
Tellus (2007), 59A, 182–197 C© 2007 The Authors
Journal compilation C© 2007 Blackwell Munksgaard

Printed in Singapore. All rights reserved
T E L L U S

Interpretation of discrete and continuum modes
in a two-layer Eady model

By HYLKE DE VRIES∗ and THEO OPSTEEGH, Institute for Marine and Atmospheric Research
Utrecht, Princetonplein 5, 3584CC, Utrecht, Netherlands

(Manuscript received 8 June 2006; in final form 25 October 2006)

ABSTRACT
The upper rigid lid of the conventional Eady model for baroclinic instability is replaced by a more realistic stratosphere
with an increased buoyancy frequency and a different shear of the zonal wind. Previously reported results of a normal-
mode stability analysis are re-interpreted using the concept of interacting surface and tropopause PV anomalies, called PV
building blocks (PVBs). In this perspective, which directly relates to the counter-propagating Rossby wave formalism,
the appearance of both the short-wave and the long-wave cut-off becomes physically transparent.

New results include a discussion of the continuum modes in terms of interacting PVBs. Continuum modes are modal
solutions to the inviscid linearised equations, specified by non-zero PV at one interior level (as well as non-zero PV
at the surface and the tropopause). If the stratospheric zonal wind decreases with height, the continuum modes cause
resonances at multiple (even stratospheric) levels. These resonant continuum modes may play an important role in the
explanation of disturbance growth from initial conditions in which the discrete normal modes are neutral.

1. Introduction

It needs no introduction that the linear stability of the Eady (1949)
model depends completely on the formulation of the boundary
conditions. In its original formulation, rigid lids are prescribed
at two levels in the vertical which represent the Earth surface and
the level of the tropopause. Potential temperature (PT) anomalies
propagate along these rigid lids. If the conditions are favourable,
instability sets in as a sustained interaction between the surface
and the tropopause PT anomalies, a classic result to be found in
any textbook (see e.g. Pedlosky, 1987). On the other hand, if the
rigid lid approximation is not made at the level of the tropopause,
but one assumes that the perturbation vanishes at infinite height,
exponential instability does not occur because there is no upper-
level edge wave.

This paper discusses an alternative to both above-mentioned
descriptions and replaces the upper rigid lid by an unbounded
stratosphere-like domain. For the troposphere the effect of re-
placing the rigid lid by a stratosphere is to replace the rigid top
boundary by a top boundary which is essentially a free one. The
troposphere is specified by a constant buoyancy frequency N2

and a constant vertical shear � of the zonal wind ū, such that
the basic-state PV is uniform if one neglects the meridional de-
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pendence of the Coriolis parameter. The shear and buoyancy
frequency attain different values in the stratosphere.

Replacing the upper rigid lid by a second, vertically un-
bounded layer with uniform PV is not a novel approach. Müller
(1991) investigated the normal-mode stability properties of such
a two-layer Eady model, showing the existence of growing
normal modes of intermediate wavenumbers, i.e. both a long-
wave and a short-wave cut-off exist. On the short-wave neutral
branch, the neutral modes are confined to either the surface or
the tropopause. Furthermore, Müller (1991) argues that the long-
wave neutral normal modes are related to either the lower or the
upper layer. The reasoning is based on an asymptotic expansion
in the wavenumber of the dispersion relation, an approach which
makes it difficult to understand the results physically.

The present paper offers an alternative to Müller’s interpre-
tation of the normal-mode results by systematically interpret-
ing them in the more physically intuitive view of interacting
PV anomalies, or counter-propagating Rossby waves (CRW) as
formulated for instance by Hoskins et al. (1985) and Heifetz
et al. (2004a). Although Müller (1991) makes the connection
with the PV perspective, a systematic treatment of the prob-
lem is not presented. The existence of long-wave neutral modes,
which are absent in the classic Eady model, becomes physically
transparent adopting the PV view. Furthermore, we will show
that the absence of a long-wave cut-off should be considered as
an exception rather than the rule.

Let us briefly summarise other studies of two-layer variants of
the Eady model. Rivest et al. (1992) investigated in more detail
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the case of zero shear of the stratospheric zonal wind, show-
ing that both the growth rate and the wavenumber of the most
rapidly growing wave decrease compared to the classic rigid lid
case. Juckes (1994) analysed the dynamics of PT anomalies at
the tropopause, showing that the tropopause becomes undulated
in the presence of perturbations as a result of continuity require-
ments.

Prior to Müller (1991), Blumen (1979) and Weng and Bar-
cilon (1987) had already investigated two-layer Eady models
which are bounded from above by a second rigid lid. Those
models sustain short-wave unstable modes. Further back in time,
Simmons (1974) had investigated baroclinic instability occur-
ring in a model of the stratopause (a vertically unbounded west-
erly sheared flow with a buoyancy frequency decrease across
the stratopause). He used the β-plane approximation to ensure
the fulfilment of the Charney-Stern criterion. A more advanced
study is the work of Song and Nakamura (2000) who treat a
two-layer semi-geostrophic variant of the Eady model numeri-
cally for a highly complex basic state with an isolated jet and
a meridionally varying tropopause height. Recently, Bordi et al.
(2002) discussed the two-layer Eady model in the context of a
possible neutralisation theory of climate.

Non-linear stability of the Eady model has first been investi-
gated by Mu and Shepherd (1994), thereafter optimised by Liu
and Mu (1996) and generalised to include β in Liu and Mu
(2001). Finally, Ripa (2001) (and references therein) also inves-
tigated the non-linear stability of Eady-like models with sloped,
rigid, or free boundaries. In contrast to the former authors, who
had in mind the application to the atmosphere, the lower layer of
Ripa (2001) is motionless and unbounded from below (and sim-
ulates the deep ocean) and the upper layer has non-zero vertical
shear. Moreover, Ripa (2001) does not include the jump of the
buoyancy frequency at the layer interface, which is an essential
property of the atmosphere.

One element the above-mentioned papers have in common is
that none of them tries to interpret and explain the normal-mode
results in terms of the PV perspective. As mentioned previously,
the present paper aims to fill in that gap. But in this field important
steps have been undertaken as well.

The classic interpretation of Eady-type baroclinic instability
dates back to Bretherton (1966). Heifetz et al. (2004a) gener-
alised the CRW-perspective and interpreted the evolution of un-
stable discrete normal modes in terms of interacting CRWs for
much more general flow. These CRWs can be constructed in
two qualitatively different ways, which both find their origin in
the edge-wave interpretation of the Eady model as discussed
in Davies and Bishop (1994). The way to derive expressions
for the CRWs which stay closest to PV thinking of Hoskins
et al. (1985) is the so-called home-base method and the PVBs
used in the present paper are in fact identical to the CRWs con-
structed using the home-base method. We will adopt the term
PVB, since the CRW has been generalised recently far beyond
its traditional, Eady-like form (Heifetz et al., 2004a,b; Methven

et al., 2005a,b). Last mentioned studies allow the understanding
of baroclinic instability for much more complex dynamics and
basic states. However, whereas their focus is mainly on growing
normal modes, the present paper attacks a much simpler setting
but extends the previous papers in the sense that we pay specific
attention to the neutral discrete NMs as well as to an interpre-
tation of the continuous spectrum. Both topics have been left
largely in-discussed in the above-mentioned papers.

2. Model and basic flow

2.1. Dynamics

We consider linear quasi-geostrophic dynamics on an f -plane.
The domain is divided in two layers of uniform (but differ-
ent) quasi-geostrophic potential vorticity (PV). The lower layer,
which is in direct contact with the surface, is the troposphere. The
upper layer, which is unbounded from above, is the stratosphere.
The interface between the layer is the tropopause, which is kept
at a reference height d. The shear � of the zonal wind ū and the
buoyancy frequency N2 of the troposphere and the stratosphere
are specified separately.

