1A1/2) = Tr
(
Λ−2

c

)
,

Tr(AB−1) = Tr
(
UaΛ2

aUT
a UaΛ−1

a UcΛ−2
c UT

c Λ
−1
a UT

a

)
= Tr

(
UaΛaUcΛ−2

c UT
c Λ−1

a UT
a

) = Tr
(
Λ−2

c

)
,

Tr(B−1 A) = Tr
(
UaΛ−1

a UcΛ−2
c UT

c Λ
−1
a UT

a UaΛ2
aUT

)
= Tr

(
UaΛ−1

a UcΛ−2
c UT

c ΛaUT
a

) = Tr
(
Λ−2

c

)
,

where UT
a Ua = I is used. This shows that Tr(A1/2B−1A1/2) =

Tr(AB–1) = Tr(B–1A). Similarly, one can show that
Tr(B−1/2AB−1/2) = Tr(B–1A), and thus

Tr(A1/2B−1A1/2) = Tr(B−1A) = Tr(AB−1) = Tr(B−1/2AB−1/2).

(A.12)

Substituting (A.5) and (A.10)–(A12) into (A.1) give (3.2).
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