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ABSTRACT

We propose a method of flow-dependent large-scale blending (LSB) method for 
limited-area model data assimilation (LAM DA). By incorporating the information from 
the global model (GM), LSB methods alleviate the large-scale degradation caused by 
limitations in the domain size and observations. Our proposed LSB method (nested 
EnVar) extends the static variational DA augmented by GM information (nested 
3DVar) of previous studies, thus dynamically determining the relative weights of GM 
information based on the uncertainties in GM. The simultaneous assimilation of GM 
information by the nested EnVar avoids disturbing the optimal state of DA caused 
by independent blending. The nested EnVar is compared against the nested 3DVar 
and background LSB methods in the cycled assimilation experiments using a nested 
system of chaotic models with a single spatial dimension. We also investigate the 
impact of flow-dependency on the blended analysis and forecast. All LSB methods 
reduce the large-scale errors in LAM DA and provide better analyses and forecasts than 
GM downscaling. When dense and uneven observations are assimilated into the LAM 
domain, the nested EnVar outperforms the conventional DA and other LSB methods. 
By dynamically incorporating the GM uncertainty, the nested EnVar improves the 
analyses and their stability across scales. These results suggest that the nested EnVar 
is a promising alternative to traditional LSB methods in high-resolution simulations of 
hierarchical phenomena with high variability.
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1 INTRODUCTION

High-impact weather phenomena are often triggered by 
convective-scale disturbances embedded in a synoptic-
scale circulation. For example, mesoscale convective 
systems can develop in synoptic-scale moisture tongue 
structures such as the Meiyu–Baiu frontal zone or deep 
convective clouds in a tropical cyclone. To numerically 
simulate the small-scale structures in these hierarchical 
phenomena, we require a forecast model with fine 
horizontal resolution (1–4 km) (Kanada and Wada, 2016; 
Fukui and Murata, 2021). Although state-of-the-art high-
performance supercomputer systems are capable of 
such high-resolution simulations in the global domain, 
a sufficient resolution is efficiently realized by a nested 
system embedding a high-resolution limited-area model 
(LAM) in a relatively coarse-resolution global model (GM).

The prediction skills of GMs in large-scale circulations 
have been improved by increasingly available satellite 
observations and active developments of numerical 
models and data assimilation (DA) at operational 
numerical weather prediction (NWP) centers. By contrast, 
LAM analysis systems cannot properly represent large-
scale structures, partly because their domain size is 
limited and available observations are few (Berre, 2000; 
Guidard and Fischer, 2008; Baxter et al., 2011). These 
large-scale errors increase risk in displacement errors, 
in disturbances such as tropical cyclones, in synoptic-
scale fronts, degrading LAM convective-scale prediction 
potential.

Large-scale degradation in LAMs can also affect LAM 
ensemble prediction systems (EPSs), which account for 
meso- and convective-scale uncertainties. Besides the 
inherent uncertainties in the initial conditions, numerical 
models, and bottom boundary conditions of GM EPSs 
(Kunii and Miyoshi, 2012), LAM EPSs must consider the 
uncertainty in the lateral boundary conditions (LBCs) to 
retain sufficient ensemble spreads near the boundaries 
(Saito et al., 2012). However, the IC perturbations within 
the LAM domain can deviate from the LBC perturbations 
at the lateral boundaries because the perturbation 
generation methods often differ between LAM and 
GM. These inconsistencies can initiate spurious gravity 
waves, causing excessive surface pressure spread in 
LAM EPSs (Caron, 2013). Moreover, as LAM EPSs cannot 
properly represent multi-scale uncertainties, they tend 
to underestimate the forecast ensemble spreads relative 
to the forecast error (Gainford et al., 2024). Although 
the role of flow-dependent forecast error covariance is 
well established in the convective-scale ensemble DAs 
(Gustafsson et al., 2018), the treatment of multi-scale 
structures in ensemble DAs remains under discussion (Hu 
et al., 2023).

To improve LAM analyses, recent studies have 
considered the use of large-scale information available 
from GMs. In dynamical downscaling experiments of 

GMs, the large-scale structures of LAMs are commonly 
constrained using spectral nudging (von Storch, 
Langenberg, and Feser, 2000) or the perturbation method 
(Juang and Kanamitsu, 1994). However, large-scale 
blending (LSB) methods are favored in convective-scale 
ensemble DAs. Previous studies have proposed two types 
of LSB methods: one using scale-dependent weights 
to combine the large-scale GM structures and LAM 
analyses or forecasts (hereafter called the independent 
LSB method), and another using variational assimilation 
(hereafter called nested DA).

Independent LSB methods involve an analysis 
step for each DA system and a blending step that 
incorporates the large-scale components in GM and 
small-scale components in LAM using low-pass spatial 
filters to generate the new LAM state (Yang, 2005). 
LSB can be performed by the analysis blending (ALSB) 
method, which first conducts the GM and LAM analyses 
and then blends the GM analysis into the LAM analysis, 
or the background blending (BLSB) method, which first 
blends the GM forecast into the LAM forecast and then 
conducts the LAM analysis with the blended state as 
the background state. Although ALSB can strongly 
constrain the large-scale structures of LAM to those of 
GM, it may disturb the optimal state estimated by each 
DA system. By contrast, BLSB can maintain the optimal 
weights between the observations and background 
states determined by the LAM DA system (Milan et al., 
2023). BLSB can conserve the large-scale constraints 
with scale-dependent background error variances 
(Bučánek and Brožková, 2017). These independent LSB 
methods improve 24-hour precipitation predictions 
(Wang et al., 2014a), the tracks of tropical cyclones, 
and terrain-sensitive precipitation distribution induced 
by tropical cyclones (Hsiao et al., 2015). When applied 
in LAM EPSs, independent LSB methods can reduce 
the inconsistencies of ensemble perturbations along 
the lateral boundaries (Caron, 2013) or improve the 
spread–skill relationship (Zhang et al., 2015; Gainford 
et al., 2024).

The nested DA simultaneously assimilates 
observations and GM information constraining the large-
scale structures of LAM to be consistent with the DA 
algorithm. Guidard and Fischer (2008, GF08) augmented 
the limited-area 3DVar cost function with a new term 
(Jk) measuring the large-scale departure from the GM 
analysis (nested 3DVar). Dahlgren and Gustafsson 
(2012, DG12) introduced the explicit preconditioning for 
efficient minimization into the nested 3DVar formulation 
of GF08. They also modified the cost function using 
the GM short-range forecast to mitigate the error 
correlation between GM and assimilated observations. 
In both GF08 and DG12, the nested 3DVar improved 
the analysis against the upper observations from that 
of the conventional 3DVar. Whereas independent 
LSB methods perform a separate blending step, the 
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nested DA approach simultaneously assimilates the GM 
information and the observations and therefore directly 
constrains the large-scale increments introduced by the 
LAM DA. For example, Vendrasco et al. (2016) applied the 
nested 3DVar while assimilating the radial velocities and 
reflectivity observed by Doppler radars. They found that 
the large-scale constraint improved the balance between 
the dynamical and microphysical fields, enhancing the 
impact of radar assimilation. Furthermore, Keresturi et al. 
(2019) proposed the ensemble nested 3DVar, which 
constructs the Jk term for each ensemble member using 
a corresponding GM ensemble member with LBCs. The 
ensemble nested 3DVar reduces the large-scale error, 
mitigates the inconsistencies in LBCs and improves the 
spread–skill relationship, similarly to independent LSB 
methods.

Although various studies have confirmed the 
individual utilities of LSB methods, there remains some 
problems to be addressed for the more effective use 
of these methods. Firstly, few studies have directly 
compared the several LSB methods in a unified setting. 
In particular, the BLSB and nested DA methods, which 
perform the blending step before and simultaneously 
with the analysis step, respectively, better suppress 
deviations from the minimum variance or maximum 
likelihood estimation (on which the DA method is based) 
than the ALSB method. However, how the blending 
timing relative to the assimilation influences the LAM DA 
has not been clarified. Understanding the impact of the 
blending timing on LAM DA within a unified framework 
could provide some insights to exploit the strengths of 
LAM DA, that is, the assimilation of convective-scale 
observational information captured by satellites or 
ground-based radar systems that cannot be represented 
by GMs.

Secondly, the traditional LSB methods do not consider 
the spatial variation in the relative weights of blended 
GM large-scale structures. Although Feng, Sun, and 
Zhang (2020) proposed a scheme that dynamically 
determines the cutoff wavelength of spatial filters in the 
independent LSB methods based on the kinetic energy 
spectra, the relative weights of blending usually vary only 
vertically, not temporally. Similarly to the independent 

LSB methods, the nested 3DVar cannot reflect the flow-
dependencies in the background error structures of GMs 
and LAMs because the error covariances are determined 
by statistical methods. Moreover, to simplify the objective 
function enough to ensure manageable computational 
cost, the nested 3DVar assumes that the error correlations 
are spatially isotropic, homogeneous, and univariate. The 
same problem occurs in the ensemble nested 3DVar of 
Keresturi et al. (2019), in which the error covariances 
are climatologically determined. Because fluctuating 
atmospheric circulations affect both the LAM and GM 
forecast errors, the relative weights between the GM and 
LAM large-scale structures in the LSB methods should be 
determined by considering the flow dependence of both 
background errors.

Table 1 compares the blending timings and flow 
dependencies of different LSB methods. In the 
independent LSB methods (ALSB and BLSB), whether the 
DA is flow dependent varies with the DA scheme.

To meet the main challenges discussed above, 
this study directly compares the characteristics and 
performances of the BLSB and nested DA methods to 
clarify how the blending timing and flow dependency 
of background errors influence LSB methods. To 
account for the flow dependence of background error 
covariances while exploiting the strengths of the 
nested DA with simultaneous constraints of large-scale 
structures, we extend the nested 3DVar proposed by 
GF08 and DF12 to an ensemble variational framework 
(nested EnVar). By estimating both the LAM background 
and GM large-scale error covariances from ensemble 
variations, our nested EnVar dynamically determines 
the spatially varying relative weights between GM and 
LAM on LSBs (Table 1). The performance of nested 
EnVar, conventional independent LAM analyses, 
and other LSB methods are compared through 
idealized assimilation experiments. Although many 
previous studies investigate LSB performance in high-
dimensional models representing real atmospheric 
motion, this study adopts chaotic models with a single 
spatial dimension for performance evaluation because 
such simplified settings omit the complex effects of 
intervariable correlations or terrains.