Throughout this paper the subscript i = (s, t) added to per-
turbation or basic-state quantities indicates the stratospheric or
tropospheric part of that quantity respectively. We will therefore
not use the t in subscript to indicate partial derivative with respect
to time. Furthermore, basic-state quantities will be denoted by
an over bar.

The dynamics of the perturbations evolving on the basic state
[specified by ūi (z) and N 2

i (z)] is governed by material conser-
vation of PV q i in each layer

Dqi

Dt
= 0, qi =

[
∂2

∂x2
+ ∂2

∂ y2
+ ∂

∂z

(
1

N 2
i

∂

∂z

)]
ψi (1)

where D/Dt = ∂/∂t + ūi∂/∂x and ψ i the stream-function in
layer i. Variables have been made non-dimensional using stan-
dard scalings (L = 1000 km, H = 10 km, U = 30 m
s−1), (Pedlosky, 1987). Given these scalings, the Burger num-
ber B ≡ (N 2

0 H 2 f −2
0 L−2) = 1 and the Rossby number Ro ≡

f −1
0 UL−1 = 0.3.

2.2. Basic state

The basic state has both a continuous wind profile and a con-
tinuous potential temperature structure. Such continuity require-
ments inevitably lead to a meridionally sloped tropopause height
z tp(y):

ztp = d − σ y, σ =
(

�t − �s

N 2
s − N 2

t

)
Ro. (2)

Realistic basic states (N 2
s ≥ N 2

t and �s ≤ �t ) will therefore have
a tropopause height which decreases pole-ward. The tropopause
slope σ is zero only if �t = �s . Eq. (2) also implies that a
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continuous basic state cannot be obtained if N 2
s = N 2

t but �s 
=
�t . Phrased differently, if the zonal wind has its maximum at the
tropopause level, a change in basic-state buoyancy frequency is
required to guarantee a continuous basic state.

2.3. Boundary and interface conditions

Boundary conditions at the surface and the top of the atmosphere
as well as a proper interface condition are required to determine
the stream-function ψ s,t of perturbations of the basic state. The
condition that the vertical velocity w equals zero at the surface
(rigid lid condition) leads to

Dθ

Dt
+ v

∂θ̄

∂ y
= −wN 2 = 0 (z = 0) (3)

where θ ≡ ∂ψ/∂z, the non-dimensional potential temperature
(PT) and v = ∂ψ/∂x , the meridional velocity. At the top of the
atmosphere (z → ∞) we require vanishing ψ .

The interface condition is prescribed as the requirement that
both the stream-function and the velocity normal to the (slop-
ing) tropopause are continuous across the tropopause. Using the
smallness of σ in terms of Ro [eq. (2)], one gets (Rivest et al.,
1992):

wt − ut · ∇ztp = ws − us · ∇ztp + O(Ro2), [z = ztp(y)] (4)

where ui = (ui , v i ) the horizontal velocity field and w i the
vertical velocity in layer i. Sinceψ (and therefore u) is continuous
at the tropopause, (4) simplifies to w t = ws evaluated at z =
z tp(y). In this leading order analysis the evaluation height z =
z tp(y) in (4) can be replaced by z = d , similar to discussions
involving small bottom topography (Blumsack and Gierasch,
1972; Pedlosky, 1987). Condition (4) then becomes

1

N 2
t

[ (
∂

∂t
+ ū

∂

∂x

)
∂ψ

∂z
− �t

∂ψ

∂x

]
z=d−

= 1

N 2
s

[ (
∂

∂t
+ ū

∂

∂x

)
∂ψ

∂z
− �s

∂ψ

∂x

]
z=d+

(5)

The Eady problem with upper rigid lid is recovered by letting
N s → ∞.

Condition (5) can be interpreted easily in terms of a PV equa-
tion as in the Bretherton (1966) approach. The discontinuities
of the vertical wind shear and the buoyancy frequency generate
a meridional gradient of the basic-state PV at the level of the
tropopause. Perturbations with a continuous stream-function ψ

at the tropopause will have a different vertical structure in the
upward and downward direction due to the different buoyancy
frequency in both domains. As a result the PT transits discontin-
uously across the tropopause. The jump in PT is interpreted as a
PV anomaly at the tropopause:

Dq

Dt
+ v

∂q̄

∂ y
= 0 (z = d), (6)

where q and q̄ are the integrated singular contributions to the
perturbation and basic-state PV. Of course, the PT discontinu-
ity does not occur in reality. What actually happens is that the
tropopause becomes undulated. To ensure continuity of the total
(basic-state and perturbation) potential temperature across the
tropopause, positive (negative) tropopause PV anomalies will
result in a low (high) tropopause (Rivest et al., 1992; Juckes,
1994).

2.4. PV building blocks

If one decides to represent the tropopause by a rigid lid, the
stream-function is usually decomposed in terms of surface and
top PT anomalies which have zero PT at the opposite boundary
(Davies and Bishop, 1994). As discussed above, for the two-
layer setup the PT is discontinuous at the tropopause. Therefore
it makes more sense to decompose the stream-function in terms
of two so-called PV building blocks (PVBs) which each have
non-zero PV at either the surface (B) or the tropopause (T), the
Bretherton (1966) approach. One writes

qB(z) = δ(z), qT (z) = δ(z − d), (7)

where δ(z) is the Dirac delta function. Each PVB has its own
associated stream-function (labelled by the same subscript). The
total stream-function is written as φ(z) = Bφ B(z) + T φT (z),
where B = B̂eiεB and T = T̂ eiεT are complex amplitudes. Ap-
pendix A lists the expressions for φ B,T . The structure of the two
PVBs (scaled to have unit amplitude at the level of their PV)
is displayed in Fig. 1a–b for two different stratifications of the
stratosphere. The tropospheric stream-function of the tropopause
PVB is not influenced by the stratospheric buoyancy frequency
N 2

s . In contrast, the tropospheric stream-function of the surface
PVB decreases less rapidly with height for large values of N 2

s to
guarantee that the surface PVB has zero PV at the level of the
tropopause (in the limit N 2

s → ∞, the PT at the tropopause is
zero).

3. Linear stability analysis

3.1. Dispersion relation

Normal modes (NMs) are wave-like structures of the form
ψ(x, t) = φ(z) exp[ik(x − ct)] cos l y, where c = cr + ici de-
notes the (complex) phase-speed. The meridional wavenumber
attains the values l = (n + 1

2 )π/Y with (n = 0, 1, . . .) to satisfy
the lateral boundary conditions v = 0 at y = ±Y . A two-
dimensional problem results if we let Y → ∞.

The following sections will only be considered with NMs with
zero perturbation PV in the interior of each layer (i.e. pure Eady
waves). A discussion of the continuum modes (modal structures
with non-zero PV in the interior) is postponed to Section 6.
Imposing the rigid lid condition (3) and the interface condition
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Fig. 1. Stream-function structure of the (a)
surface and (b) tropopause PVB with K = 1
(scaled to have unit stream-function
amplitude at the level of the PV) for two
values of N 2

s . The tropopause is located at
z = 1.

(6) results in(
c − cB fB

fT c − cT

) (
B

T

)
= 0. (8)

The diagonal entries c B and cT in (8) (Appendix A) define the
‘natural’ phase-speeds of the surface and tropopause PVB when
the other PVB is absent.1 Please note that pure PVBs are only true
solutions to the dynamical equations (i.e. NMs), if both couplings
f B,T in (8) are zero. If only one of the coupling terms is zero,
the two NMs will still propagate with speeds c B and cT , i.e. as
if they were a surface PVB or a tropopause PVB, respectively.
Their vertical structure, however, will not necessarily (in fact,
mostly not at all) be similar to the structure of a pure PVB. The
non-trivial solution to (8) gives the NM dispersion relation

c = 1

2
(cT + cB) ± 1

2

√
(cT − cB)2 − � f , � f = −4 fB fT ,

(9)

and � f will be called the ‘coupling-function’ of the PVBs. Each
NM is a complex superposition of the two PVBs. As long as ci 
=
0, the structure of the growing/decaying NM pair is given by2

T̂ 2

B̂2
= − fT

fB
= �̃t − �̃s

�̃t
, cos(εT − εB) = cB − cT√

� f

(10)

where �̃t = �t N−2
t and �̃s = �s N−2

s define ‘effective’ shears
of the troposphere and stratosphere. The above relations show
that growing and decaying NMs are composed of PVBs with
equal amplitudes only if the couplings f T and f B are equal and
opposite, i.e. if the stratospheric shear is zero. The propagation
speed and growth rate of the growing/decaying NM pair are given
by

cr = 1

2
(cB + cT ), kci = ± k

2

√
� f sin(εT − εB). (11)

Therefore cr equals the average of the ‘natural’ phase speeds of
the surface and tropopause PVB.

