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ABSTRACT
Do tropical cyclones (TC) possess chaotic dynamics at any stage of their development? 
This is an open yet important question in current TC research, as it sets a limit on how 
much one can further improve intensity forecast in the future. This study presents a 
novel use of machine learning (ML) to quantify TC intensity chaos. By treating TC scales 
as input features for different ML models, we show that TC dynamics displays a limited 
predictability range of ~3 hours at the maximum intensity (PI) state under a fixed 
environment, which confirms the existence of a chaotic regime in TC development. 
Using the minimum central pressure as a metric for TC intensity could extend the 
predictability range up to 9 hours, yet the low-dimensional chaos of TC intensity is still 
captured in all ML models. Additional sensitivity experiments with different ML model 
configurations, the number of input features, or sampling frequency all confirm the 
robustness of such limited predictability for TC intensity, thus supporting the existence 
of low-dimensional chaos at the PI limit. The existence of such intensity chaos has a 
profound implication that TCs must possess an intrinsic intensity variability even under 
an idealized condition. This internal variability dictates a lower bound for the absolute 
intensity error in TC models regardless of how perfect the TC models or initial condition 
will be.
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1. INTRODUCTION

Searching for the limit in tropical cyclone (TC) intensity 
forecast accuracy is a challenging problem in TC research 
and operation. One key difficulty in studying such TC 
intensity predictability (TIP) is rooted in an open question 
of whether TC dynamics possesses chaos at any stage 
of TC development (Kieu and Rotunno, 2022; Kieu et al., 
2022). For practical purposes, a TC intensity forecast must 
be issued from an early formation to the final dissipation 
stage, yet all current predictability frameworks require 
a stationary attractor or fully-developed turbulent state 
such that statistical properties can be well-defined 
(e.g., Lorenz, 1963; Lorenz, 1969; Leith, 1971; Métais 
and Lesieur, 1986; Vallis, 2017). This fundamental 
requirement of stationary statistics for chaotic dynamics 
explains confusingly different estimations for TIP, which 
varies from 3 hours to 7 days in previous studies (Hakim, 
2011; Hakim 2013; Emanuel and Zhang, 2016; Kieu and 
Moon, 2016; Judt et al., 2016; Zhong et al., 2018).

Of all TC development stages, the only one that 
appears to meet the requirement for chaos analyses is 
the maximum intensity state, known as the TC potential 
intensity (PI) (Emanuel, 1986; Emanuel, 2003). According 
to the PI theory, TCs will reach a steady state with a 
maximum intensity determined by environmental 
conditions. The existence of this PI state and its related 
stability have been extensively studied in previous 
observational, theoretical, and modeling studies (e.g., 
Bryan and Rotunno, 2009; Hakim, 2011; Kieu and Wang 
2017; Kieu, 2015; Rotunno and Emanuel, 1987). However, 
whether a PI limit truly exists is still inconclusive, as 
several modeling studies, e.g., by Smith et al. (2014; 
2021) or Persing et al. (2019) showed that a TC vortex 
cannot maintain a steady state due to the transport 
of low angular momentum from upper levels to the 
surface. This process cuts off the supply of high angular 
momentum from the outer-core region and eventually 
weakens TC intensity, even under idealized environments.

Despite the controversial existence of the PI state, the 
fact that the maximum TC intensity can be captured and 
well maintained in very long integrations (e.g., Brown and 
Hakim, 2013; Hakim, 2011; Kieu et al., 2022) suggests 
that TC dynamics can settle down in a quasi-stationary 
equilibrium if proper experiments are designed. Such an 
equilibrium, hereinafter referred to as the PI equilibrium, 
offers a unique opportunity to quantify TIP in accordance 
with the current chaos theory. Specifically, the PI 
equilibrium helps define a reference climatology for TC 
intensity, on which one can measure error growth over 
time. The range of predictability is then the maximum 
time interval at which a forecast distribution of TC 
intensity becomes indistinguishable from its climatology. 
Given a measure for such an intensity difference 
between the forecast and climatology distributions, a 
predictability range can be then obtained by using, e.g., 
the decorrelation time, integrated time, or signal-noise 

ratios as studied in, e.g., DelSole and Tippett (2007; 
2009), Lorenz (1969); Shukla (1981).