Table 1 Comparison of large-scale blending methods. The second column shows the timing of the blending step (before, after, or as 
simultaneous with the analysis step).

METHOD TIMING FLOW-DEPENDENT 
DA/LSB

REFERENCES

ALSB after possible/no Yang (2005), Caron (2013), Wang et al. (2014b), Wang et al. (2014a), Hsiao et al. 
(2015), Zhang et al. (2015)

BLSB before possible/no Bučánek and Brožková (2017), Milan et al. (2023), Gainford et al. (2024)

nested 3DVar simultaneous no/no Guidard and Fischer (2008), Dahlgren and Gustafsson (2012), Vendrasco et al. 
(2016), Keresturi et al. (2019)

nested EnVar simultaneous yes/yes our study



4Nakashita and Enomoto Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4089

The subsequent sections of this paper are organized 
as follows. Section 2 reviews the LSB methods (nested 
DA and BLSB) and extends the nested 3DVar to EnVar. 
The forecast models and settings of the comparison 
experiments are explained in Section 3. Section 4 shows 
the results of the control experiments on a uniform 
observation network that is the same as the global DA. 
Section 5 investigates the influence of dense and uneven 
observation networks on the LAM DA and LSB methods. 
Section 6 concludes the study and suggests future 
directions for the proposed method.

2 FORMULATION

This section formulates the ensemble variational 
assimilation augmented by GM information. First, we 
briefly explain the nested 3DVar proposed in GF08 
and DG12. Following this we introduce an alternative 
formulation for the nested DA with EnVar. To investigate 
the impact of simultaneously introducing the GM 
information into LAM DA, we compare the performances 
of nested DA methods to that of the BLSB method (Milan 
et al., 2023), of which is also briefly discussed.

The vector spaces used in this section are defined 
below:

•	 ℝNG : a GM state space;
•	 ℝNL : a LAM state space;
•	 ℝNLl : a low-resolution LAM state space;
•	 ℝ p: an observational space;
•	 ℝK: an ensemble space.

The low-resolution LAM space is required for defining the 
effective resolution of the large scales used in the LAM.

2.1 NESTED 3DVAR
GF08 incorporated two sources of information in 
conventional 3DVar (the LAM background state xb and 
the observation y), and a new source of information 
H1(xA), where xA is a corresponding GM analysis, and 
H1:ℝNG ↦ ℝNLl  is a spatial interpolation and truncation 
operator that projects the vector from the GM state space 
to the low-resolution LAM state space. These information 
sources are inserted into an information vector z:

 z = (
xb

y
H1(xA)

) . (1)

The differences between the three information sources 
and the corresponding true state xt in the LAM space is 
expressed as follows:

•	 𝜀𝜀b = xb − xt: the background error;
•	 𝜀𝜀o = y − H(xt): the observation error, where 

H:ℝNL ↦ ℝ p is an observation operator;

•	 𝜀𝜀v = H1(xA) − H2(xt): the large-scale error in the 
global analysis, where H2:ℝNL ↦ ℝNLl  is a truncation 
and interpolation operator that projects the vector 
from the LAM space to the low-resolution LAM 
space.

The truncation operators (H1, H2) are defined in terms 
of a discrete cosine transformation (DCT) (Denis, Côté, 
and Laprise, 2002), which is suitable for computations of 
limited-area spectra with aperiodic boundaries.

The error covariance matrix of the information vector 
z is constructed as

 W = (
E[𝜀𝜀b(𝜀𝜀b)T] E[𝜀𝜀b(𝜀𝜀o)T] E[𝜀𝜀b(𝜀𝜀v)T]
E[𝜀𝜀o(𝜀𝜀b)T] E[𝜀𝜀o(𝜀𝜀o)T] E[𝜀𝜀o(𝜀𝜀v)T]
E[𝜀𝜀v(𝜀𝜀b)T] E[𝜀𝜀v(𝜀𝜀o)T] E[𝜀𝜀v(𝜀𝜀v)T]

) , (2)

where E[A] denotes the expected value of A.
The first and second components of the block-diagonal 

part of W indicate the background and observation error 
covariances in the conventional 3DVar, respectively:

B ≡ E[𝜀𝜀b(𝜀𝜀b)T],
R ≡ E[𝜀𝜀o(𝜀𝜀o)T].

Similarly, the third block-diagonal component, which 
specifies the large-scale error covariances of the global 
analysis, is expressed as

V ≡ E[𝜀𝜀v(𝜀𝜀v)T].

Using these definitions, GF08 defined the following 3DVar 
cost function with the augmented information vector:

 J(𝝇𝝇𝝇 𝝇 1
2
(z − 𝝇𝝇𝝇TW−1(z − 𝝇𝝇𝝇𝝇 (3)

where 𝝇𝝇 is a control vector consisting of a LAM state 
vector x:

 𝝇𝝇 𝝇 (
x

H(x)
H2(x)

) . (4)

Equation (3) can be transformed into an incremental 
formulation of x with respect to the background state 
xb, i.e.,
 x = xb + 𝛿𝛿x, (5)

and innovations d with respect to the information vector:

 d = (
0
do

dv
) = (

0
y − H(xb)

H1(xA) − H2(xb)
) . (6)

In terms of these expressions, the control vector 𝝇𝝇 can be 
transformed as



5Nakashita and Enomoto Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4089

z − 𝝇𝝇 𝝇 d − T𝛿𝛿x.

The matrix

 T = (
INL

H
H2

) (7)

defines the transformation of the control variable, 
where H and H2 are the linearized operators of H and H2, 
respectively, and INL

 is the identity operator in the LAM 
state space ℝNL . Rewriting Eq. (3) using the transformed 
control vector 𝛿𝛿x, we get

 J(𝛿𝛿x) = 1
2
(d − T𝛿𝛿x)TW−1(d − T𝛿𝛿x). (8)

In addition to the traditional assumption that 
E[𝜀𝜀b(𝜀𝜀o)T] = 0, GF08 ignored E[𝜀𝜀v(𝜀𝜀o)T] by assuming that 
the LAM observation errors are uncorrelated with the 
GM background and observation errors (see Section 2.2 
of GF08 for comprehensive rationales). Furthermore, 
GF08 showed that the cross covariances between LAM 
background and large-scale errors were negligible 
compared to other autocovariances based on error 
statistics. Finally, the error covariance W becomes a 
block-diagonal matrix with B, R, and V, and Eq. (8) 
reduced to summations of three terms:

 J(𝛿𝛿x) = Jb(𝛿𝛿x) + Jo(𝛿𝛿x) + Jv(𝛿𝛿x). (9)

The first term

 Jb(𝛿𝛿x) = 1
2
(𝛿𝛿x)TB−1𝛿𝛿x (10)

measures the discrepancies from the background state, 
the second term

 Jo(𝛿𝛿x) = 1
2
(do − H𝛿𝛿x)TR−1(do − H𝛿𝛿x) (11)

measures the discrepancies from the observations, and 
the newly added third term

 Jv(𝛿𝛿x) = 1
2
(dv − H2𝛿𝛿x)TV−1(dv − H2𝛿𝛿x) (12)

measures the discrepancies from the large scales of the 
global analysis (in our formulation, we rename Jk as Jv 
to avoid confusion with the ensemble member index k).

Although DG12 adopts the same definition and 
simplification of the cost function as GF08, they construct 
Jv using the GM short-range (six hour) forecast xB instead 
of analysis xA to mitigate the error correlation between 
the observation assimilated in the LAM and that is 
implicitly contained in the global analysis. Here we adopt 
the modification in DG12; that is, we redefine V and dv 
using the GM short-range forecast.

To facilitate the minimization of the cost function (9), 
DG12 also explicitly introduced preconditioning with a 
transformed control variable. The variable transformation 
is defined as

 𝛿𝛿x = Lb𝝌𝝌𝝌 (13)

where Lb is the square-root operator of the background 
error covariance B:

 B = Lb(Lb)T. (14)

The square-root operator of V can be defined similarly to 
that of B:

 V = Lv(Lv)T. (15)

Using Eqs. (13), (14), and (15), the cost function with the 
transformed control variable 𝝌𝝌 becomes

 Jb(𝝌𝝌𝝌 𝝌
1
2
𝝌𝝌T𝝌𝝌𝝌 (16)

 Jo(𝝌𝝌𝝌 𝝌
1
2
(do − HLb𝝌𝝌𝝌TR−1(do − HLb𝝌𝝌𝝌𝝌 (17)

 Jv(𝝌𝝌𝝌 𝝌
1
2
[(Lv𝝌−1(dv − H2Lb𝝌𝝌𝝌𝝌T(Lv𝝌−1(dv − H2Lb𝝌𝝌𝝌𝝌 (18)

The gradient and Hessian are respectively given by

 ∇𝝌𝝌J = 𝝌𝝌 𝝌 𝝌HLb)TR−1𝝌HLb𝝌𝝌 𝝌 do)
𝝌[𝝌Lv)−1H2Lb]T𝝌Lv)−1{H2Lb𝝌𝝌 𝝌 dv},

 (19)

 ∇2
𝝌𝝌J = INL

+ (HLb)TR−1HLb + {(Lv)−1H2Lb}T(Lv)−1H2Lb. (20)

2.2 NESTED ENVAR
We now extend the above-described augmented 
variational method to an ensemble framework. Because 
the cost function of EnVar resembles that of 3DVar with 
preconditioning, we formulate the augmented cost 
function in the ensemble space based on Eqs. (16), (17), 
and (18).

EnVar employs the Monte–Carlo estimation of the 
flow-dependent background error covariance Pb:

Pb = 1
K − 1

Xb(Xb)T,

where Xb is a NL × K matrix whose k-th column is the 
perturbation from the mean state xb = ∑K

k=1 xb
k/K to k-th 

background ensemble member:

Xb = [xb
k − xb]k=1,⋯,K.

Using this estimation, the control-variable transformation 
is defined in terms of the ensemble perturbations as
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x = xb + Xbw,

where w is a K-dimensional vector representing the 
weights of the linearly combined ensemble perturbations.