1c B and cT are identical to c1
1 and c2

2 in Heifetz et al. (2004a), f B and
f T correspond with c2

1 and c1
2.

2Please see Heifetz et al. (2004a) for similar results obtained for the
general CRW equations [e.g. their equations (48), (53–54)].

If the NMs are neutral (ci = 0), their stream-function satisfies
sin (ε T − ε B) = 0. To some extent these neutral NMs can be
interpreted as modified PVBs (Section 5).

3.2. Resonant wavenumber

In Ripa (2001) the so-called ‘resonant’ wavenumber K res is de-
fined as the wavenumber at which c B = cT . By definition, this
‘resonant’ wavenumber is independent of the couplings f B,T .
NMs with a wavenumber around this ‘resonant’ wavenumber
will be the first for which the basic state becomes unstable but
only if � f is positive [see (9)]. Ripa (2001) showed that this
resonant wavenumber does not produce the fastest growing NM.

Müller (1991) discusses a similar ‘resonant’ wavenumber,
based on the equality of the asymptotic short-wave branches
of the dispersion relation. Please note that the two wavenumbers
are not equal in most cases.

4. Conditions for instability

4.1. Charney-Stern condition: a necessary condition

An examination of the PV distributions sheds more light on the
stability characteristics. We write q̄0

y and q̄d
y for the mean PV gra-

dients at the surface and the tropopause respectively. A straight-
forward computation shows that

q̄d
y = �̃t − �̃s, q̄0

y = −�̃t . (12)

Since the Charney-Stern (1962) condition for instability requires
a sign-change in the vertical distribution of PV gradient, marginal
stability occurs if

�̃s = �̃t ⇐⇒ q̄d
y = 0, (13)

while all NMs are neutral for �̃s > �̃t (Müller, 1991).

4.2. Coupling the PVBs: toward a sufficient condition

If the necessary Charney-Stern condition is fulfilled, two ad-
ditional conditions determine whether instability will actually
occur. First, both PVBs should be able to ‘sufficiently see’
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Ratio(c) Fig. 2. For �̃t = 1, N 2
s = 4 and

�̃s = −0.95 (full), �̃s = 0 (dashed),
�̃s = 0.95 (dotted) we show as a function of
the total horizontal wavenumber K (a) the
coupling-term � f of (9), (b) square of the
phase-speed difference of the PVBs (cT −
c B )2, (c) the ratio (cT − c B )2/� f . The
results for the Eady model with upper rigid
lid, are displayed by the gray lines.

each other. This includes the well-known Rossby-height effect.
Mathematically, the ‘see’-criterion is expressed in the coupling-
function � f [see (9)]. Figure 2a displays the dependence of � f

to variations of the total horizontal wavenumber K = √
k2 + l2

for three different values of the effective stratospheric shear
�̃s . In all cases � f is found to be monotonically decreas-
ing for increasing K. The coupling between the PVBs is
therefore strongest for the longest waves and we can ex-
pect that a short-wave cut-off will appear at some value of
K. Furthermore, � f is identically zero if �̃s = �̃t , in which
case q̄d

y = 0 [see (13)]. For even larger values of the strato-
spheric shear, � f becomes negative and instability cannot
occur.

The second requirement for instability is that the propaga-
tion speeds of the surface and tropopause PVBs should be ‘suf-
ficiently’ equal. Figure 2b shows (cT − c B)2 of (9) for the
same cases as Fig. 2a. All three lines show a minimum at
some finite value of K, marking the previously introduced ‘res-
onant’ wavenumber K res (Ripa, 2001). For K > K res, the sur-
face/tropopause PVB tends to propagate more and more along
with the basic-state velocity at the surface/tropopause. On the
other hand, if K < K res, the phase-speeds are more and more
dominated by the presence of the surface/tropopause basic-state
PV gradient. If these gradients have opposite sign, the phase-
speed difference increases with decreasing K.

Comparing Figs. 2a and b one is able to specify the quoted
word ‘sufficient’: The ratio of (cT − c B)2 and � f , shown in Fig.
2c, determines whether instability will set in. Only if this ratio
is between zero and one, the NMs will form a growing/decaying
pair. What is meant here physically is that if the phase-speed
difference is small, � f can be small as well (as long as it is of
the correct sign). On the other hand, if the phase-speed difference
is large, a strong coupling is necessary to destabilise the flow.
Clearly, the short-wave cut-off results from a weakness of the
coupling at large K. Less well known in the literature on the
Eady model, but obvious from Fig. 2c is that at a sufficiently
small wavenumber a long-wave cut-off is likely to appear. This
will happen if the phase-speed difference increases more rapidly
(with decreasing k) than the coupling-function. Only if �̃s = 0
(dashed lines) there is no long-wave cut-off (similar to the classic
Eady model with upper rigid lid). In all other cases both a short-
wave and a long-wave cut-off exist.

5. Discrete normal modes

The principle effect of the added stratospheric layer is to modify
the mean PV gradient at the tropopause [see (12)]. In this section,
we explore the different situations which are possible. We use
the values �t = 1, N 2

t = 1 and N 2
s = 4 and vary the stratospheric

‘effective’ shear �̃s (and thereby q̄d
y ). Insight in the PV vertical

structure is obtained by showing in the figures, among others,
the function F3 defined as (F1,2 follow later):

F3 = 2T̂

T̂ + B̂
= 2T̂ /B̂

1 + T̂ /B̂
, (14)

where T̂ = |T | and B̂ = |B| are the absolute values of the am-
plitudes of the PVBs. The function F3 satisfies three easy-to-
remember identities: F3 = 0 ⇔ T̂ /B̂ = 0,F3 = 1 ⇔ T̂ /B̂ =
1 and F3 = 2 ⇔ T̂ /B̂ = ∞.

5.1. Zero tropopause PV gradient: Marginal stability

The tropopause PV gradient q̄d
y is zero if the ‘effective’ shears

are equal, i.e. if �̃s = �̃t [see (12)]. The flow is marginally
stable to NM perturbations. This situation, which is displayed in
Fig. 3a, will be our ‘reference’ case, since it resembles the semi-
infinite extension of the Eady model where the upper boundary
condition is applied at infinite height. Because q̄d

y is zero, the
coupling function � f is also zero, and the NMs propagate as
two uncoupled PVBs. In fact, the NM propagating with c = c B

is a pure surface PVB with T̂ /B̂ = 0 (Fig. 3b). Its phase-speed
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Fig. 3. (a) Real (full) and imaginary (dashed) part of the NM
phase-speed for the reference case with q̄d

y = 0, as a function of the
total horizontal wavenumber K = √

k2 + l2. Tropospheric shear
�̃t = 1 and N 2

s = 4. In the reference case, the two branches of the
phase-speed meet at the resonant wavenumber K = K res. (b) Displays
amplitude and phase relations, F3 (full) and cos (εT − ε B ) (dashed).
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c B increases without bound as K is decreased to zero. Taking the
N 2

s → N 2
t or the d → ∞ limit results in cB = ū0 + �t/µt , the

classic result from the Eady model without the upper rigid lid
(Gill, 1982).