Taking advantage of such a PI equilibrium in model 
simulations, Kieu and Moon (2016) presented a method 
to quantify TC intensity chaos based on a fidelity-reduced 
model proposed by Kieu (2015). Using TC scales obtained 
from a long integration of Rotunno and Emanuel (1987)’s 
axisymmetric model as dynamical variables, Kieu and 
Moon (2016) demonstrated that TC intensity appears to 
approach a chaotic region in the phase space constructed 
from a few basic TC scales. In this phase space, PI is 
no longer a single point but a bounded region with all 
the properties of a typical chaotic attractor. A direct 
implication of this chaotic PI attractor is that TC intensity 
must possess some intrinsic variability, even for a perfect 
TC model under ideal conditions.

Of further importance about the existence of such a 
chaotic attractor is that TC intensity, once settling down 
in the PI equilibrium, should have limited predictability. 
The current estimation for TIP varies widely due not only 
to the dependence of PI on specific model dynamics, 
ocean basin, or environmental conditions, but also to how 
one defines a reference climatology for TC intensity. This 
uncertainty in estimating TIP is especially challenging 
for real TCs, because real TCs constantly move from one 
environment to the next that they may have no time to 
reach their PI (e.g., Keshavamurthy and Kieu, 2021; Kieu 
and Moon, 2016), thus preventing one from quantifying 
TIP reliably.

Despite such an inconclusive range for TIP, the 
potential existence of low-dimensional intensity chaos 
is itself important from several angles. First, this low-
dimensional attractor helps justify why forecasters can 
use only a few bulk numbers such as the maximum 
surface wind (Vmax), the minimum central pressure (Pmin), 
cloud top temperature, or storm size to characterize a 
TC, instead of all possible details about TCs. This is also 
consistent with the fact that TC intensity models with 
only a few degrees of freedom could capture some broad 
properties of TC intensity as shown in previous studies 
(e.g., Emanuel, 2003; DeMaria, 2009; Schonemann and 
Frisius, 2012; Kieu, 2015; Wang et al., 2021).

Second, the existence of low-dimensional chaos 
indicates that PI should not be represented by a single 
Vmax value as in the current PI framework. Instead, the 
maximum intensity that a TC can get must vary within 
a range around the PI equilibrium, regardless of how 
perfect an environmental condition or a TC model is. As 
a result, this intrinsic variability of TC intensity will act as 
a “noise” level in any TC intensity statistics that one has 
to take into account when projecting any change of PI 
under different climate conditions.

Third, the PI equilibrium is no longer just about Vmax. 
Instead, PI has to be characterized by other features 
as well such as the warm core anomaly, the maximum 
radial wind (Umax) in the boundary layer, the radius of 
maximum wind (RMW), or the maximum eyewall vertical 
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motion (Wmax). Therefore, any factor that can influence 
other dimensions of PI would cause strong fluctuation in 
TC intensity, regardless of whether Vmax is equal to PI or 
not as discussed in Kieu (2015).

While both idealized simulations and real-time 
forecast verification strongly hint at a possible existence 
of TC intensity chaos, examining this intensity chaos and 
the related TIP turns out to be difficult due to the various 
ways that one can define a reference climatology for TC 
intensity in practice. Note again that predictability is not 
a universal measure, as it must be associated with one 
specific variable over a specific period during which a 
reference climatology is constructed. Thus, predictability 
can be different for different intensity metrics. Because 
of this metric dependence, any estimation of TIP must 
be tied to a specific intensity metric and its climatology.

Given such important implications of intensity 
chaos and the uncertainty in estimating TIP, a better 
understanding of TC intensity chaos is needed so that 
a more accurate range for TIP can be obtained. In the 
next, we will present our examination of TC intensity 
chaos within a framework of deterministic chaos, which 
is suitable for point-like intensity metrics such as Vmax 
or Pmin. Details of our machine learning (ML) approach 
for chaotic systems are provided in Section 2. Section 3 
presents the details of ML models, followed by the main 
results in Section 4 and concluding remarks in Section 5.

2. METHODOLOGY

2.1. MAXIMUM INTENSITY EQUILIBRIUM
If the PI equilibrium is the only possible state of TC 
development whose statistical properties are stationary 
for intensity climatology, how can we use this equilibrium 
to examine TC intensity chaos? In this study, we will 
follow the same approach as in Kieu et al. (2022) and 
assume that the PI equilibrium can be characterized by 
a low-dimensional phase space where chaos manifests. 
Note that Kieu et al.’s approach based on the phase-
space reconstruction method to directly search for the 
dimension of a chaotic attractor contains significant 
subjectivity and is sensitive to data noise (e.g., Kantz and 
Schreiber 2003). Here, we propose to use ML to quantify 
the TIP range, which can also confirm the existence of TC 
intensity chaos, albeit less directly as compared to the 
phase-space reconstruction method.