Replacing Lb with (K − 1)−1/2Xb and 𝝌𝝌 with (K − 1)1/2w 
in Eqs. (16)–(18), we obtain the cost function with respect 
to w:

 Jb(w) =
K − 1
2

wTw, (21)

 Jo(w) =
1
2
(Ybw − do)TR−1(Ybw − do), (22)

 Jv(w) =
1
2
{(Lv)−1(Zbw − dv)}T{(Lv)−1(Zbw − dv)}, (23)

where

Yb = HXb, Zb = H2Xb.

Assuming that the flow-dependent large-scale error 
covariance of the global forecast Pv can also be estimated 
from the global forecast ensemble, we have

Pv = 1
K − 1

Zv(Zv)T, Zv = H1XB,

where XB is an NG × K perturbation matrix of the global 
forecast ensemble. Here we further assume the same 
ensemble sizes of GM and LAM. This assumption is 
reasonable because each LAM member requires the 
distinct LBCs of the GM member to retain the ensemble 
spread near the boundaries.

Under this assumption, the square-root operator Lv 
can be replaced by (K − 1)−1/2Zv. To evaluate Eq. (23) we 
must solve the linear system

 (K − 1)−1/2Zvr = Zbw − dv (24)

with Jv =
1

2
rTr. However, the inverse of Zv cannot be 

uniquely determined when NLl ≠ K; moreover, Eq. (24) 
becomes undetermined when NLl > K, the usual case 
in high-dimensional models. To obtain a least-squares 
solution of Eq. (24) with minimal norm ‖r‖ we employ a 
Moore–Penrose pseudoinverse (Zv)† (Harville, 1997):

 rls = (K − 1)1/2(Zv)†(Zbw − dv). (25)

Finally, the EnVar cost function augmented by the GM 
information becomes

 J(w) = Jb(w) + Jo(w) + Jv(w), (26)

with

 Jv(w) =
K − 1
2

{(Zv)†(Zbw − dv)}T(Zv)†(Zbw − dv). (27)

The gradient and Hessian of Eq. (26) are respectively 
given by

 ∇wJ= (K − 1)w + (Yb)TR−1(Ybw − do)
+(K − 1)[(Zv)†Zb]T(Zv)†(Zbw − dv),

 (28)

 ∇2
wJ = (K − 1)INL

+ (Yb)TR−1Yb + (K − 1)[(Zv)†Zb]T(Zv)†Zb. (29)

If the ensemble size K is much smaller than the state sizes 
NL and NLl, we can apply a more efficient preconditioning 
using the Hessian (29) (Zupanski, 2005):

w = [∇2
wJ]−1/2𝜻𝜻𝜻

After this variable transformation, the Hessian becomes 
the identity matrix when all operators (H, H1, and H2) are 
linear, and wa = argmin

w
J(w) can be analytically obtained. It 

should be noted that when all operators are linear (as in 
the present study), applying Hessian preconditioning is 
equivalent to applying Newton optimization (Enomoto 
and Nakashita, 2024).

If the operators H, H1, and H2 are nonlinear, we can 
minimize the cost function without tangent linear and 
adjoint operators:

J(w) = K − 1
2

wTw + 1
2
[y − H(x)]TR−1[y − H(x)]

+K − 1
2

{(Zv)†[H1(xB) − H2(x)]}T(Zv)†[H1(xB) − H2(x)].

The gradient can be evaluated as

∇wJ= (K − 1)w + (Yb)TR−1[y − H(x)]
+(K − 1)[(Zv)†Zb]T(Zv)†[H1(xB) − H2(x)]

with perturbation matrices

Yb = [H(xb
k ) − H(xb)]k=1,⋯,K,

Zb = [H2(xb
k ) − H2(xb)]k=1,⋯,K,

and

Zv = [H1(xB
k ) − H1(xB)]k=1,⋯,K,

respectively.
To transform the background ensemble perturbations 

Xb to analysis ensemble perturbations Xa we recognize 
that the Hessian (29) at w = wa is the estimated inverse 
of the analysis error covariance in ensemble space 
(Zupanski, 2005):

 Xa = (K − 1)1/2Xb[∇2
wJ(wa)]−1/2. (30)

As explained in Section 1, GF08 and DG12 impose further 
assumptions on the spatial and intervariable correlations 
of V. Although these assumptions are unnecessary for 
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our unlocalized ensemble formulation they must be 
considered during localization in the state space. The 
algorithm will be adapted to localization schemes in 
future work.

2.3 BACKGROUND LARGE-SCALE BLENDING
BLSB is a two-step process of scale-selective blending 
and analysis. The blending step uses filtering operators 
(H′1, H′2), which are similar to the truncation operators (H1, 
H2) in the nested DA but perform mapping to the original 
LAM space (Milan et al., 2023):

 xbld = xb + 𝛿𝛿xF, (31)

where

 𝛿𝛿xF = H′1(xB) − H′2(xb) (32)

is a large-scale increment of the background LAM state 
from the background GM state. After blending, xbld 
becomes the new background state of LAM DA.

To define H′1 and H′2 in Eq. (32), previous studies have 
applied digital filter initialization (Lynch and Huang, 
1992; Yang, 2005; Wang et al., 2014b; Bučánek and 
Brožková, 2017), an implicit low-pass filter (Raymond, 
1988; Wang et al., 2014a; Hsiao et al., 2015), or a 
spectral filter (Denis, Côté, and Laprise, 2002; Zhang et 
al., 2015; Milan et al., 2023). In this study we utilize the 
DCT used in nested DA for a direct comparison of both 
LSB methods.

3 CYCLED ASSIMILATION 
EXPERIMENTS WITH A NESTED 
LORENZ SYSTEM

The performance of the nested EnVar is now compared 
with those of the conventional methods without LSB and 
the LSB methods of previous studies. For this purpose, we 
run cycled observation system simulation experiments 
(OSSEs) using the spatially one-dimensional chaotic 
models proposed by Lorenz (2005). Our experimental 
designs refer to Kretschmer et al. (2015), who proposed 
simultaneous updating of the GM and LAM using the 
ensemble DA method. However, as mentioned in 
Section 1, we consider that the GM can already simulate 
the large-scale circulations in most operational NWP 
centers with sufficient accuracy; moreover, many 
research institutes other than NWP centers are limited 
to LAMs. Therefore, we optimize LAM analyses based on 
precomputed GM information.

3.1 NESTED LORENZ SYSTEM
The Type II (Lorenz II) model of Lorenz (2005) describes 
larger scale wave dynamics than the original (Lorenz 

I) model of Lorenz (1995). The governing equation of 
Lorenz II is

 
dZn
dt

= [Z, Z]K,n − Zn + F, (33)

where n = 1,⋯ ,N is a state index with a periodic 
boundary condition (ZN+1 = Z1). The first term of the 
right-hand side is computed as

[X, Y]K,n =

⎧
⎪
⎨
⎪
⎩

∑′J
j=−J∑

′J
i=−J(−Xn−2K−iYn−K−j + Xn−K+j−iYn+K+j)

K2
, J = K

2
(K even)

∑J

j=−J∑
J

i=−J(−Xn−2K−iYn−K−j + Xn−K+j−iYn+K+j)

K2
, J = K − 1

2
(Kodd)

where ∑′
 indicates

∑′N
n=1 Xn =

X1
2
+∑N−1

n=2 Xn +
XN
2
.

The parameter N/K controls the dominant wavenumber 
of the state. Setting N/K = 30 and F = 15 in Eq. (33) 
and setting N = 40 and F = 8 in Lorenz I give almost 
identical dominant wavenumbers and error growth 
rates (corresponding to 7–8 wavenumbers and a 
doubling time of ~0.3 non-dimensional model time 
units, respectively).

The Lorenz III model is based on Lorenz II and 
additionally incorporates the interaction between large 
(X) and small (Y) scale waves:

 
dZn
dt

= [X, X]K,n + b2[Y, Y]1,n + c[Y, X]1,n − Xn − bYn + F, (34)

where b adjusts the frequency and amplitude of Y and 
c is the coupling strength between X and Y. The scale is 
decomposed as

Xn = ∑′I
i=−I(𝛼𝛼 𝛼 𝛼𝛼𝛼i𝛼)Zn+i

Yn = Zn − Xn,

where I indicates the spatial filter width and

𝛼𝛼 𝛼 𝛼3I2 + 3)/𝛼2I3 + 4I)
𝛽𝛽 𝛽 𝛽2I2 + 1)/𝛽I4 + 2I2).

The error growth rate is dominated by that of the large-
scale component (X). Setting N/K = 30 and F = 15 in Eq. 
(34) gives almost the same error growth rate as setting 
N = 40 and F = 8 in Lorenz I.

To represent multi-scale wave dynamics in these 
chaotic models we add advection terms to Lorenz II and 
Lorenz III, allowing multiple wavelengths:

 
dZn
dt

= ∑
K∈ℤK2

[Z, Z]K,n − Zn + F, (35)



8Nakashita and Enomoto Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4089

dZn
dt

= ∑
K∈ℤK3

[X, X]K,n + b2[Y, Y]1,n + c[Y, X]1,n − Xn − bYn + F, (36)

where ℤK{2,3} represents subsets of integers for the 
advection length scales. Note that the advection terms 
do not affect the time evolution of the spatially averaged 
energy d (∑N

n=1 Z
2
n/2N) /dt because ∑N

n=1 Zn[Z, Z]K,n = 0 for 
any K.

To conduct the OSSEs, we must define three different 
models: a true model representing the natural dynamics, 
a GM covering the whole domain with relatively low 
resolution, and a LAM covering a limited domain at 
relatively high resolution. Here we utilize the Lorenz III 
model as the true model and the LAM, and the Lorenz II 
model as the GM.

The true model uses Eq. (36) with 
N = 960, ℤK3 = [32,64,128,256], I = 12, b = 10.0, 
c = 0.6, and F = 15. The timestep is Δt = 0.05/36, where 
36 model time steps (0.05 nondimensional time) 
correspond to six hours. The estimated doubling time 
of errors in the true model is approximatly 24 hours, 
which is slightly shorter but reasonable compared to the 
doubling time of synoptic-scale errors in the atmosphere 
(1.5 days, Simmons, Mureau, and Petroliagis, 1995). To 
create the nature run, we integrate the true model over 
one year (52560 steps) after spin up for 100 days (14400 
steps) from a randomly generated state.