The second NM in Fig. 3a propagates with the same speed as
the tropopause PVB, c = cT = ū(z = d). This NM is identical
to a continuum mode (CM) of the semi-infinite Eady model
(De Vries and Opsteegh, 2005). To retain a time-independent
structure, the CM is formed by a particular combination of the
two PVBs. It depends on the wavenumber whether or not the CM
is structurally similar to the tropopause PVB. For large K, the
structures are similar (see full thin lines,F3 → 2 as K increases).
As K is decreased, the fraction T̂ /B̂ also decreases. We can
understand this quite easily. As long as T̂ 
= 0, the phase-speed
must equal ūd under the constraint of an NM. The surface winds
attributable to the tropopause PVB generate a surface edge wave,
which in absence of the tropopause PVB would propagate with a
different speed. For K > K res this speed is lower than that of the
tropopause PVB. Therefore, the CM can only stand as an NM if
the tropopause PVB helps the surface PVB to propagate zonally.
This explains why there is zero phase-difference between surface
and tropopause anomaly for K > K res (dashed line in Fig. 3b).
Figure 4 schematically illustrates [in the spirit of Hoskins et al.
(1985)] the effect of the tropopause PVB on the propagation
speed of the surface PVB.

As K is decreased further, the surface PVB should be speeded
up less and less (T̂ /B̂ decreases further), until at K = K res the
natural phase-speed of the surface PVB is equal to that of the
tropopause PVB. A clear case of a resonant situation which can-
not be structurally stable unless T̂ /B̂ = 0 (F3 = 0). Although
the flow is marginally stable to exponentially growing NM per-
turbations, it is obvious that adding a tropopause PVB with
K ∼ K res would cause the surface edge wave to amplify in time
(and to render the structure to be non-barotropic). The growth
would be linear in time because there is no mutual interaction
between the tropopause and the surface PVB.

For K < K res, the surface PVB propagates faster in the east-
ward direction than the tropopause PVB does and therefore has
to be slowed down to get a CM. The only way to achieve this is

dq/dy<0

dq/dy=0

dq/dy<0

dq/dy=0

Fig. 4. The effect of the tropopause PVB on the propagation speed of
the surface PVB. The long filled arrow indicates the natural
phase-propagation of the surface PVB relative to the mean flow.
The small arrow represents the effect of the tropopause PVB on the
propagation speed of the surface PVB.
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Fig. 5. As in Fig. 3a–b, but for a small negative value of q̄d
y = −0.05.

Additionally to Fig. 3, panel (a) displays also the phase speeds of the
PVBs, c B (dotted) and cT (dash-dot).

by giving the tropopause PVB the opposite phase of the surface
PVB3 (Fig. 4) and then to increase the fraction T̂ /B̂. A limit sit-
uation is reached when K becomes zero. The uncoupled surface
PVB would propagate eastward with infinite speed. The CM can
only be formed if the total meridional wind at the surface is nearly
zero. Using (A3) in the Appendix, this leads to T̂ = B̂ (F3 = 1).
Just enough meridional wind has been left over to guarantee a
propagation speed of cT = U d .

5.2. Negative tropopause PV gradient: NM stability

If �̃s > �̃t , the tropopause PV gradient has the same sign as the
surface PV gradient (Fig. 5). The flow is stable to NM perturba-
tions of all wavelengths. The phase-speeds differ only slightly
from the reference case. However, it is interesting to see that the
NMs exchange ‘identity’ near the resonant wavenumber: The
NM resembling the surface PVB becomes a CM and the NM
resembling the tropopause PVB becomes a surface edge wave.

Again, this behaviour is understood most easily using the
idea of helping and hindering the propagation (see Fig. 6a).
On the short-wave side, the NM with T̂ /B̂ → 0 (F3 → 0) as
K → ∞ resembles the surface PVB. To stand as a mode, the
phase-difference must be π for this NM (the eastward propaga-
tion speed of the tropopause PVB has to be reduced). When K
decreases, the fraction T̂ /B̂ must increase because the natural
phase speed difference becomes smaller. At K = K res, the nat-
ural phase-speeds of the PVBs (the dash-dot and dotted lines in
Fig. 5a) are equal. For even smaller K the surface PVB propagates
eastward more rapidly than the tropopause PVB. To stand as a
mode, the fraction T̂ /B̂ has to increase if the phase-difference
is to be kept at π . When K decreases to zero, this NM more and
more resembles the CM.

The second NM is formed by consequently retaining zero
phase-difference, all the way down to K = 0. Using a similar
reasoning its identity changes from a CM or tropopause PVB at
high K to a surface edge wave at small K.

3Similar behaviour of the CM is noted in De Vries and Opsteegh (2005)
in which the height of the CM is varied. In that case the surface PT
anomaly changes sign if the CM is moved across the steering level.
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dq/dy<0dq/dy<0

dq/dy<0 dq/dy<0

(a)

dq/dy>0dq/dy>0

dq/dy<0 dq/dy<0

(b)

Fig. 6. Similar to Fig. 4 but a tropopause mean PV gradient of equal
(a) and opposite (b) sign as the surface mean PV gradient. Long arrows
indicate the natural phase-propagation of the PVBs relative to the mean
flow, small arrows indicate the effect of the PVB at the opposite
boundary (filled arrows represent the effect of the surface PVB, open
arrows represent the effect of the tropopause PVB).

5.3. Small positive tropopause PV gradient

If �̃s is smaller than the tropospheric ‘effective’ shear �̃t (but
still positive), the tropopause PV gradient becomes larger than
zero [see (12)]. The Charney-Stern condition then predicts that
growing NMs exist for a certain range of wavenumbers. The
flow becomes unstable first for perturbations with a wavenum-
ber equal to the resonant wave K = K res ∼ 1 (Fig. 7a). An
explanation in terms of the arguments presented in Section 4.2
goes along the following lines. If the difference between the
‘effective’ shears is small, the PV gradient at the tropopause is
small. As a result, the coupling-function � f is small and the
basic state will be unstable only if the propagation speeds of the
PVBs match sufficiently (Fig. 7a), which is near the resonant
wavenumber.

Both ultra-long and short-wave neutral NMs propagate like
the CM and the surface edge wave of the reference case dis-
cussed in Section 5.1 above. However, the phase-difference of
the NM resembling the surface edge wave is no longer arbitrary
as in the reference case. For wavenumbers above the short-wave
cut-off, both NMs have zero phase-difference [thin dashed line,
cos (ε T − ε B)=1]. As the wavenumber is decreased and we enter
the wedge of instability, the phase-difference increases and a pair
of growing and decaying NMs is formed.4 At the resonant point,

4Note that if a growing-decaying pair of NMs has formed, the phase
structure is such that 0 ≤ ε B ≤ εT ≤ π for the GNM (the tropopause
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Fig. 7. Similar to Fig. 3, but for small positive values of q̄d
y . Real (full

thick) and imaginary (dashed thick) part of the NM phase-speed as a
function of K. Also shown are the phase-speeds of the PVBs,
c B (dotted) and cT (dash-dot) as well as F3 (thin full lines) and cos
(εT − ε B ) (thin dashed line).

where cT = c B (meeting point of the dotted and dash–dotted
lines in Figs. 7a–d) it can be confirmed that the phase-difference
(of both the GNM and the DNM) is indeed π /2. The phase-
difference continues to increase until finally a phase-difference
of π is reached at the long-wave cut-off. Within the wedge of
instability, the amplitude ratio T̂ 2/B̂2 = −q̄d

y /q̄0
y necessarily re-

mains constant and – for this particular choice of the basic state –
smaller than one. For K below the long-wave cut-off, the system
can no longer satisfy both the condition that T̂ 2/B̂2 = −q̄d

y /q̄0
y

(required for uniform exponential amplification), and the con-
dition of structural stability. Two neutral NMs are formed (both
with phase-difference π ). The first NM is the analogue of the
surface edge wave (T̂ /B̂ decreases as K → 0 and the eastward
phase-speed increases without bound). The second NM is the
analogue of the CM. This NM has a finite eastward propagation
speed of approximately ūd and a structure which approaches
T̂ /B̂ → 1 (F3 → 1) as K → 0. The NM can only propagate
with a finite speed if the meridional winds at the surface and the
tropopause are almost zero (the opposing open and filled arrows
in Fig. 6b should nearly cancel).