A key part in searching for chaos at the equilibrium 
is therefore to obtain first a statistically stable PI state 
so that one can analyze it. Given such a state, one can 
then extract the time series of key TC scales such as Umax, 
Vmax, Wmax, or Pmin, which can serve as input features for 
ML training. Details of a long simulation of TC intensity 
that ensures such a stable PI state and how to extract 
the required data for the ML approach will be given in 
Section 3, which are identical to those used in Kieu et 
al. (2022).

2.2. MACHINE LEARNING APPROACH
Broadly speaking, machine learning (ML) can be 
considered as a framework that can search for rules from 
data. Given an ML architecture, a measure of accuracy, and 
input data, the rules can be obtained within a prescribed 
level of accuracy. The key advantage of ML in practical 
applications lies in its ability to learn rules from input data 
without a priori knowledge, provided that the input data 
is sufficiently good (i.e., the input data can ensure several 
criteria including i) comprehensiveness, ii) relevancy, ii) 
consistency, and iv) uniformity.) With an inherently large 
volume of data, climate and weather prediction provide 
a great domain for ML applications, which justifies the 
surge of ML applications in atmospheric science recently.

Specifically for TC intensity, ML offers a unique way 
to study low-dimensional chaos. To set up a context for 
applying ML to our TC intensity chaos problem, we will 
focus hereafter on supervised ML, which requires a set of 
input data and corresponding targets (labels) for training 
an ML model. At a basic level, supervised ML models need 
a surjective mapping between an input training dataset 
( )  and a target dataset ( )  (i.e., one Îy  will have at 
least one Îx  ) so that the training can be carried out. 
For a typical time-prediction problem (i.e., given a state 
of a system at one time t = 0, one needs to predict the 
state of the system at a later time =t t ), this mapping 
can be considered as a propagator from a given initial 
condition to the later time t. Mathematically, such a 
propagator can be expressed as =( ) ( ) (0)x M xt t , where 
( )M t  is the propagator from t = 0 to t and x(t) is the model 

state at time t.
For a full-physics model, ( )M t  is nothing but a 

numerical model with governing equations integrated 
from t = 0 to =t t . For ML, ( )M t  is a however nonlinear 
operator that is learned from a training dataset. In 
principle, the more data we have, the better an ML model 
can search for underlying rules and build ( )M t  without 
any physical equations. Thus, we can feed an ML model 
with a large amount of data, and let it figure out the 
best possible relationship between t = 0 and =t t . For 
deep learning that is based on neural networks, an ML 
model with sufficient layers and depth should capture a 
nonlinear mapping between two time slices, making it 
suitable for TC intensity prediction.

From this perspective, it is immediate that chaotic 
systems will pose a challenge to any ML model, because 
one input may give totally different outcomes after 
reaching predictability limit T (i.e., one Îx   would 
give two different Î " >1 2, ,y y Tt , where two input 
x1, x2 are practically considered to be the same as x if 
their difference is within some measurement errors, 

- £ =| | , 1, 2ix x i  for a sufficiently small uncertainty ). 
So, there exists no longer a good mapping between the 
training and the label datasets, and ML models cannot 
learn any rule from data.

The deterioration of ML models after entering the 
chaotic regime as described above suggests, however, 
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a unique way to study chaotic systems. Specifically, we 
will search for a lead time T beyond which an ML model 
can no longer be trained from any input dataset, which 
gives us a direct estimation of the predictability range for 
a chaotic system. This approach is natural in the sense 
that an ML model should generally be able to predict the 
next state of a system from a given input, if the system 
remains predictable and sufficient training data is 
provided. As soon as the system enters a chaotic regime, 
ML models are no longer trainable. From this perspective, 
ML models are naturally a great tool for studying chaos.

Our aforementioned use of ML to examine predictability 
is well suited for TC intensity, as this approach serves two 
purposes: i) it verifies if a low-dimensional representation 
is sufficient for TC intensity, and ii) it helps estimate the 
TIP range in that low-dimensional phase space. Our 
underlying hypothesis is that an ML model can predict 
TC intensity in a low-dimensional phase space, whose 
dimensions correspond to several basic TC scales, up to 
a certain lead time T. Beyond this lead time T, ML models 
can no longer be trained to predict TC intensity, thus 
revealing TC low-dimensional chaos and providing us an 
estimation for TIP.