The nested Lorenz system is constructed based on 
Kretschmer et al. (2015). The GM uses Eq. (35) with 
NG = 240, ℤK2 = [8,16,32,64], and F = 15. Note that 
the GM is four times coarser in horizontal resolution 
than the true model. The LAM adopts Eq. (36) with the 
same parameters as the true model except for the 
computational domain, which is defined as n = [240,480) 
(NL = 240). The timestep in the GM and LAM is the same 
as that of the true model. At the lateral boundaries, the 
relaxation method (Davies, 1976) is applied with 10-grid 
sponge regions. The state variables in the sponge regions 
are updated by a linear combination of GM and LAM as 
follows:

 Zbn → (1 − 𝛾𝛾(n))Zbn + 𝛾𝛾(n)ZBn, (37)

where 𝛾𝛾𝛾n) is a linear function of n with 1 and 0 at the 
outer and inner rims of the sponge regions, respectively. 
The GM values on the LAM grids between the GM grids 
are obtained by linear interpolation in the horizontal 
direction. The LBC is updated every six hours and linearly 
interpolated in time.

3.2 EXPERIMENTAL DESIGN
To evaluate the performance of our proposed nested 
EnVar on the LAM analyses and forecasts compared to 
the existing LSB methods, we conduct the following six 
experiments on the LAM.

•	 3DVar: Observations are assimilated using 3DVar.
•	 BLSB+3DVar: The background state is blended with 

the GM background (subsection 2.3). Observations 
are then assimilated using 3DVar.

•	 Nested 3DVar: Observations and the GM large-scale 
information are assimilated simultaneously using 
nested 3DVar (subsection 2.1).

•	 EnVar: Observations are assimilated using EnVar.
•	 BLSB+EnVar: The background state is blended with 

the GM background (subsection 2.3). Observations 
are then assimilated using EnVar.

•	 Nested EnVar: Observations and the GM large-scale 
information are assimilated simultaneously using 
nested EnVar (subsection 2.2).

All experiments use the same LBCs from the GM analysis 
and forecast. These are generated as follows. All 
synthetic observations are generated by linear spatial 
interpolation of the nature run on the defined observation 
points, adding random noise with a standard deviation 
of 𝜎𝜎o = 1.0; therefore, the observation error covariance 
is a diagonal matrix (R = 𝜎𝜎2oI). Observations for the GM 
analysis are uniformly distributed over the entire domain 
(per 32 grids in the true model; 30 observations in total), 
and are assimilated every six hours over 250 days (1000 
cycles). The GM analysis is conducted by an 80-member 
EnVar, sufficiently large to maintain an analysis error 
lower than the observation error without localization. 
The initial states of GM are created by spin up for 60 
days (240 cycles) from randomly generated states. 
The multiplicative covariance inflation (10%) has been 
manually adjusted to minimize the analysis error. The 
LBCs in the 3DVar experiments are based on the mean 
GM ensemble.

The dependency on observation distribution in the LAM 
experiments is investigated on five types of observation 
networks (Exp. 1–5), prepared as follows:

1. The same uniform observations as GM 
within the LAM domain (seven points with 
n = 256,288,320,352,384,416,448)

2. Dense and uneven observations at the left of the LAM 
domain (30 points with n = 241,242,⋯ ,270)

3. Dense and uneven observations in the center of the 
LAM domain (30 points with n = 345,346,⋯ ,374)

4. Dense and uneven observations at the right of the 
LAM domain (30 points with n = 448,449,⋯ ,477)

5. Dense and uneven observations moving in the LAM 
domain (30 points)

As in the GM, each experiment assimilates the 
observations at six-hourly intervals over 1000 cycles. To 
create the observations in Exp. 5 we randomly select a 
grid point in the LAM domain in each cycle and set 15 
points to the left and 14 points to the right of that point 
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as the observed grids. The observations outside of the 
LAM domain are not assimilated.

The large-scale increments from the GM forecast in the 
BLSB and the nested DA methods are truncated at k = 24 
by the DCT in the LAM domain, obtaining NLl = 12. This 
truncation number is based on the variance spectrum of 
the nature run, but the performances of the LSB methods 
were found to be insensitive to the truncation number 
within 12 ≤ k ≤ 30. BLSB+3DVar and Nested 3DVar 
utilizes the large scales of the GM ensemble mean to 
construct Jv term.

In the 3DVar experiments, the static background 
and large-scale error covariances (B,V) are constructed 
using the NMC method (Parrish and Derber, 1992). The 
NMC method gives a spatial correlation with somewhat 
noisy small-scale structures, resulting in an undesirably 
huge condition number. To avoid this problem we apply 
the fifth-order piecewise correlation modeling of Gaspari 
and Cohn (1999), which estimates a smooth spatial 
correlation without losing the dominant correlation 
length. In addition, we manually adjust the error variances 
based on the averaged analysis error. Finally, we set the 
standard deviations in the LAM background error and 
large-scale error as 𝜎𝜎b = 0.6 and 𝜎𝜎v = 0.4, respectively.

In the EnVar experiments the ensemble size is fixed to 
80 and no localization is applied as with the GM EnVar. 
The multiplicative covariance inflation is set to 5% in 
LAM EnVar and BLSB+EnVar, and to 25% in Nested EnVar. 
Inflation should be larger in Nested EnVar than in EnVar 
because Nested EnVar contains additional information; 
a smaller estimated variance in the analysis error is 
expected in Nested EnVar than in EnVar.

3.3 EVALUATION
The performances of the LAM analyses and forecasts are 
compared to the interpolated GM analysis on the LAM 
domain (No LAM DA) and the dynamical downscaling 
of GM (Dscl). These comparisons will validate the added 
values of LAM DA to the GM analysis.

The first 10 days (40 cycles) of each experiment are 
discarded as spin up. As the performance measures we 
adopt the root-mean-squared-error (RMSE) in space

 
√√√
√

1
NL

∑
n∈[240,480)

[xa,f(t,n) − xt(t,n)]2, (38)

the RMSE in time

 
√√√
√

1
T

T

∑
t=1
[xa,f(t,n) − xt(t,n)]2, (39)

and the time-averaged error spectral density defined 
using the DCT

 
1
T
∑
t=1,T

𝛽𝛽k[x̂a,f(t, k) − x̂t(t, k)]2 (40)

with

𝛽𝛽k = {
L
2𝜋𝜋 k = 0
L
𝜋𝜋 k > 0,

where xa,f(t,n) and xt(t,n) are the LAM analysis or 
forecast, and the true state, respectively, at time t 
on grid n. xa,f(t,n) in the EnVar experiments are the 
ensemble mean values. x̂ is the amplitude in spectral 
space obtained from the DCT, and the perimeter (L) of a 
latitudinal circle in the coefficient 𝛽𝛽 of Eq. (40) is set to 2𝜋𝜋.

The above measures are evaluated on the LAM 
analyses and the extended forecasts from the analyses. 
The time-averaged RMSEs in space (38) between 
experiments are compared through hypothesis tests that 
considers the autocorrelation of the differences between 
RMSE time series (Wilks, 2011).

Taking the No LAM DA as the baseline experiment, the 
skill score and its scale decomposition are defined as,

 

MSEref −MSEexp

MSEref
=

MSEk≤24ref −MSEk≤24exp

MSEref

+
MSEk>24ref −MSEk>24exp

MSEref
,

 (41)

where MSEref and MSEexp denote the mean-squared-
errors (i.e., Eq. (38) without the square root operation) of 
No LAM DA and target LAM experiments, respectively, and 
where MSE is the time average. As indicated in the left-
hand side of Eq. (41), values close to 1 indicate a higher 
performance of the target experiment than of No LAM 
DA, and negative values indicate a lower performance 
than of No LAM DA. To define the contributions of each 
scale to the skill score we can decompose the errors 
(xa,f(t,n) − xt(t,n)) into the large-scale (k ≤ 24) and small-
scale (k > 24) components using the DCT. By defining the 
skill score using the MSE rather than the RMSE, we can 
ensure that the sum of decomposed scores equals the 
overall score. Because the components decomposed 
by the DCT are mutually orthogonal, the cross terms 
between each scale can be ignored.

4 COMPARATIVE ANALYSIS OF 
NESTED ENVAR EFFECTIVENESS

First, the impact of blending timing and flow dependency 
on LSB methods is investigated using the results of Exp. 
1, of which assimilates the same uniform observations as 
the GM analysis.

On average, the analysis RMSEs of all experiments 
(Figure 1a, b), including No LAM DA are below the 
observation error, indicating that all experiments are 
sufficiently accurate. However, RMSEs of conventional 
LAM 3DVar and LAM EnVar exceed those of No LAM DA. 
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Figure 1 Time development of analysis RMSEs in the (a) 3DVar and (b) EnVar experiments with uniform observations. The values on the 
legend indicate time-averaged RMSEs. The dotted lines at RMSE = 1 indicate the standard deviation of the observation error, (c, d) as in 
(a, b), but for the differences from LAM DA for (c) 3DVar and (d) EnVar experiments.
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Although the increase in the time-averaged RMSE of EnVar 
over No LAM DA is small and statistically insignificant 
(p > 0.1), 3DVar significantly worsens the analysis from 
that of No LAM DA.

The skill scores of the experiments without LSB 
(Table 2) show that LAM DA deteriorates over the large 
scale, which though consistent with previous studies 
(Berre, 2000; Guidard and Fischer, 2008; Baxter et al., 
2011) improves the middle- to small-scale analysis. In 
No LAM DA, the error in large-scale structures (0.0987) 
accounts for approximately 65% of the overall error 
(0.151). The large-scale error is much more dominant 
(>90%) in the LAM DA experiments than in No LAM DA, 
suggesting that overall accuracy strongly depends on 
the accuracy of large-scale structures. In contrast to the 
significant degradation in the skill score of 3DVar, the skill 
score of EnVar is slightly positive, indicating that EnVar 
and No LAM DA show comparable performances. The 
flow dependency of the background errors considered 
in EnVar mitigates the large-scale deterioration caused 
by climatological background errors in 3DVar. This 
mitigation probably stems from the better representation 
of multi-scale error correlations in EnVar (Johnson et al., 
2015). Nevertheless, the increases in large-scale errors 
are almost of the same magnitude as the decreases 
in middle- to small-scale errors caused by LAM EnVar, 
suggesting that the large-scale degradation in LAM 
DA can cancel the impact of the high-resolution LAM 
analysis upon the GM analysis.