Please note that the propagation speeds of the neutral NMs can
also be predicted directly from (9). The neutral NMs propagate
with a speed c = 1

2 (cB + cT ) ± cx where cx is strictly positive for
neutral NMs. The contribution to c from the average phase-speed
of the surface and tropopause PVB, 1

2 (cB + cT ), will be infinitely
positive (eastward) or negative (westward) as K → 0, depending
on the sign of the stratospheric shear (and thereby on the ratio of
the mean PV gradients at the surface and tropopause). As K → 0,
the factor cx also tends to infinity, and therefore at least one of the

PVB lies westward of the surface PVB), and 0 ≤ εT ≤ ε B ≤ π for the
DNM.
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NMs will have an infinite positive or negative propagation speed
as K → 0. It turns out (and it could be verified by systematic
expansion) that the other NM retains a finite propagation speed
as K → 0.

When �̃s is decreased further (Figs. 7b–c), the domain of
instability increases both at the short and at the long-wave side
(Fig. 7b). Ultra-long NMs are neutral because the difference
between the natural phase speeds of the PVBs is too large [cf. 9].
The ‘see’-effect (the Rossby height increases as K → 0) cannot
prohibit this. Although the phase-speeds of the two neutral long-
wave NMs are qualitatively similar to those of the surface edge
wave and the CM of Section 5.1, their structure – in terms of
the ratio T̂ /B̂ – starts to become more and more identical as
�̃s approaches zero. Although the structures are nearly identical
– remember that both neutral NMs also have the same phase-
difference – their propagation speeds are completely different.
We postpone an explanation of this apparently inconsistent result
to Section 5.5.

A limit case is reached for �̃s = 0 (Fig. 7d). The PV gradient
at the tropopause is of equal amplitude as and of opposite sign
to the surface PV gradient and the GNM has an amplitude ratio
T̂ 2/B̂2 = −q̄d

y /q̄0
y ≡ 1. This case, which has been investigated

before by Rivest et al. (1992), can therefore be considered as
the generalisation of the Eady model with upper rigid lid. The
flow is unstable to perturbations of all wavenumbers smaller
than the cut-off. The increase of the coupling-function � f as
K → 0 (the ‘see’-effect) counteracts the formidable increase of
the phase-speed difference as K → 0. A noticeable difference
with the classic Eady problem with upper rigid lid is that the
propagation speed cr = 1

2 (cB + cT ) of the growing and decaying
NMs becomes dispersive and approaches cr = ū(d) as K → 0.
For the classic problem, cr is given by cr = 1

2 [ū(0) + ū(d)] for
all growing and decaying NMs. In the present two-layer case, cr

always exceeds the value ūd/2.

5.4. Large positive tropopause PV gradient

If the stratospheric shear becomes negative, (12) implies that
q̄d

y > −q̄0
y (remember that the gradients are of opposite sign).

On the short-wave side, the interpretations are as before
(Figs. 8a–d) and both a surface edge wave and a CM exist and
they are nearly identical to the pure surface and tropopause PVB.
At the long-wave side of the wedge of instability, again two neu-
tral NMs form with both a phase-difference of π . As before,
only one of the long-wave neutral NMs attains a finite eastward
propagation speed as K → 0. The other neutral NM propagates
rapidly westward as K is decreased. Its amplitude ratio T̂ /B̂ ex-
ceeds unity (F3 > 1) for all wavenumbers below the long-wave
cut-off.

Let us turn to the NM which has a finite propagation speed.
To ‘speed up’ the tropopause PVB in the eastward direction, the
phase-difference is set to π and the ratio T̂ /B̂ is decreased. Eas-
ily seen from Fig. 6b is that the surface PVB is simultaneously
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Fig. 8. Similar to Fig. 3, but for large positive values of q̄d
y . Drawing

conventions as in Fig. 7.

slowed down in its eastward propagation. The combination re-
tains a finite propagation speed and approaches the CM limit
(T̂ /B̂ → 1) as K decreases. For small negative stratospheric
shear, the difference with the westward propagating NM is al-
most indiscernible (in terms of T̂ /B̂) although the differences
are huge in terms of phase-speed. The situation is similar to the
previous section for �̃s slightly larger than zero. An explanation
follows in the next section.

If the stratospheric shear attains larger negative values, the
width of the domain of instability decreases and moves toward
higher wavenumbers. Eventually, the cut-off propagates beyond
the standard short-wave cut-off of the rigid lid Eady model
(Figs. 8c–d). This occurs because the propagation speeds of the
pure PVBs are almost equal for these short waves and the NM
can grow even though the coupling-function is relatively weak
at large K. As �̃s � 0, the growth rate of the growing NMs de-
creases to zero, although the Charney-Stern condition for insta-
bility remains satisfied for all values �̃s < �̃t . Finally, note that
the eastward propagation speed cr = 1

2 (cB + cT ) of the growing
and decaying NM is reduced as �̃s becomes more negative.

5.5. On the phase-speed of the long neutral NMs

In the previous sections we have seen that the neutral branches
of the NMs, which form for different choices of the tropopause
mean PV gradient, can be understood as modifications of Sec-
tion 5.1. At the short-wave side, the NMs are similar to the
surface edge wave and the tropopause CM, both in structure and
in propagation speed. At the long-wave side of the domain, one
of the two NMs approaches the CM limit of c = ū(d) = 1 and
T̂ /B̂ = 1 (F3 → 1), irrespective of the sign of the stratospheric
shear. This leads to the idea that phase-speed of this NM is not
determined primarily by the stratospheric shear, but by the struc-
tural differences between the PVBs instead. Figure 9 shows the
difference φ B(z) − φT (z) of the PVB stream-functions (with
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Fig. 9. The difference φ B (z) − φT (z)
between the stream-functions of PVBs (with
equal amplitude B̂ = T̂ = 1) as a function of
K and z for two different stratifications.
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Fig. 10. Typical structure of the long-wave
neutral NMs (k = 0.1, �̃t = 1 and N 2

s = 4).
(a–b) Small positive stratospheric shear.
(c–d) Small negative stratospheric shear. The
thick line represents the zero contour,
negative values have been dashed.
Contourinterval: 0.2.

B̂ = T̂ = 1) as a function of the total horizontal wavenumber
and the height for two different stratifications. The most impor-
tant feature in Fig. 9a is the zero contour (thick line), which
approaches z = d as K decreases toward zero. From this we may
infer that, if an NM forms with T̂ /B̂ = 1, this NM will propagate
with a speed ū(d) in the limit K → 0, independent of the sign
of the shear in the stratosphere. This property is lost in the rigid
lid approximation (see Fig. 9b for the situation of a near-rigid
lid).

The second long-wave neutral NM has a K → 0 asymptotic
propagation speed that is entirely different. Its propagation speed
becomes infinitely positive (eastward) or negative (westward) as
K → 0, depending on whether the stratospheric shear is positive
or negative, respectively. Although the propagation speed of this
NM differs greatly from that of the NM resembling the CM, its
structure in terms of T̂ /B̂ is not necessarily very far from unity
(in which case the propagation speed would remain finite as
K → 0).

This apparent inconsistency is understood as follows. As K is
decreased, the stream-function structures of the PVBs become
less evanescent with height. A PVB of a given amount of total ki-
netic energy will therefore be associated with a PV anomaly of a
smaller and smaller amplitude as K decreases. In the limit of
K → 0, the structures will have negligible PV whereas the
stream-function remains finite. Such small PV anomalies (in
terms of amplitude) can be advected very fast on a mean PV gra-
dient of finite amplitude. A fraction T̂ /B̂ deviating only slightly
from unity, will therefore be enough to give the NM a very
high propagation speed. If T̂ /B̂ > 1 the NM is dominated by

the tropopause PVB, and propagates westward if the mean PV
gradient at the tropopause exceeds the (absolute) value of the
mean PV gradient at the surface (which occurs only if �̃s < 0).
If T̂ /B̂ < 1 (which occurs for basic states satisfying �̃s > 0)
the opposite happens and an eastward propagating NM is ob-
tained. The above considerations can be verified graphically from
Fig. 10.