The results in Kieu et al. (2022) provide a pathway 
to verify this hypothesis with ML. Specifically, we will 
assume that TC intensity can be described by four 
dimensions corresponding to four TC scales including 
Vmax, Umax, Wmax, and Pmin. While it is not known in advance 
the exact dimension of the PI attractor, Kieu et al. (2022) 
suggested that a minimum dimension of 4 should 
be sufficient to capture TC intensity chaos within the 
deterministic framework. As such, we will treat these 
four dimensions as input features for several ML models 
to be presented in Section 3b. With these ML models, we 
can examine how they forecast intensity at different lead 
times and estimate the TIP range as expected.

3. EXPERIMENTAL DESIGNS

3.1. CM1 MODEL CONFIGURATION
In this study, the same axisymmetric configuration of 
the Cloud Model (CM1) (Bryan and Fritsch (2002) was 
used as in Kieu et al.’s study (2022), which produces a 
quasi-stationary PI state during a long integration of 100 
days. This model configuration has 360 grid points on a 
stretching grid in the radial direction, with the highest 
resolution of 2 km in the vortex’s inner core region 
and stretched to 6 km in the outer core region. Unlike 
the radial direction, the model was configured with 61 
levels in the vertical direction, with a fixed resolution of 
0.5 km. This fixed vertical resolution was found to be 
more numerically stable and also less restrictive when 
choosing the number of vertical levels. In addition, we 
applied the open-radiative lateral boundary conditions 
option to the radial direction, and free (no) slip boundary 
to the top (bottom) boundary in our simulation. The 

model was initialized from the tropical Jordan sounding 
on an f-plane, with fixed sea surface temperature 
(SST) = 302.15 K.

Similar to the results in Hakim (2011) and Kieu and 
Moon (2016), a long simulation of a quasi-stationary 
TC intensity with the CM1 model would require a proper 
choice of model physics to avoid the gradual change in 
TC environment inside a box domain, which can cause 
decaying due to the transport of low angular momentum 
in the outer core region. A simple treatment for this 
environment change is to apply a fixed Newtonian 
cooling relaxation of 2 K day-1, as in Kieu et al. (2022), 
which can result in a quasi-stationary maximum 
intensity equilibrium in the CM1 simulation for 100 days. 
Along with this radiative forcing, a suite of other physical 
parameterizations were also used, which include the 
YSU boundary layer scheme, the TKE subgrid turbulence 
scheme, and the explicit moisture Kessler scheme with 
no cumulus parameterization.

With the PI equilibrium in our 100-day simulation 
established, the model was then output at every time 
step of 36 seconds, producing a dataset of length 
» 6(10 ) . All time series of four major TC scales including 
Vmax, Umax, Wmax, and Pmin were extracted from the model 
output and further split into three subsets for ML 
training—the training, validation, and test sets with a 
ratio of 90%, 5%, and 5%, respectively. To ensure that all 
data are selected at the PI equilibrium, the first 10 days 
of simulations were discarded. Other details of this CM1 
100-day simulation can be found in Kieu et al. (2022), 
and so we do not repeat them here.

3.2. DEEP-LEARNING MODELS
Given the low dimensionality of feature vectors used for 
our ML training, we present in this study several deep-
learning models for TC intensity prediction. Specifically, 
three popular ML architectures including a deep neural 
network (DNN) model, a gated recurrent unit (GRU) 
model, and a long-short term memory (LSTM) were 
implemented. The applications of these deep learning 
models in the weather domain have been rapidly 
growing due to their capability as well as the availability 
of computational resources, which help accelerate 
their execution for practical problems. With four TC 
scales as input features and one real-value output Vmax 
representing TC intensity, predicting TC intensity with the 
above ML models thus becomes a familiar supervised 
regression problem for which these ML models fit very 
well.

For our TC intensity prediction with DNN, a simple 
design of 3 hidden layers with layer sizes of 32, 64, 
and 64 was used, followed by an output layer of size 1 
that corresponds to Vmax. Each neural layer was applied 
a standard ReLU activation, which helps ML models 
capture nonlinear effects and increase the interaction 
among layers. One could certainly design a deeper 
neural network for a more complex relationship between 
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input and output layers. However, our experiments with 
different DNN designs showed very little improvement for 
more than 3 hidden layers when predicting TC intensity in 
a low-dimensional input space. As such, a fixed design of 
32, 64, and 64 nodes was used.