The introduction of LSB methods significantly 
improves the accuracies of the 3DVar and EnVar 
experiments. The impact of LSB methods on the analysis 
is highlighted by the differences in RMSE for BLSB+DA and 
Nested DA from LAM DA analyses (Figure 1c, d), where 
the negative difference presents improvement. In the 
3DVar experiments with LSB (Figure 1c) the analyses are 
improved throughout the experimental period. Nested 
3DVar achieves the most stable and accurate performance 
in the 3DVar experiments. The improvement effect of the 
LSB methods in the EnVar experiments is less impressive 
because EnVar is more accurate than 3DVar (Figure 1d). 

Nevertheless, the LSB methods improve the analyses 
over EnVar, mainly during the relatively accurate periods 
of No LAM DA (days 80–110 and 150–200, Figure 1d).

These improvements can be explained by the 
expected effect of LSB. Specifically, the LSB methods 
mitigate the large-scale worsening while retaining the 
accuracy on middle to small scales (Table 2). In the 3DVar 
experiments, BLSB+3DVar and Nested 3DVar reduce the 
analysis MSE by 53% and 60%, respectively, indicating 
that LSB significantly improves the analyses. This large 
error reduction is mainly attributable to improvement 
on the large scale but the error is also reduced on the 
middle to small scales. Therefore, the mitigation of 
large-scale errors by the LSB methods is beneficial to the 
performance of the LAM DA. In the EnVar experiments, 
BLSB+EnVar and Nested EnVar reduce the analysis MSE by 
21% and 13%, respectively. BLSB+EnVar almost cancels 
the degradation of large-scale structures and highlights 
the impact of LAM DA, yielding a 28% MSE improvement 
over No LAM DA. Nested EnVar also mitigates the large-
scale deterioration of EnVar, but worsens errors on 
middle to small scales relative to EnVar. Consequently, 
the MSE is 20% lower in Nested EnVar than in No LAM DA.

For a comprehensive comparison between the 
performances of the BLSB and our Nested EnVar we 
examine the analysis-error distributions in state space 
(Figure 2) and spectral space (Figure 3). The analysis 
error of No LAM DA is smaller and larger in the left 
(n ∼ [240,320]) and right (n ∼ [380,450]) parts of the 
LAM domain than the average, respectively (Figure 2). 
Given observations are assimilated regularly in the GM 
analysis, the spatial imbalance in accuracy is likely due 
to the chaotic nature of Lorenz models rather than the 
observations. The ensemble spread of No LAM DA is 
locally minimized at the observed locations and locally 
maximized between the observed locations. The analysis 
ensemble of No LAM DA is overconfident, meaning that 
the ensemble spread is smaller than the analysis error, 
and that the LAM DA tends to emphasize the background 
state over the observations. As indicated in the error 
spectrum of No LAM DA (Figure 3), the averaged errors 
are mainly contributed by large-scale errors (see also 
Table 2). The error in spectral space peaks near k = 30 
because the analysis error of No LAM DA tends to favor 
wavenumber-30 structures with the local minima at the 
observed evenly distributed locations (Figure 2).

Relative to No LAM DA, the analysis error in 3DVar 
(Figure 2a) increases more than that in EnVar, 
especially in the left part of the domain. The analysis 
error spectrum of 3DVar (Figure 3a) shows an obvious 
increase across the scales, obscuring the impact of DA 
over the middle wavelengths. After introducing the LSB, 
the analysis accuracy becomes comparable to that of 
No LAM DA, but the error in BLSB+3DVar exceeds that 
of No LAM DA because the large-scale structures are 
worsened by post-blending assimilation into the LAM 

Table 2 Skill scores of the analysis MSE and contributions of 
different scales in the experiments with uniform observations. 
Values in parentheses indicate the MSEs of No LAM DA.

METHOD 
(MSEref)

ALL k 
(1.51e-01)

k ≤ 24 
(9.87e-02)

k > 24 
(5.22e-02)

3DVar –1.4 –1.6 0.18

BLSB+3DVar –0.10 –0.38 0.27

Nested 3DVar 0.052 –0.22 0.27

EnVar 0.085 –0.21 0.29

BLSB+EnVar 0.28 –0.014 0.29

Nested EnVar 0.20 –0.073 0.27
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Figure 2 Time averaged analysis errors in state space: results of (a) 3DVar and (b) EnVar experiments with uniform observations. The 
dashed curves in (b) show the time averaged analysis spreads in each experiment. Observational frequency in LAM experiments is 
shown below each figure.

Figure 3 Time averaged analysis errors in spectral space: results of (a) 3DVar and (b) EnVar experiments with uniform observations. The 
bottom and top axes indicate the wavenumber and wavelength defined in the global domain, respectively. The vertical magenta lines 
indicate the truncation wavenumber in the LSB experiments.

(Figure 3a). By contrast, Nested 3DVar mitigates the 
deterioration of large-scale structures through the 
simultaneous assimilation of the observations and GM 
information (Figure 3a), thereby improving the analysis 
error in the left part of the domain from that of No 
LAM DA (Figure 2a). Whereas the GM reflects the flow 
dependency of the forecast errors represented by EnVar, 
the LAM DA depends on the static background errors in 
the 3DVar experiments. The inappropriate representation 
of background errors enlarges the analysis error from 
that of GM. Based on this example, it is suggested that 
the simultaneously incorporating the GM information 
into nested DA is beneficial when the GM and LAM DA 
systems clearly differ.

The accuracy of EnVar (Figure 2b) exceeds that 
of No LAM DA within a wide domain to the right of 
n ∼ 320, but is reduced in the left part of the domain, 
which is accurately represented by No LAM DA. Given the 
slightly larger ensemble spread of EnVar in the right than 
in the left part of the domain, the accuracy imbalance 
can be attributed to overconfidence in the left part of 
the domain. The analysis error spectrum (Figure 3b) 
indicates apparent deterioration on the large scale (see 
also Table 2). The peak around k = 30 seen in the error 
spectrum of No LAM DA is diminished in the spectrum 
of EnVar, indicating that the LAM DA mainly affects the 
scales around k = 30. BLSB+EnVar improves the analysis 
from that of EnVar in the left part of the domain because 
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it incorporates the GM backgrounds (Figure 2b). By 
virtue of the high-resolution DA it also achieves higher 
accuracy than No LAM DA throughout the domain. The 
ensemble spread of BLSB+EnVar is smaller than that of 
EnVar and comparable to that of No LAM DA, but the 
underestimation of ensemble spread is relaxed because 
the reduction of analysis error is larger than that of 
the ensemble spread. The large-scale error magnitude 
almost matches that of No LAM DA in the analysis 
error spectrum (Figure 3b) and the middle-scale error 
magnitude around k = 30 almost matches that in EnVar, 
which explains the smaller analysis error of BLSB+EnVar 
than in No LAM DA. Nested EnVar (Figure 2b) improves 
the analysis from that of EnVar in the left part of the 
domain, albeit to a smaller extent than BLSB+EnVar, 
and slightly degrades the analysis error in the right 
part of the domain. The analysis error of Nested EnVar 
resembles that of No LAM DA throughout the domain, 
clarifying the influence of simultaneously assimilating 
the GM information and observations. Incorporating the 
GM information into the analysis increases the amount 
of information, as the reduction of the ensemble spread 
is larger than in the other experiments (Figure 2b). The 
distribution of ensemble spreads is locally minimized 
not only at the observed locations as in the other 
experiments, but also at the grids of low-resolution LAM 
space (corresponding to the middle of the observed 
locations). The larger underestimation of ensemble 
spread in Nested EnVar than in EnVar reduces the 
influence of observations on the analysis. Therefore, 
the analysis state should be similar to that in No LAM 
DA. The analysis error spectrum of Nested EnVar 
(Figure 3b) is slightly increased on the large scale caused 
by underestimation of the observational influence. 
Reflecting the large resemblance of Nested EnVar to No 
LAM DA, the analysis error in the middle scale (around 
k = 30) is also larger than in EnVar and BLSB+EnVar. 
These results indicate that both BLSB+EnVar and Nested 
EnVar mitigate the large-scale deterioration in LAM 

DA, but in Nested EnVar the underestimated ensemble 
spread must be alleviated to adequately represent the 
balance between the LAM background, observations 
and large-scale GM errors. Note that unlike the analysis 
error spectrum of Nested EnVar, the spectrum of Nested 
3DVar (Figure 3a) shows no obvious error increases near 
k = 30, probably because the information in the static 
large-scale GM error covariance V excludes the error 
peak at k = 30 in the GM analysis.

Comparing errors in the analysis, LSB methods are 
found to be important in improving the performance 
of LAM DA over that of GM analysis, which is consistent 
with previous studies. To examine the contribution of 
analysis-accuracy improvement by the LSB methods in 
forecasting, Figure 4 compares the RMSEs in the extended 
forecasts from each analysis. To show the forecast errors 
introduced through the LBCs of the LAM, the errors of the 
GM forecasts within the LAM domain are also plotted. The 
slightly faster forecast error growth in Dscl than in GM is 
attributable to the artificial LBCs. All LAM DA experiments 
except 3DVar show a faster forecast error growth than 
Dscl. The forecast error amplitudes of LAM experiments 
approximately double in 24 hours, which is consistent 
with the estimated doubling time of Lorenz III. Initially, 
the RMSE is lower in Nested 3DVar, BLSB+EnVar, and 
Nested EnVar than in Dscl, although the improvement 
is significant (p < 0.05) only in BLSB+EnVar and Nested 
EnVar. The forecast errors of Nested EnVar approaches 
those of Dscl after six forecasting hours (FT6) and 
exceeds those of Dscl after FT18 (Figure 4b). By contrast, 
BLSB+EnVar achieves a smaller forecast error than Dscl 
(p < 0.05) until FT24 (Figure 4b). Although the forecast 
error grows slightly faster in BLSB+EnVar than that in 
Nested EnVar, the larger improvement at the initial time 
extends the lead time from that of Nested EnVar. The 
ensemble forecasts present similar error growths to the 
deterministic forecasts, and the initial underestimation 
of ensemble spread in EnVar and Nested EnVar remains 
until FT48 (not shown).