6. Continuum modes

The PVB view can also be used to investigate the continuum
modes (CMs) of the two-layer Eady model. Continuum modes
are neutral, purely propagating modal structures characterised
by non-zero PV at one interior level z = h. Because the interior
PV can be located anywhere in the interior, a continuum of such
CMs exists for in-viscid flows. CMs are required to properly
describe the evolution of the general initial-value experiment
(Pedlosky, 1964). Partly because of their neutrality, the CMs
have been neglected mostly in the analytic literature, but interest
in the CM has been increasing since the work of Farrell (1982) on
non-modal and optimal growth (see e.g. Farrell, 1984; Morgan
and Chen, 2002; De Vries and Opsteegh, 2005). This renewed
attention is motivated by the fact that the CM causes a resonance
if its propagation speed matches with the speed of one of the
neutral discrete NMs (Thorncroft and Hoskins, 1990; Chang,
1992).

As said above the CM is characterised by non-zero PV at one
interior level z = h. This interior PV anomaly takes the special
form of a Dirac delta function
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q(z = h) = Qδ(z − h)eikx , (15)

where Q = Q̂ = 1 will be taken from here. In the spirit of the
previous sections, we will call the interior PV anomaly an interior
PVB. If the mean PV gradient is zero in the interior, the CM
must be a neutral wave that propagates with the speed of the
basic flow at the level of the interior PV. To propagate with
this speed, the CM is formed by the interior PVB and a surface
and tropopause PVB in a specific ratio. The required baroclinic
neutrality of the CM constrains the phase differences of the three
PVBs to be fixed at zero or ±π , resulting in a purely barotropic
stream-function.

Since any combination of surface and tropopause PV can be
represented by a linear superposition of the two discrete NMs,
the CM can be viewed alternatively as an interior PVB in super-
position with two discrete NMs. This alternative view facilitates
the interpretation of the structure of the CM to be discussed
below.

6.1. Resonant solution

The system of equations is singular for PV perturbations at the
steering level of the neutral discrete NMs. In this case a res-
onant configuration is reached and part of the stream-function
of the so-called resonant CM amplifies linearly in time. This
linear resonance has been reported for the Eady model, see for
instance Thorncroft and Hoskins (1990); Chang (1992); Davies
and Bishop (1994); De Vries and Opsteegh (2005). The analyti-
cal properties of the classic rigid lid Eady model are discussed in
more detail by Jenkner and Ehrendorfer (2006). The two-layer
Eady model considered in the present paper is especially in-
teresting (and different from the classic model of Jenkner and
Ehrendorfer (2006)) because of the occurrence of multiple steer-
ing levels if the stratospheric shear of the basic state is negative.
The ‘asymmetric’ surface and tropopause PV gradients alter the
long-wave structure of the continuum modes in an essential way
and long-wave resonating solutions may be found in the two-
layer model, whereas they are absent in the classic model with
rigid lid (Jenkner and Ehrendorfer, 2006).

6.2. PV structure

Figures 11 and 12 show the PV structure of the CMs for
two particular cases with positive and negative stratospheric
shear respectively. The structure is visualised by contour maps
of F1 := 2B/(B̂ + Q̂) as a function of K and the position
of the interior PVB. The function F1 maps all possible ra-
tios B/Q in the range [−2, 2], and satisfies the simple rela-
tions F1 = 0 ⇔ B/Q̂ = 0,F1 = ±1 ⇔ B/Q̂ = ±1 and F1 =
±2 ⇔ B/Q̂ = ±∞. In a similar way also F2 := 2T /(T̂ + Q̂)
is plotted. From F1 and F2 we can infer the sign between T
and B. Finally also F3 = 2T̂ /(T̂ + B̂) (see 14) is shown. The
steering levels of the discrete NMs are indicated by thick black

Fig. 11. Structure of the CMs for positive stratospheric shear �s = 1.
Thick full white lines mark the steering levels. Contour interval 0.20,
negative contours are white and have been dashed for clarity.
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Fig. 12. As in Fig. 11 but for negative stratospheric shear �s = −1.

lines. In the case of negative stratospheric shear (Fig. 12) more
than two steering levels can occur for a given value of the
wavenumber.

The amplitude ratios vary smoothly under variations of K
and z, except if the interior PVB is moved across one of the
steering levels of the neutral branches of the discrete NMs. In
such a crossing, whether it is induced by wavenumber modifi-
cation or by repositioning of the interior PVB in the vertical,
both the surface and tropopause PVB change sign. The singular
behaviour of the CMs near the neutral branch of the steering
levels (F1,F2 → ±2, i.e. both B/Q and T/Q become infinitely
large, or Q → 0 for finite B and T) is a direct consequence of
the requirements that the CM remains neutral and propagates
at a particular speed. However, although T̂ /Q̂ and B̂/Q̂ be-
come very large near the neutral steering levels, T̂ /B̂ remains
finite and approaches the value of the nearby discrete NM (see
Figs. 11c and 12c), showing that the resonance is associated with
only one of the two NMs. In contrast, the blow up of the ratios and
the sign changes do not occur if the CM crosses a critical level,
i.e. the unstable part of the steering level. Can we understand
these transition-differences?

6.3. Crossing a steering level

6.3.1. Short waves. The two discrete neutral NMs are barotropic
and non-amplifying solutions to the dynamical equations, each
propagating with a specific propagation speed. So, if we want
to create a modal structure that is neutral and has a barotropic
stream-function and that moreover propagates with a speed equal
to one of the neutral steering levels, we choose either one of the
two discrete NMs (and choose Q̂ = 0 of the interior PVB). It
is clear that any non-zero interior PVB placed at one of the
steering levels will cause a resonance similar to the resonance in
the rigid lid Eady model (Chang, 1992; Jenkner and Ehrendorfer,
2006).

Modification of the phase-speed can be achieved by introduc-
ing a small-amplitude interior PVB at the level where the ba-
sic zonal flow matches the desired propagation speed. In this
way the discrete NM is ‘converted’ into a CM. In general,
the interior PVB will excite both neutral discrete NMs via its
wind-field and as a result the CM will be composed (in addi-
tion to the interior PVB) of both discrete NMs. However, the
structure of short-wave CMs nearby a steering level can be fig-
ured out by considering the CM as being a modified discrete
NM.

Let us illustrate this with an example. We start with the most
slowly eastwardly propagating discrete NM at wavenumber k =
3.0. This NM is characterised by B and T of equal sign (see
Figs. 7b and 8b for the structure of this mode). Because B̂/T̂ � 1
for this NM we may neglect the tropopause PVB to first approx-
imation. If we locate the interior PVB above the steering level
(Figs. 11 and 12) the discrete NM must be slightly acceler-
ated in the eastward direction. To achieve this, the interior PVB
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therefore should have (1) a small amplitude (leading to large
B̂/Q̂ and T̂ /Q̂) and (2) the same sign5 as B. Both features
are indeed observed in Figs. 11 and 12. What happens at the
tropopause in this example? If the positive maximum of the in-
terior PVB is positioned below the tropopause PV maximum,
the interior PVB accelerates the small-amplitude tropopause
PVB (associated with the discrete NM satisfying B̂/T̂ � 1)
in the westward direction. This situation inevitably leads to a
non-barotropic stream-function and thus must be compensated
for. This is achieved by slightly increasing the amplitude of the
tropopause PVB (and – in effect – thus exciting the second dis-
crete NM, which has T̂ /B̂ � 1 and thus hardly influences the
surface PVB).