For LSTM and GRU, these are recurrent neural models 
that further require a data interval in the past to capture 
the memory in the training data. Our model architectures 
for these LSTM and GRU models thus need some additional 
setup. Specifically for these recurrent network models, we 
used a range of time slices, i.e., Î -, [ , 0]it i M , as input for 
LSTM/GRU models when predicting TC intensity at any given 
lead time. Here, M determines the number of time slices 
in the past that are needed for recurrent networks, which 
varies from 5–20 in this study. To avoid overfitting during 
the training process, we also used three layers of size 16, 
32, and 64, with a dropout rate of 0.5. Technically, dropout 
is a type of regularization that can help reduce overfitting 
in ML models. There is no particular formula to choose the 
value for this hyperparameter, other than empirical trials. 
For our intensity chaos problem, this dropout turns out to 
be important to ensure good model performance.

All of these ML models employed the mean absolute 
error (MAE) metrics for the accuracy and the root mean 
squared errors for the loss function, with a fixed number 
of training epochs set to be 200. The standard optimizer 
for the gradient search based on the stochastic mini-
batch learning method, the so-called Root Mean Squared 
Propagation (RMSprop), was applied to all training. Because 
of the different scales of the wind and pressure variables, 
all input data was normalized by the standard deviation 
around their mean value, which corresponds to the PI state 
of the model vortex at the quasi-stationary equilibrium.

4. RESULTS

4.1. PREDICTABILITY LIMIT ON ATTRACTOR
Given the current definition of TC intensity in terms of the 
maximum 10-meter wind, we examine first TC intensity 
chaos using Vmax as a metric for TC intensity in our ML 
models. Recall here that, if TC dynamics possesses chaos 
at the PI equilibrium, then TC intensity should have a 
limited predictability range that dictates the value of 
TIP. Thus, a finite TIP range can serve as a proxy for the 
existence of TC intensity chaos that we are searching for.

In this regard, Figure 1 shows the training absolute 
mean error as a function of epochs (iterations) for three 
models at three forecast lead times including 3 minutes, 
1 hour, and 3 hours. One notices indeed that the training 
errors rapidly decrease for =3t  minutes in all three ML 
models (black curves in Figure 1), reaching a relative 
minimum error of ≈ 0.05, 0.12, and 0.22 for LSTM, GRU, 
and DNN models, respectively. Looking at the correlation 
between the ML forecast and the true TC intensity for the 
test data in Figure 2 (red points), it confirms that all ML 
models could predict very well TC intensity variability for 

the short lead time =3t  minutes in the 4-dimensional 
phase space. This result is noteworthy, because these ML 
models require a minimum number of input features, yet 
they could produce a good forecast of TC intensity based 
solely on training data. From this perspective, Figures 1 
and 2a help confirm that a low-dimensional phase space 
suffices to predict TC intensity variability at least for 
a short lead time, without any physical or governing 
equations.

Figure 1 ML accuracy metric based on the mean absolute 
error (dotted lines) during the training process as a function 
of iterations (epochs) for three different ML models a) LSTM, 
b) GRU, and c) DNN at forecast lead times of =3t  minutes 
(black), 1 hour (red), and 3 hours (blue). All absolute errors 
are normalized by the errors at the first iteration (epoch 1) 
for better comparison among different lead times. Solid 
lines denote the mean absolute errors for the corresponding 
validation dataset in each training process, and the recurrent 
timesteps M = 5.
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At the 1-hour lead time, Figure 1 (red curves) shows, 
however, that all three ML models start losing their 
ability to be trained quickly. By 3 hours (blue curves), all 
ML models can no longer be trained, with their errors 

roughly the same ≈75–85% relative to the initial error 
value during the entire training period no matter how 
many epochs are used. Their predictions for the test set 
at the 3-hour lead time display almost completely no 
correlation to the true intensity (Figure 2, blue dots). This 
result reveals that =3t  hrs is the longest lead time that 
these ML models can predict TC intensity at the PI limit. 
It is of interest is that this estimation is also consistent 
with the estimation from attractor invariants based on 
a leading Lyapunov exponent and the Sugihara-May 
correlation in Kieu et al. (2022), which showed that TC 
intensity loses predictability in just ≈3–6 hours as soon 
as TCs reach their PI equilibrium.