Figure 4 RMSE of deterministic forecasts from the (a) 3DVar and (b) EnVar experiments with uniform observations. Each curve is 
averaged over the assimilation cycles. Circles indicate a significant improvement over downscaling (p < 0.05). Thicker gray curves show 
the forecast RMSEs of the GM within the LAM domain. Horizontal axes indicate hours from the analysis time.
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The results of Exp. 1 confirm that nested EnVar can 
alleviate large-scale errors for conventional LAM DA 
as for existing LSB methods. Our proposed Nested 
EnVar shows higher accuracy than Nested 3DVar, and 
comparable performance to BLSB+EnVar, however, 
Nested EnVar tends to be more overconfident than EnVar 
and BLSB+EnVar because it enlarges the reduction of 
the analysis ensemble spread, thus shortening the lead 
time against the dynamical downscaling of GM from 
that of BLSB+EnVar. The current covariance inflation 
rate in Nested EnVar is adjusted to minimize the analysis 
RMSE. Although increasing the inflation rate reduces the 
underestimation of the spread, it increases the analysis 
RMSE (not shown). Because the analysis ensemble 
perturbations in Nested EnVar are updated by Eq. (30), 
incorporating the large-scale GM information will likely 
reduce the large-scale ensemble spread. To minimize 
analysis error while ensuring an adequate ensemble 
spread we are required to introduce scale-dependent 
covariance inflation, which is beyond the scope of 
this study.

5 SENSITIVITY TO THE OBSERVATION 
NETWORK

This section investigates the impact of nested EnVar 
on the analysis and forecast performance when 
observations assimilated by LAM DA differ from those in 
the global analysis.

Table 3 shows the analysis RMSEs in the experiments 
on dense, uneven observation networks (Exp. 2–5). Only 
the skill scores for Exp. 5 are shown in Table 4 since the 
trends of the scores are similar in Exp. 2–5. Although 
these experiments assimilate more observations than 
Exp. 1, all the conventional LAM DA without LSB methods 
(except EnVar in Exp. 5) generate larger analysis 
RMSEs than Exp. 1. Especially, the analysis errors of 
3DVar are significantly worsened from the observation 
error when only part of the domain is observed. 
The comparison of the skill scores between uniform 
(Table 2) and uneven (Table 4) observations clarifies 
that this significant degradation is mainly caused by the 
increase of the large-scale errors, indicating that the 
large-scale structures are prone to disturbance through 
the uneven observations caused by the unbalanced 
analysis accuracy across the domain. Note that there 
are differences in accuracies of both 3DVar and EnVar 
between the observation networks in the left (Exp. 2) 
and right (Exp. 4) parts of the LAM domain (Table 3). The 
analysis RMSE of 3DVar is smaller with observations in the 
left than in the right, since the group velocity of Lorenz 
III tends to propagate the observational information to 
the right (Yoon, Ott, and Szunyogh, 2010). Although the 
rightward propagation of the observational information 
is also seen in EnVar, EnVar tends to show large errors 
in the right part of the LAM domain as seen in Figure 2, 

and EnVar with the observations in the right reduces 
these errors more effectively than with the observations 
in the left.

LSB methods largely mitigate large-scale deterioration 
and reduce the sensitivity of analysis to observation 
networks (Table 3). In particular, the increased number 
of observations yields better analysis accuracy in 
BLSB+3DVar and Nested 3DVar than of Exp. 1. In both 
the 3DVar and EnVar experiments, the performances 
of BLSB+DA and Nested DA do not significantly differ 
in the dense observation networks in the left, center, 
and right parts of the LAM domain (Table 3). It should 
be noted that on the right-sided observation network, 
Nested EnVar obtains a slightly larger RMSE and lower 
skill score than BLSB+EnVar, reflecting the higher 
susceptibility of Nested EnVar than of BLSB+EnVar to the 
GM characteristics of the large errors at the right domain 
side (Figure 2). Alleviating the spread underestimation 
might reduce this accuracy difference as discussed in 
Section 4.

In the experiment with mobile observations (Exp. 5, 
Table 4), Nested DA outperforms BLSB+DA in terms of 
both performance measures (analysis RMSE and skill 
scores). Although the analysis RMSEs of Nested 3DVar 
and BLSB+3DVar are closer in Exp. 5 than in Exp. 1, those 
of Nested EnVar and BLSB+EnVar are more separated 
than in Exps. 1–4 and the difference is statistically 
significant (p < 0.01). This result suggests that the flow-
dependent Nested DA is more suitable for dense and 
mobile observations than BLSB+DA. Hereafter, we focus 
on the results of Exp. 5 in EnVar.

Table 4 As for Table 2, but in the experiments with dense and 
uneven observations moving in the LAM domain (Exp. 5).

METHOD ALL k k ≤ 24 k > 24

3DVar –4.7 –4.5 –0.17

BLSB+3DVar 0.086 –0.19 0.27

Nested 3DVar 0.13 –0.15 0.27

EnVar 0.15 –0.15 0.29

BLSB+EnVar 0.30 0.014 0.29

Nested EnVar 0.40 0.11 0.29

Table 3 Time averaged analysis RMSEs in the experiments with 
dense and uneven observations.

METHOD EXP. 2 EXP. 3 EXP. 4 EXP. 5

3DVar 3.29 1.33 3.34 0.652

BLSB+3DVar 0.331 0.327 0.328 0.329

Nested 3DVar 0.323 0.313 0.323 0.311

EnVar 0.662 0.371 0.543 0.315

BLSB+EnVar 0.295 0.285 0.291 0.283

Nested EnVar 0.287 0.273 0.307 0.258
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The RMSE of EnVar spikes more frequently in Exp. 5 than 
in Exp. 1 (Figure 5a) although the time-averaged RMSE is 
reduced (0.315 vs 0.348), suggesting that the analysis 
is destabilized by uneven observations. Introducing LSB 
methods extends the accurate and stable period from 
that of Exp. 1 but does not remove all RMSE peaks. In 
general, Nested EnVar achieves a lower RMSE than EnVar 
and BLSB+EnVar during the stable period (days 80–90 
and 150–200, Figure 5b).

The analysis error of EnVar is lower in Exp. 5 than in 
Exp. 1 in the right part of the domain, with the spread 
also decreasing owing to the increased number of 
observations (Figure 6a); thereby EnVar becomes 
overconfident as observed in Exp. 1. BLSB+EnVar relaxes 
the underestimation of the ensemble spread, as also 
observed in Exp. 1, but the analysis accuracy is not clearly 
improved from that of Exp. 1. In contrast, Nested EnVar 
improves the analysis in all parts of the domain except 
the near-boundary parts. Like EnVar, Nested EnVar 
decreases the ensemble spread, but the obvious wave-
like structures observed in Figure 2b are diminished by 
the uneven observations.

As indicated in the analysis error spectrum (Figure 6b), 
EnVar performs slightly better in Exp. 5 than in Exp. 
1 (Figure 3b), even though the large-scale error still 
increases relative to that of No LAM DA. The error 

spectrum of BLSB+EnVar almost coincides with that of No 
LAM DA on scales larger than the truncation wavelength 
of LSB, consistent with the minimal improvement (~1%) 
in the large-scale component of the skill score (Table 4). 
Nested EnVar reduces the analysis error across a wide 
range of wavelengths (from k = 2 to k = 60). The error 
peak around k = 30 in Figure 3b, remains in Figure 6b 
but is less obvious because more observations are 
assimilated in the LAM domain. In particular, Nested 
EnVar obtains a comparable analysis error to EnVar and 
a smaller analysis error than BLSB+EnVar around k = 24, 
indicating that Nested EnVar appropriately incorporates 
the information of both GM and LAM background errors.

The deterministic forecasts of BLSB+EnVar and Nested 
EnVar are significantly improved (p < 0.05) from those 
of Dscl until FT30 and FT36, respectively (Figure 7b). The 
extended lead times in both experiments are attributable 
to improvement of the initial analysis because the 
forecast error grows by almost the same rate in Exps. 5 
and 1 (Figure 4). The ensemble forecasts of Nested EnVar 
are also significantly improved up to FT36 (not shown). 
Although Nested 3DVar outperforms BLSB+3DVar, the 
improvement is statistically significant only up to FT6 
(Figure 7a), suggesting that the flow dependency of 
background errors is important for effectively assimilating 
dense observations into LAM.

Figure 5 As for Figure 1b, d, but obtained in experiments with dense, mobile observations.
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6 DISCUSSION AND CONCLUSION

In this study, to alleviate the large-scale deterioration 
problem in LAM DA, we proposed a novel flow-dependent 
nested DA scheme that introduces large-scale GM 
information into an EnVar-based LAM analysis. The 
proposed nested EnVar can dynamically incorporate 
large-scale GM information by weighting the large-
scale information relative to LAM backgrounds and 
observations. The weights are determined with 
consideration of both the GM and LAM flow-dependent 
background errors. The impact of blending timing and 
flow dependency on the LSB methods was clarified 
through direct performance comparisons of the nested 
EnVar, the BLSB method, and the static nested DA 
proposed in aforementioned previous studies.

The performances of LSB methods were evaluated 
through idealized cycled experiments, using the spatially 
one-dimensional chaotic models of Lorenz (2005). Both 
BLSB and nested DA mitigated the large-scale analysis 
errors introduced by LAM DA, but the blending timing 
affected the performance of the 3DVar experiments. 

Because the GM EnVar was generally more accurate 
than the LAM 3DVar, simultaneous assimilation of the 
GM information with observations by the nested 3DVar 
more effectively mitigated large-scale errors than GM 
blending prior to DA by the BLSB method. EnVar with the 
flow-dependent background error covariance can partly 
reduce the large-scale degradation from that of 3DVar 
with static background error covariance. Nevertheless, 
as large-scale structures generally have higher energy 
than small-scale structures, the deterioration on large 
scales is still serious and negates the positive impact of 
LAM DA on the middle to small scales. Therefore, both 
the BLSB method with EnVar and our proposed nested 
EnVar benefit the analysis and forecast by alleviating the 
large-scale errors, achieving higher analysis accuracy 
than interpolating the GM analysis. Although the spread 
reduction tends to be larger in nested EnVar than in 
the BLSB method with EnVar, the difference in blending 
timing has less influence on the performances of LSB 
methods with EnVar than with 3DVar. These results 
suggest that simultaneous assimilation by nested DA 
methods has an advantage over background blending 

Figure 6 As for (a) Figure 2b and (b) Figure 3b, but obtained in experiments with dense, mobile observations.

Figure 7 As for Figure 4, but obtained in experiments with dense, mobile observations.
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when LAM DA is known to introduce severe large-scale 
errors into the analysis.