What we learn from the example above, is that although both
discrete NMs and an interior PVB are involved in the short-
wave CM, its structure can be anticipated qualitatively from a
consideration of the dominant contributions of the nearby neu-
tral discrete NM. The other short-wave CMs and steering-level
crossings can be understood analogously.
6.3.2. Long waves. At the long-wave side of the domain, how-
ever, the above heuristic derivation of the CM structure does
not hold any longer. This can be seen already from the fact
that both discrete NMs have T̂ /B̂ ratios not far from unity,
indicating that the PVBs are strongly coupled (because of the
huge Rossby height at small K). The main observation that both
B and T change sign as the interior PVB is moved across the
steering level, however, does hold at small K. We note a number
of interesting properties of the long-wave neutral CMs:

(1) Long-wave tropospheric CMs for �s = 1 have almost
zero tropopause PV (Figs. 11b–c) but an interior PVB of com-
parable amplitude but of opposite sign as the surface PVB. This
is understandable since a long-wave surface PVB in isolation
would propagate eastward very rapidly.

(2) Long-wave stratospheric CMs for �s = 1 have negligible
interior PV but large, almost equal amplitude B and T of opposite
sign. As a result the stream-function cancels in a large domain
and the interior PVB can have a strong effect on the propaga-
tion despite its relatively small amplitude. This result should be
contrasted to the short-wave stratospheric CMs far away from
the steering levels of the discrete NMs. Those CMs are almost
purely interior PVBs (Figs. 11a–b and 12a–b).

(3) In contrast to (1) above, the long-wave tropospheric CMs
come in two different types in the case of negative stratospheric
shear �s = −1; those with large and small T̂ /B̂ fractions
(Fig. 12c, the T̂ = B̂ contour roughly follows the upper steering
level). As in point (1) above, if T̂ /B̂ � 1 the surface PVB is
most important and Q is positioned such that it hinders the rapid
eastward propagation of B (B and Q are π out of phase). On

5To decrease the eastward phase-speed (moving the interior PVB down in
the figures), one should obviously introduce an interior PVB of opposite
sign as B.

the other hand, if T̂ /B̂ � 1, Q must hinder the rapid westward
propagation of T (Q and T are π out of phase).

6.4. Crossing a critical level

The following question arises. What is the reason that the sin-
gular behaviour observed in the previous section does not occur
if we cross a critical level? Appendix B shows the expressions
underlying the ratios plotted in Figs. 11 and 12. From the math-
ematical point of view [cf. eqs (B1–B2)] it is entirely clear that
singularities will not occur if the discrete NMs form a complex-
conjugate pair. Moreover, from Fig 11c and 12c we see that the
ratios T̂ /B̂ vary continuously with the parameters in the com-
plete domain. Can we understand the physical reason underlying
these results?

If the discrete NMs form a growing/decaying pair, the modal
ingredients to construct a neutral modal structure are the GNM
and the DNM, which both have a baroclinic stream-function. It
is easily verified that a barotropic structure is obtained only if
the amplitudes in front of the discrete NMs form a complex-
conjugate pair, just as the discrete NMs themselves.

However, to keep an initially barotropic structure -composed
of the GNM and DNM – untilted as time progresses requires a
non-zero interior PVB at the critical level. (From a modal per-
spective this is entirely clear since the DNM decays and the
GNM grows which is a structurally unstable situation.) Notice
that this interior PVB is needed even though the discrete NMs
themselves propagate with the same speed (unlike in the neutral
regimes). Both the singular behaviour and the resonances do not
occur. This is entirely different from the case in which the dis-
crete NMs are neutral. Whereas we find non-amplifying neutral
discrete NMs but resonant CMs in the stable regime, the unsta-
ble regime provides us with exponentially growing and decaying
NMs but no resonant CMs.

If the position of the interior PVB of the CM is changed
smoothly, we see that the ratios B/Q and T/Q also change
smoothly and may even transit through zero (Figs. 11a–b and
12a–b). If B (or T) vanishes for a given CM configuration, it is
clear that the meridional wind-field must also be zero at the level
of B (or T). For example, in Fig. 12a there is a tropospheric zero-
line. CMs at this line have zero PT perturbation at the surface
and zero meridional wind.

7. Summary and final remarks

In the previous sections we have examined the effects of replac-
ing the upper rigid lid by a stratospheric layer with a different
shear and a different buoyancy frequency. The differences be-
tween the two layers introduce a basic-state PV gradient at the
tropopause, q̄d

y , which is in general not equal to the PV gradient
at the surface, q̄0

y . Whether the NMs are neutral or growing for a
certain wavenumber depends on the sign and the size of the PV
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Fig. 13. Results for a smoothed basic state.
(left) Meridional PV gradient (in contours)
as a function of �s for N 2

t = 1, N 2
s = 4 and

�t = 1. The thick line indicates the zero
contour. (right) Growth rates kci of the
GNM of the smoothed basic state (using a
2nd-order finite-difference scheme).

gradients at the surface and tropopause as well as on the Rossby-
height. The results have been interpreted in terms of a coupling
between a surface and tropopause PVB, a perspective which is
analogous to the counter-propagating Rossby wave (CRW) view
on baroclinic instability (Bretherton, 1966; Hoskins et al., 1985;
Heifetz et al., 2004a). We summarise the main results.

(1) If the tropopause PV gradient q̄d
y is zero, the basic state is

marginally stable to NM perturbations and the model resembles
the Eady model with the upper rigid lid removed. Two neutral
NMs exist. One is a pure surface edge wave, the other is a con-
tinuum mode (CM) with a particular distribution of PV at the
tropopause and PT at the surface. If the PV gradients at the sur-
face and the tropopause have the same sign, the Charney-Stern
(1962) theorem predicts that all NMs are neutral.

(2) If the tropopause PV gradient q̄d
y is smaller than and of

opposite sign as the surface PV gradient q̄0
y , the flow is unsta-

ble to NMs of wavenumbers between a short- and a long-wave
cut-off. The short-wave cut-off is analogous to the classic Eady
model with upper rigid lid and originates from a consideration
of the Rossby height. The long-wave cut-off appears because the
difference between the natural propagation speeds of the PVBs
becomes too large (in this case because the ultra-long surface
PVB propagates too rapidly in the eastward direction). There-
fore, the tropopause PVB cannot form a configuration with the
surface PVB which is both phase-locked and growing. Increasing
the tropopause PV gradient q̄d

y (keeping 0 < q̄d
y < −q̄0

y ), reduces
the phase-speed of the long-wave surface PVB and growing NMs
are found for a wider range of wavenumbers.

(3) A limit case is reached if the surface and the tropopause
PV gradients have equal (but opposite sign) amplitude, q̄d

y =
−q̄0

y . The flow is now unstable to all NMs longer than the short-
wave cut-off. The short-wave cut-off depends on the exact value
of N 2

s that is considered. In the limit N 2
s → ∞ the classic Eady

model with upper rigid lid is recovered.
(4) If the q̄d

y becomes larger than −q̄0
y , the long-wave cut-off

reappears. Ultra-long NMs are neutral. In this case the long-wave
tropopause PVB propagates too rapidly to the west to be able to
form an NM which is both phase-locked and growing. A pair
of neutral NMs exists, one resembling the tropopause PVB, the
other a continuum mode.

(5) The structure of the continuum modes (CMs) can also
be explained using the PVB perspective. These modal structures
characterised by non-zero PV at an interior level (as well as by
non-zero PV at the surface and tropopause) are neutral even if the

discrete NMs are unstable, but may cause resonances if they are
located on the steering level of the neutral discrete NMs. In case
the stratosphere has negative shear, steering levels occur also in
the stratosphere, which then lead to multiple resonant levels.