The dependence of these ML-based intensity 
predictions on forecast lead times is best seen when we 
compare these predictions to a reference (or climatology) 
forecast, which is taken to be a simple average of Vmax 
at the PI equilibrium. Figure 3a shows the forecast skill 
of three ML models relative to this reference forecast as 
a function of lead times. It is apparent from Figure 3a 
that ML models perform best for <3t  hours. Beyond 
this, the ML-based prediction skill is no better than a 
simple forecast using just the averaged Vmax at the PI 
equilibrium. This short predictability is further supported 
by the error growth curve (Figure 3b), which displays a 
typical behavior of chaotic systems with rapid error 
growth during the initial period and reaching a saturation 
level after ≈ 3 hours.

We emphasize that the decaying of the ML-based 
forecast skill with t does not hold true for any system. In 
fact, a simple experiment using purely random data as an 
input for ML training would result in zero forecast skill at all 
lead times (not shown). This is because the information 
from one time step does not have any influence on the 
next, and so ML models cannot learn anything. On the 
other hand, for completely periodic systems, the forecast 
skill will always take a constant value of 1 for all lead 
time t as discussed in, e.g., Sugihara and May (1990). 
As such, the decaying curve of the forecast skill or the 
error growth curve shown in Figure 3a–3b is an inherent 
characteristic of chaotic systems, which is captured by 
our ML models.

Given the average Vmax = 84 ms–1 with a standard 
derivation is ≈7.5 ms–1 at the PI equilibrium, the TIP 
range obtained from Figure 3a implies further that TC 
intensity must vary indistinguishably within an interval 
of 84 ± 7.5 ms–1 after just 3 hours, even for a perfect 
TC model. This TIP range may even be shortened if 
stochastic forcings, asymmetric processes, or model 
internal errors are taken into account as discussed in 
Nguyen et al. (2020) or Kieu et al. (2022), which are, 
however, beyond the scope of our study here. Despite 
these issues, the results obtained from our ML models 
herein can at least advocate the existence of intrinsic 
variability of TC intensity due to chaotic dynamics, which 
prevents the absolute intensity errors in any TC models 
from being reduced to zero.

Figure 2: Scatter plots of the ML-predicted TC intensity 
anomaly (x-axis) and the CM1 true intensity anomaly (y-axis) 
for a test dataset taken between t = 90–100 days of the 
CM1 simulation at three lead times: =3t  minutes (red), 1 
hour (black), and 3 hours (blue) for a) LSTM, b) GRU, and c) 
DNN model. Note that TC intensity anomaly is relative to the 
average PI value of 84 ms–1 and normalized by its standard 
deviation -= 17.5V mss . The R values for each lead time best fit 
are also provided in each panel.
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Among the three ML models, it should be mentioned 
that LSTM and GRU appear to perform best in terms of 
either the training/validation mean errors due to their 
use of extra past information (Figure 1–2) or forecast skill 
(Figure 3a). This past information contains some temporal 
relationships that help improve future prediction. Thus, 
LST/GRU presents a very different way of forecasting as 
compared to the traditional approach based on physical 
principles. To some extent, recurrent networks improve 
their prediction in the same way that four-dimensional 
data assimilation optimizes an initial condition over an 
interval instead of just a single time slice. Despite this 
extra information from the past, the predictability of Vmax 
could not be lengthened beyond 3 hours in both LSTM 
and GRU models as shown in Figures 2–3.

4.2. METRIC DEPENDENCE
Because predictability is metric-dependent, an apparent 
question is how the estimation of TIP changes when 
using Pmin for TC intensity instead of Vmax. In this regard, 
Figure 3c–d shows the ML-based forecast skill and error 
growth curve for Pmin as a function of lead time for three 
ML models, similar to Figure 3a–b. It is of significance 
to observe that all models could again capture similar 
decaying of the Pmin forecast skill, but with a significantly 
slower rate and thus a longer TIP range of ≈8–9 hours 
as compared to 2–3 hours for Vmax. Such slower decay 

of the Pmin forecast skill in Figure 3c well accords with 
slower error growth and a longer time to reach the error 
saturation as shown in Figure 3d, similar to what was 
obtained from the phase-space reconstruction method 
in Kieu et al. (2022).