Furthermore, the flow-dependent LSB method exerts 
a large influence when assimilating uneven observations 
into LAM because such observations more likely introduce 
inhomogeneity in LAM analysis accuracies than the uniform 
observations. Our nested EnVar significantly outperforms 
the other LSB methods when assimilating dense, 
uneven observations moving across the LAM domain. By 
considering the flow-dependent GM background errors, 
the nested EnVar can appropriately balance the large-scale 
constraint with the DA impact on middle to small scales, 
enabling accurate analyses across the scales. Therefore, 
dynamical large-scale blending, taking into account the 
flow dependency of background errors, is likely to be 
beneficial, especially when assimilating dense, spatially 
localized observations such as microwave sounders. 
Judging from these encouraging results, the nested EnVar 
is a promising alternative to current LSB methods.

However, several challenges in the nested EnVar must 
be resolved. First, the underestimation of the ensemble 
spread relative to the analysis or forecast error is more 
severe in the nested EnVar than in the EnVar and EnVar 
with BLSB, weakening the impact of assimilation in the 
experiment with the uniform observations. To reflect the GM 
error information on the analysis ensemble perturbations, 
the nested EnVar updates the ensemble with the Hessian 
of the cost function (Zupanski, 2005), which more enlarges 
the reduction of the analysis spread, especially on large 
scales, than the traditional ensemble update considering 
only the observational information. The current covariance 
inflation, which assumes a constant inflation rate on all 
scales, cannot adjust the ensemble spread on each scale. 
The impact of scale-selective inflation on the nested EnVar 
will be investigated in future work.

In addition, like the formulations of GF08 and DG12, 
the formulation of nested EnVar ignores the correlation 
between the GM and LAM background errors. Some 
correlation between these errors is expected because 
GM and LAM connects at lateral boundaries. The cross 
covariance between the background errors of GM and 
LAM can be estimated using Monte–Carlo methods 
similar to autocovariances, however incorporating the 
cross covariance in EnVar requires the approximate 
inverse calculation of a huge (NL + NLl) × (NL + NLl) 
matrix. If the ensemble size is far smaller than the degree 
of freedom in state space, the two background errors 
can be regarded as maximally correlated (Berry and 
Sauer, 2018) even when not strictly true. This situation 
causes an excessively high condition number for the 
huge matrix, destabilizing the numerical optimization 
and hindering proper evaluations of the GM background 
error. To incorporate the cross covariance between 
background errors, we require methods or assumptions 
that overcome the rank-deficient problem.

Such a rank-deficient problem might also arise 
when applying the nested EnVar to high-dimensional 

realistic models. In ensemble data assimilation, the 
rank-deficient problem is commonly compensated with 
well-established localization, but the performance of this 
approach strongly relies on localization cut-off scales. If 
the observation space localization (Hunt, Kostelich, and 
Szunyogh, 2007) is applied to the nested EnVar, the GM 
information must be localized based on the distance from 
a model grid similar to observations. The localization cut-
off scale of the GM information is expected to be longer 
than that of the observations. If the GM background 
errors are localized in state space (Zupanski, 2021), 
different cut-off scales may be required for the GM and 
LAM background ensembles. To effectively introduce 
localization to the nested EnVar we should define or 
estimate localization functions with proper cut-off scales 
for both GM and LAM. Along with the inflation problem, 
appropriate localization schemes for the nested EnVar 
will be considered in future work.

DATA ACCESSIBILITY STATEMENT

The source code is available from https://github.com/s-
nakashita/pydpac.

ACKNOWLEDGEMENTS

The authors greatfully appreciate the anonymous 
reviewer for the constructive comments and encouraging 
suggestions. The authors thank Dr. Yosuke Fujii and Dr. 
Daisuke Hotta for helpful discussions.

FUNDING INFORMATION

This work is supported by JSPS KAKENHI Grant number 
JP22KJ1966, JP21K03662, JP24H00021, and JP24H02226.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS

Saori Nakashita made conceptualizations, developed the 
code, conducted all the experiments, and wrote the main 
text. Takeshi Enomoto suggested experimental designs 
and contributed to the interpretation of the results.

AUTHOR AFFILIATIONS
Saori Nakashita  orcid.org/0009-0002-8522-1250 
Graduate School of Science, Kyoto University, Kitashirakawa 
Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan

https://github.com/s-nakashita/pydpac
https://github.com/s-nakashita/pydpac
https://orcid.org/0009-0002-8522-1250
https://orcid.org/0009-0002-8522-1250


18Nakashita and Enomoto Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4089

Takeshi Enomoto  orcid.org/0000-0003-1946-1168 
Disaster Prevention Research Institute, Kyoto University, Japan; 
Application Laboratory, Japan Agency for Marine-Earth Science 
and Technology, Japan

REFERENCES

Baxter, G.M., Dance, S.L., Lawless, A.S. and Nichols, N.K. (2011) 

Four-dimensional variational data assimilation for high 

resolution nested models. Computers & Fluids, 46(1): 137–

141. DOI: https://doi.org/10.1016/j.compfluid.2011.01.023

Berre, L. (2000) Estimation of synoptic and mesoscale forecast 

error covariances in a limited-area model. Mon. Wea. 

Rev., 128(3): 644–667. DOI: https://doi.org/10.1175/1520-

0493(2000)128<0644:EOSAMF>2.0.CO;2

Berry, T. and Sauer, T. (2018) Correlation between system and 

observation errors in data assimilation. Mon. Wea. Rev., 

146(9): 2913–2931. DOI: https://doi.org/10.1175/MWR-D-

17-0331.1

Bučánek, A. and Brožková, R. (2017) Background error 

covariances for a BlendVar assimilation system. Tellus A, 

69(1): 1355718. DOI: https://doi.org/10.1080/16000870.2

017.1355718

Caron, J.-F. (2013) Mismatching perturbations at the lateral 

boundaries in limited-area ensemble forecasting: A case 

study. Mon. Wea. Rev., 141(1): 356–374. DOI: https://doi.

org/10.1175/MWR-D-12-00051.1

Dahlgren, P. and Gustafsson, N. (2012) Assimilating host 

model information into a limited area model. Tellus 

A, 64(1): 15836. DOI: https://doi.org/10.3402/tellusa.

v64i0.15836

Davies, H.C. (1976) A lateral boundary formulation for multi-level 

prediction models. Quart. J. Roy. Meteor. Soc., 102(432): 

405–418. DOI: https://doi.org/10.1002/qj.49710243210

Denis, B., Côté, J. and Laprise, R. (2002) Spectral decomposition 

of two-dimensional atmospheric fields on limited-area 

domains using the discrete cosine transform (DCT). 

Mon. Wea. Rev., 130(7): 1812–1829. DOI: https://doi.

org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2

Enomoto, T. and Nakashita, S. (2024) Application of exact 

newton optimisation to the maximum likelihood ensemble 

filter. Tellus A, 76(1): 42–56. DOI: https://doi.org/10.16993/

tellusa.3255

Feng, J., Sun, J. and Zhang, Y. (2020) A dynamic blending 

scheme to mitigate large-scale bias in regional models. 

J. Adv. Model. Earth Syst., 12(3): e2019MS001754. DOI: 

https://doi.org/10.1029/2019MS001754

Fukui, S. and Murata, A. (2021) Sensitivity to horizontal 

resolution of regional climate model in simulated 

precipitation over Kyushu in Baiu season. SOLA, 17: 207–

212. DOI: https://doi.org/10.2151/sola.2021-036

Gainford, A., Gray, S.L., Frame, T.H.A., Porson, A.N. and Milan, 

M. (2024) Improvements in the spread-skill relationship 

of precipitation in a convective-scale ensemble through 

blending. Quart. J. Roy. Meteor. Soc., 150(762): 3146–3166. 

DOI: https://doi.org/10.1002/qj.4754

Gaspari, G. and Cohn, S.E. (1999) Construction of correlation 

functions in two and three dimensions. Quart. J. Roy. 

Meteor. Soc., 125(554): 723–757. DOI: https://doi.

org/10.1002/qj.49712555417

Guidard, V. and Fischer, C. (2008) Introducing the coupling 

information in a limited-area variational assimilation. 

Quart. J. Roy. Meteor. Soc., 134(632): 723–735. DOI: https://

doi.org/10.1002/qj.215

Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., 

Weissmann, M., Reich, H., Brousseau, P., Montmerle, T., 

Wattrelot, E., Bučánek, A., Mile, M., Hamdi, R., Lindskog, 

M., Barkmeijer, J., Dahlbom, M., Macpherson, B., Ballard, 

S., Inverarity, G., Carley, J., Alexander, C., Dowell, D., Liu, 

S., Ikuta, Y. and Fujita, T. (2018) Survey of data assimilation 

methods for convective-scale numerical weather prediction 

at operational centres. Quart. J. Roy. Meteor. Soc., 144(713): 

1218–1256. DOI: https://doi.org/10.1002/qj.3179

Harville, D.A. (1997) Matrix algebra from a statistician’s 

perspective. 1st ed. New York: Springer. DOI: https://doi.

org/10.1007/b98818

Hsiao, L.-F., Huang, X.-Y., Kuo, Y.-H., Chen, D.-S., Wang, H., 

Tsai, C.-C., Yeh, T.-C., Hong, J.-S., Fong, C.-T. and Lee, C.-

S. (2015) Blending of global and regional analyses with a 

spatial filter: Application to typhoon prediction over the 

western North Pacific Ocean. Wea. Forecasting, 30(3): 754–

770. DOI: https://doi.org/10.1175/WAF-D-14-00047.1

Hu, G., Dance, S.L., Bannister, R.N., Chipilski, H.G., Guillet, 

O., Macpherson, B., Weissmann, M. and Yussouf, N. 