We end this paper with some remarks. At first sight, the
simplistic description of the troposphere stratosphere transition
(the tropopause) can be questioned. In the present paper the
tropopause is simulated by both a discontinuity of the basic-state
buoyancy frequency N2 and a discontinuity in the vertical shear
� of the zonal wind ū. In reality the troposphere-stratosphere
transition is smooth. To examine the effect of this smoothing,
we have adjusted N2 and ū in a region d − h < z < d + h (with
h = 0.2 the half-width of the smoothing region) such that the
N2 and ū-profiles are smooth (continuous and differentiable) in
the complete domain. The smoothing introduces a non-zero PV
gradient in the complete smoothing domain.6 This PV gradient
has been plotted in Fig. 13. The over-all sign of the PV gradient
within the smoothing region varies in the same way with�s as the
singular contribution q̄d

y [see (12)] did. If �̃s = 1, the PV gradi-
ent vanishes in the complete smoothing region implying that the
model resembles the semi-infinite extension of the Eady model.
If �̃s ≥ 1, the PV gradient at the tropopause has the same sign as
the PV gradient at the surface, which implies that the smoothed
basic state is neutral. On the other hand, if �̃s < 1, the sign of
the PV gradient is different at the surface and at the tropopause
region and we expect the existence of a pair of growing and de-
caying NMs. Fig. 13b confirms that growth rates obtained for the
smoothed basic state are similar to the results obtained before
by Müller (1991).

Another point of concern relates to the physical relevance of
the obtained long-wave modal structures. Since the present study
is based on an f -plane approximation, very low wavenumbers can
hardly be justified without making large errors. It is expected that
NM results will also be modified if a β-plane approximation
is made, and modes resembling CMs will necessarily have a
more complex vertical PV structure. Nevertheless the present
paper hopefully contributes to the qualitative understanding of
baroclinic instability and the various wave structures supported
by different types of basic states.

6The simple smoothing approximates N 2(z) by a third-order polynomial
and ū(z) by a fourth order polynomial. This gives nine degrees of freedom
to solve the nine constraints [dq̄/dy continuous (#2); N2 smooth (#4); ū
smooth but unbounded at infinity (#3)].
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Fig. 14. Amount of PV needed initially at
level h (vertical axis) to produce surface
winds of 30 m s−1 after a certain target time.
(a) target time 48 h; (b) target time 72 h.
Thick black lines indicate steering levels.
The basic state is specified by N 2

s /N 2
t = 4,

�t = 1 and d = 1.

To conclude, in some respect linear NM instability theory
provides only a starting point for the understanding of the de-
velopment of atmospheric disturbances. As an example of the
variations in non-modal development occurring in the two-layer
Eady model, Fig. 14 displays the amount of PV that is ini-
tially needed at a single level [in the form of an interior PVB
q(t = 0) = Qδ(z − h) exp (ikx)] to generate surface winds of
30 m s−1 at a given target time. For each value of �s we have
taken the wavenumber k that produces the most rapidly growing
NM. This is merely a choice and will not necessarily produce
optimal growth (Heifetz and Methven, 2005). The panels show
clearly that the region near the tropospheric steering level is
favoured for surface development. Although, as discussed in the
previous section, there is no resonantly growing CM, the PVB
at the steering level still favours the excitation of the GNM. At
high altitudes, more PV is required. However, some regions in
the stratosphere -associated with the stratospheric steering level-
are also amenable to surface growth. Moreover, even in situa-
tions in which the NMs are practically neutral (for instance near
�s = 4), the non-modal development can be strong.

The above observations show that growth-mechanisms differ-
ing from conventional normal-mode baroclinic instability (such
as resonant growth due to near-steering level interior PVBs) can
play an important role in situations with rapid development, in
line with existing studies (Farrell, 1984; Davies and Bishop,
1994; Heifetz et al., 2004a; Dirren and Davies, 2004; De Vries
and Opsteegh, 2005; Heifetz and Methven, 2005; De Vries and
Opsteegh, 2006). Further research is required to assess the im-
portance of such intrinsically non-modal growth mechanisms for
the more realistic flow configurations amenable to an interpre-
tation in terms of counter-propagating Rossby waves (Methven
et al., 2005a,b).

Appendix A: Properties of the PVBs

The surface and tropopause PVB provide a physically intuitive
basis for the discrete NMs. They are analogous to the CRWs of
Heifetz et al. (2004a) constructed using the home-base method.
The PVBs have unit perturbation PV either at the surface (B) or
at the tropopause (T), i.e. q B(z) = δ(z) and q T (z) = δ(z − d).

We write φ(z) = Bφ B(z) + T φT (z) for the total stream-function
of the NM, where B and T are complex amplitudes. The PVB
stream-functions are given by

φB(z) = H (d − z)

α

{
µ̃s sinh[µt (z − d)] − µ̃t cosh[µt (z − d)]

}
− H (z − d)

α
{µ̃t exp[−µs(z − d)]}, (A1)

φT (z) = H (d − z)

α
[−µ̃t cosh(µt z)]

− H (z − d)

α
{µ̃tγ2 exp[−µs(z − d)]} , (A2)

where H(x) is the Heaviside step-function, µt = Nt K , µs =
Ns K , µ̃T = K/Nt and µ̃s = K/Ns , with K = √

k2 + l2 the to-
tal horizontal wavenumber. Furthermore, α = µ̃t (µ̃tγ1 + µ̃sγ2)
where γ 1 = sinh (µt d) and γ 2 = cosh (µt d). We note the fol-
lowing relations:

φT (d)

φB(d)
= γ2,

φB(0)

φT (0)
= γ2 + Nt

Ns
γ1, φT (0) = φB(d). (A3)

The phase-speeds of the PVBs and their couplings are given
by:

cB = ū0 +
(

∂θ̄

∂ y

φB

θB

)
z=0

, fB = −
(

∂θ̄

∂ y

φT

θB

)
z=0

, (A4)

cT = ūd +
(

∂ q̄

∂ y

φT

qT

)
z=d

, fT = −
(

∂ q̄

∂ y

φB

qT

)
z=d

. (A5)

Explicit expressions are expressed most easily in terms of the
‘effective’ shears �̃t = �t N−2

t and �̃s = �s N−2
s :

cB = ū0 + �̃t

µ̃t

(
µ̃tγ2 + µ̃sγ1

µ̃tγ1 + µ̃sγ2

)
, (A6)

cT = ūd −
(

�̃t − �̃s

µ̃t

)(
µ̃tγ2

µ̃tγ1 + µ̃sγ2

)
, (A7)

fB = −�̃t

µ̃tγ1 + µ̃sγ2
, fT = �̃t − �̃s

µ̃tγ1 + µ̃sγ2
, (A8)

where ū0 = ū(z = 0) and ūd = ū(z = d).
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Appendix B: Analytical structure of the CM

By writing ψ(z) = ∫
G(z, z′)q(z′)dz′, a Green’s function ap-

proach is adopted to derive expressions for the CM stream-
function. The function G(z, z′) has been defined to have zero
PV at the surface and the level of the tropopause and explicit
expressions for G(z, z′) are obtained easily (not shown). Writing
gi j = G(z = i , z′ = j) where i , j = (0, d, h), we get for the
CM with PV at level h (not residing at the steering level of the
discrete NMs):

B

Q
= q̄0

y

[
(c − cT )g0h − g0d q̄d

y gdh

]
(c − c+)(c − c−)

, (B1)

T

Q
= q̄d

y

[
(c − cB)gdh − gd0q̄0

y g0h

]
(c − c+)(c − c−)

, (B2)

where c = ū(z = h) and c± are the solutions of the discrete NMs
given in (9). Clearly these solutions become singular only for
PV perturbations at the neutral branches of the discrete NM
dispersion relation: If c± form a complex conjugate pair c± =
c̄ ± ici , the denominator in the above equations becomes (c −
c+)(c − c−) = (c − c̄)2 + c2

i which is real and positive. On the
other hand, if c± = c̄ ± cr we get (c − c+)(c − c−) = (c − c̄)2 −
c2

r which can (and does) become zero for c = c± = c̄ ± cr .
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