The fact that these ML models capture such a 
different predictability range between Vmax and Pmin is 
intriguing. Recall that Vmax and Pmin are highly correlated in 
terms of temporal variability due to their pressure-wind 
relationship. However, Pmin represents the total mass at 
the storm center while Vmax fluctuates more vigorously 
due to fine-scale processes at each model grid point. As 
such, Pmin tends to better display a slow component of TC 
dynamics, which ML models could somehow detect even 
when training data contains strong fluctuations from the 
wind field. From this standpoint, using Pmin for TC intensity 
could lengthen the range of intensity predictability for 
operational forecasts as previously noticed (e.g. Kieu et 
al., 2022; Klotzbach et al. 2020; Magnusson et al., 2019).

Regardless of intensity metrics Vmax or Pmin, the above 
results reiterate the finite range of TIP as obtained from 
different ML models. Such a finite range is in fact held 
for all TC scales that we have examined, not just Pmin 
or Vmax. Hence, the existence of low-dimensional chaos 
of TC dynamics as captured in our ML models is well 
supported, even though we do not currently know any 
mathematical model that can describe this chaotic 

Figure 3 a) Forecast skill of three ML models LSTM (blue), GRU (red) and DNN (black) as a function of lead time relative to the 
reference forecast that uses the average Vmax value at the PI equilibrium, and (b) similar to (a) but using Pmin for TC intensity. Here, 
the forecast skill is defined as 1-MAEML/MAEref), where MAEML and MAEref are the mean absolute errors from the ML predictions and 
reference prediction of TC intensity over the test dataset, respectively.
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dynamics of TC intensity in a low-dimension phase space. 
In particular, the existence of TC intensity chaos derived 
from this TIP information confirms that a part of intensity 
variability in TC models must be inherent to TC dynamics, 
which cannot be removed from model outputs simply by 
improving the model physics or initial conditions.

4.3. SENSITIVITY EXPERIMENTS
To further address the robustness of our results, this 
section presents some additional experiments in which 
more input features, different recurrent windows M, 
and a coarser sampling frequency (30 minutes) for 
input training data are used. Note that these sensitivity 
experiments cover just a small part of possible 
sensitivities that one can examine. For example, one can 
design deep neural networks with an arbitrary number 
of layers, nodes, dropout rates, or data augmentation. 
Within the scope of this study, we will however limit 
our sensitivity experiments to several key experiments, 
which suffice to highlight the important points that we 
want to present herein.

Figure 4a–4b show the forecast skill and the 
error growth of Vmax for the first group of sensitivity 
experiments for which the recurrent timesteps M = 5, 10, 
20 at a sampling frequency of 30 minutes. Recall from 
Section 3.2 that M determines how many time slices in 

the past up to a present time t will be used to predict 
the future state at +t t . Thus, a larger M (i.e., a longer 
window of past information) would allow for more input 
information, and should increase the forecast skill of ML 
models.

As seen in Figure 4a–4b, forecast skill in these 
sensitivity experiments all decays quickly during the 
first 3 hours across the models and recurrent window 
M, similar to the control settings in Figure 3a–3b. For 
each model, note however that the longest window 
M = 20 (dotted line in Figure 4a) appears to be slightly 
more skillful as compared to the shorter ones, which can 
be seen in all models. This indicates that longer input 
windows for recurrent models appear to help improve a 
forecast skill for chaotic systems, albeit marginally.

The most significant change in these sensitivity 
experiments is, however, a small but persistent skill of 
all ML models relative to the reference forecast, even at 
long forecast lead times >3t  hours (Figure 4a). Such a 
marginal skill is due to the coarser sampling frequency 
of input data, which eliminates fast fluctuation in the 
training data and results in some skill relative to the 
constant reference forecast. From the error growth 
perspective, it is seen however that there is no significant 
change in the time needed for the model forecast error to 
reach its saturation (Figure 4b). All ML models display the 

Figure 4 Similar to Figure 3a–3b, but for sensitivity experiments using (a)–(b) different past windows M = 5 (solid), 10 (dashed), and 
20 (dotted); and (c)–(d) adding new input features including the radius of maximum wind (R) and the warm core anomaly (T’).
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same error growth saturation after ≈3 hours, which is an 
intrinsic property of a chaotic system and independent of 
how reference forecasts are defined.