(2023) Progress, challenges, and future steps in data 

assimilation for convection-permitting numerical weather 

prediction: Report on the virtual meeting held on 10 and 

12 November 2021. Atmos. Sci. Lett., 24(1): e1130. DOI: 

https://doi.org/10.1002/asl.1130

Hunt, B.R., Kostelich, E.J. and Szunyogh, I. (2007) Efficient 

data assimilation for spatiotemporal chaos: A local 

ensemble transform kalman filter. Physica D., 230(1): 112–

126. DOI: https://doi.org/10.1016/j.physd.2006.11.008

Johnson, A., Wang, X., Carley, J.R., Wicker, L.J. and Karstens, 

C. (2015) A comparison of multiscale GSI-based EnKF and 

3DVar data assimilation using radar and conventional 

observations for midlatitude convective-scale precipitation 

forecasts. Mon. Wea. Rev., 143(8): 3087–3108. DOI: https://

doi.org/10.1175/MWR-D-14-00345.1

Juang, H.-M.H. and Kanamitsu, M. (1994) The NMC nested 

regional spectral model. Mon. Wea. Rev., 122(1): 3–26. DOI: 

https://doi.org/10.1175/1520-0493(1994)122<0003:TNNR

SM>2.0.CO;2

Kanada, S. and Wada, A. (2016) Sensitivity to horizontal resolution 

of the simulated intensifying rate and inner-core structure of 

typhoon ida, an extremely intense typhoon. J. Meteor. Soc. Japan, 

94A: 181–190. DOI: https://doi.org/10.2151/jmsj.2015-037

Keresturi, E., Wang, Y., Meier, F., Weidle, F., Wittmann, 

C. and Atencia, A. (2019) Improving initial condition 

perturbations in a convection-permitting ensemble 

prediction system. Quart. J. Roy. Meteor. Soc., 145(720): 

993–1012. DOI: https://doi.org/10.1002/qj.3473

https://orcid.org/0000-0003-1946-1168
https://orcid.org/0000-0003-1946-1168
https://doi.org/10.1016/j.compfluid.2011.01.023
https://doi.org/10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2
https://doi.org/10.1175/MWR-D-17-0331.1
https://doi.org/10.1175/MWR-D-17-0331.1
https://doi.org/10.1080/16000870.2017.1355718
https://doi.org/10.1080/16000870.2017.1355718
https://doi.org/10.1175/MWR-D-12-00051.1
https://doi.org/10.1175/MWR-D-12-00051.1
https://doi.org/10.3402/tellusa.v64i0.15836
https://doi.org/10.3402/tellusa.v64i0.15836
https://doi.org/10.1002/qj.49710243210
https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2
https://doi.org/10.16993/tellusa.3255
https://doi.org/10.16993/tellusa.3255
https://doi.org/10.1029/2019MS001754
https://doi.org/10.2151/sola.2021-036
https://doi.org/10.1002/qj.4754
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1002/qj.215
https://doi.org/10.1002/qj.215
https://doi.org/10.1002/qj.3179
https://doi.org/10.1007/b98818
https://doi.org/10.1007/b98818
https://doi.org/10.1175/WAF-D-14-00047.1
https://doi.org/10.1002/asl.1130
https://doi.org/10.1016/j.physd.2006.11.008
https://doi.org/10.1175/MWR-D-14-00345.1
https://doi.org/10.1175/MWR-D-14-00345.1
https://doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2
https://doi.org/10.2151/jmsj.2015-037
https://doi.org/10.1002/qj.3473


19Nakashita;  and Enomoto; ;  Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4089

TO CITE THIS ARTICLE:
Nakashita, S. and Enomoto, T. (2025) Flow-Dependent Large-Scale Blending for Limited-Area Ensemble Data Assimilation. Tellus A: 
Dynamic Meteorology and Oceanography 77(1): 1–19 DOI: https://doi.org/10.16993/tellusa.4089

Submitted: 18 September 2024     Accepted: 01 February 2025     Published: 28 February 2025

COPYRIGHT:
 © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Tellus A: Dynamic Meteorology and Oceanography is a peer-reviewed open access journal published by Stockholm University Press.

Kretschmer, M., Hunt, B.R., Ott, E., Bishop, C.H., Rainwater, 

S. and Szunyogh, I. (2015) A composite state method 

for ensemble data assimilation with multiple limited-

area models. Tellus A, 67(1): 26495. DOI: https://doi.

org/10.3402/tellusa.v67.26495

Kunii, M. and Miyoshi, T. (2012) Including uncertainties of sea 

surface temperature in an ensemble Kalman filter: A case 

study of Typhoon Sinlaku (2008). Wea. Forecasting, 27(6): 

1586–1597. DOI: https://doi.org/10.1175/WAF-D-11-00136.1

Lorenz, E.N. (1995) Predictability: A problem partly solved. In: 

Seminar on Predictability, Shinfield Park, ECMWF on 4–9 

September 1995, pp. 1–18. https://www.ecmwf.int/en/

elibrary/75462-predictability-problem-partly-solved.

Lorenz, E.N. (2005) Designing chaotic models. J. Atmos. Sci., 

62(5): 1574–1587. DOI: https://doi.org/10.1175/JAS3430.1

Lynch, P. and Huang, X.-Y. (1992) Initialization of the 

HIRLAM model using a digital filter. Mon. Wea. Rev., 

120(6): 1019–1034. DOI: https://doi.org/10.1175/1520-

0493(1992)120<1019:IOTHMU>2.0.CO;2

Milan, M., Clayton, A., Lorenc, A., Macpherson, B., Tubbs, R. 

and Dow, G. (2023) Large-scale blending in an hourly 

4D-Var framework for a numerical weather prediction 

model. Quart. J. Roy. Meteor. Soc., 149(755): 2067–2090. 

DOI: https://doi.org/10.1002/qj.4495

Parrish, D.F. and Derber, J. C. (1992) The National 

Meteorological Center’s spectral statistical-interpolation 

analysis system. Mon. Wea. Rev., 120(8): 1747–1763. DOI: 

https://doi.org/10.1175/1520-0493(1992)120<1747:TNMC

SS>2.0.CO;2

Raymond, W.H. (1988) High-order low-pass implicit tangent 

filters for use in finite area calculations. Mon. Wea. Rev., 

116(11): 2132–2141. DOI: https://doi.org/10.1175/1520-

0493(1988)116<2132:HOLPIT>2.0.CO;2

Saito, K., Seko, H., Kunii, M. and Miyoshi, T. (2012) Effect of 

lateral boundary perturbations on the breeding method 

and the local ensemble transform Kalman filter for 

mesoscale ensemble prediction. Tellus A, 64(1): 11594. 

DOI: https://doi.org/10.3402/tellusa.v64i0.11594

Simmons, A.J., Mureau, R. and Petroliagis, T. (1995) Error 

growth and estimates of predictablity from the ECMWF 

forecasting system. Quart. J. Roy. Meteor. Soc., 121(527): 

1739–1771. DOI: https://doi.org/10.1002/qj.49712152711

Vendrasco, E.P., Sun, J., Herdies, D.L., and de Angelis, C.F. 

(2016) Constraining a 3DVAR radar data assimilation 

system with large-scale analysis to improve short-range 

precipitation forecasts. J. Appl. Meteor. Clim., 55(3): 673–

690. DOI: https://doi.org/10.1175/JAMC-D-15-0010.1

von Storch, H., Langenberg, H. and Feser, F. (2000) A spectral 

nudging technique for dynamical downscaling purposes. 

Mon. Wea. Rev., 128(10): 3664–3673. DOI: https://doi.

org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2

Wang, H., Huang, X.-Y., Xu, D. and Liu, J. (2014a) A scale-

dependent blending scheme for WRFDA: Impact on regional 

weather forecasting. Geosci. Model Dev., 7(4): 1819–1828. 

DOI: https://doi.org/10.5194/gmd-7-1819-2014

Wang, Y., Bellus, M., Geleyn, J.-F., Ma, X., Tian, W. and Weidle, 

F. (2014b) A new method for generating initial condition 

perturbations in a regional ensemble prediction system: 

Blending. Mon. Wea. Rev., 142(5): 2043–2059. DOI: https://

doi.org/10.1175/MWR-D-12-00354.1

Wilks, D.S. (2011). Statistical methods in the atmospheric 

sciences. 3rd ed. Amsterdam: Elsevier. DOI: https://doi.

org/10.1016/B978-0-12-385022-5.00001-4

Yang, X. (2005). Analysis blending using spatial filter in grid-

point model coupling. HIRLAM Newsletter, 10: 49–55.

Yoon, Y., Ott, E. and Szunyogh, I. (2010) On the propagation 

of information and the use of localization in ensemble 

Kalman filtering. J. Atmos. Sci., 67(12): 3823–3834. DOI: 

https://doi.org/10.1175/2010JAS3452.1

Zhang, H., Chen, J., Zhi, X., Wang, Y. and Wang, Y. (2015) Study 

on multi-scale blending initial condition perturbations for 

a regional ensemble prediction system. Adv. Atmos. Sci., 

32(8): 1143–1155. DOI: https://doi.org/10.1007/s00376-

015-4232-6

Zupanski, M. (2005) Maximum likelihood ensemble filter: 

Theoretical aspects. Mon. Wea. Rev., 133(6): 1710–1726. 

DOI: https://doi.org/10.1175/MWR2946.1

Zupanski, M. (2021) The maximum likelihood ensemble filter 

with state space localization. Mon. Wea. Rev., 149(10): 

3505–3524. DOI: https://doi.org/10.1175/MWR-D-20-0187.1

https://doi.org/10.16993/tellusa.4089
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3402/tellusa.v67.26495
https://doi.org/10.3402/tellusa.v67.26495
https://doi.org/10.1175/WAF-D-11-00136.1
https://www.ecmwf.int/en/elibrary/75462-predictability-problem-partly-solved
https://www.ecmwf.int/en/elibrary/75462-predictability-problem-partly-solved
https://doi.org/10.1175/JAS3430.1
https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2
https://doi.org/10.1002/qj.4495
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1988)116<2132:HOLPIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1988)116<2132:HOLPIT>2.0.CO;2
https://doi.org/10.3402/tellusa.v64i0.11594
https://doi.org/10.1002/qj.49712152711
https://doi.org/10.1175/JAMC-D-15-0010.1
https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2
https://doi.org/10.5194/gmd-7-1819-2014
https://doi.org/10.1175/MWR-D-12-00354.1
https://doi.org/10.1175/MWR-D-12-00354.1
https://doi.org/10.1016/B978-0-12-385022-5.00001-4
https://doi.org/10.1016/B978-0-12-385022-5.00001-4
https://doi.org/10.1175/2010JAS3452.1
https://doi.org/10.1007/s00376-015-4232-6
https://doi.org/10.1007/s00376-015-4232-6
https://doi.org/10.1175/MWR2946.1
https://doi.org/10.1175/MWR-D-20-0187.1