Our sensitivity experiments with more input 
features capture a similar behavior of the error growth 
and forecast skill as in the recurrent time window 
experiments (Figure 4c–4d). Specifically, adding more 
features such as RMW, warm core anomaly (T’), or 
both does not improve the TIP range. That is, both 
forecast skill and error growth show rapid decay/
increase during the first 3 hours and then approach 
a saturation limit afterward. This result supports the 
existence of low-dimensional chaos for TC intensity in 
the sense that more dimensions in the phase space will 
not help improve any estimation of attractor invariants 
as discussed in Kantz and Schreiber (2003) or Kieu et 
al. (2022). The consistent TIP estimation among ML 
models and sensitivity experiments as shown above, 
therefore, confirms the robustness of our finding about 
the existence of low-dimensional chaos for TC intensity.

5. CONCLUSION

In this study, we presented a different use of ML to search 
for chaos in TC intensity. Our underlying assumption 
was based on the premise that TC intensity at the PI 
equilibrium can be characterized by a low-dimensional 
phase space. By treating the dimensions of TC intensity 
attractor as input features for ML training, the skill of 
ML prediction can be estimated as a function of forecast 
lead times. The maximum lead time that ML models 
can no longer provide skillful TC intensity prediction 
dictates the range of intensity predictability, which 
is 2–3 hours as obtained from our axisymmetric CM1 
simulation under a fixed environmental condition. The 
predictability range could be lengthened up to 8–9 hours 
if the minimum central pressure is used for TC intensity 
instead of Vmax, yet the limited predictability for TC 
intensity is still observed in all ML models and sensitivity 
experiments. As a result of this finite predictability limit, 
the existence of TC intensity chaos within an idealized 
environment is established.

While a finite TIP range could reveal the existence 
of TC intensity chaos, we emphasize that the practical 
application of such a TIP range for real TC intensity forecast 
is very limited. This is because the practice of TC intensity 
forecast requires the prediction of TC intensity from the 
very early development of a TC to the final dissipation 
stage. At no time do forecasters wait until a TC reaches its 
maximum intensity to predict its intensity. Also, real TCs 
constantly move from one environment to the next such 
that it is not feasible to select just the mature phase to 
analyze TC intensity predictability. From this regard, our 
results do not imply that real-time TC intensity forecasts 
have a short practical predictability range of 3–6 hours. 
Instead, our results simply show that TC dynamics 

possesses a chaotic behavior at the maximum intensity 
stage, with a natural variation of about 7.5 ms–1 as 
obtained from CM1 axisymmetric simulations. Although 
this intrinsic variation of TC intensity is sensitive to model 
dynamics, physical parameterizations, or boundary 
conditions, the existence of such an intrinsic variability 
is itself important, because it sets a limit on how much 
one can reduce the absolute intensity error in real-time 
intensity forecasts. For a chaotic system, no matter how 
perfect a model or an initial condition is, one cannot bring 
the absolute intensity errors below this natural variability 
threshold, which highlights the significance of our results 
in this study.

It should be also mentioned that our ML-based 
estimation of TIP and the resulting intensity chaos were 
obtained from an assumption that TC intensity can be 
characterized by a phase space consisting of Umax, Vmax, 
Wmax, Pmin, RMW, or T’. How this TIP range changes in 
higher dimensions or with a different set of phase space 
variables remains elusive at present. Nonetheless, the 
insofar consistency among different ML models and TIP 
estimation methods highly indicates that adding more 
dimensions or variables may not improve much the 
predictability range obtained herein. In particular, the 
finite range of TIP, which is a manifestation of TC intensity 
chaos, is expected to remain valid regardless of its exact 
value. The results in this study, thus, present a unique use 
of ML for quantifying TIP, which is very generic and can 
be applied to any chaotic system. So long as a dynamical 
system contains low-dimensional chaos, one can always 
use the data on those dimensions as input features for 
ML training to search for the range of predictability as 
expected.

As a final note, we stress that, beyond the point-
like intensity metrics such as Vmax or Pmin, one can also 
examine TIP from a multi-scale error growth framework 
as for turbulent systems. In this multi-scale framework, 
a prerequisite is the existence of a fully-developed 
homogeneous and isotropic state such that its energy 
spectrum and related error growth can be measured 
(Durran and Gingrich, 2014; Leith and Kraichnan, 1972; 
Lorenz, 1969; Métais and Lesieur, 1986; Rotunno and 
Snyder, 2007). As discussed in Kieu and Rotunno (2022), 
TC dynamics is, however, generally nonhomogeneous, 
even at the quasi-stationary PI equilibrium. Unlike a 
homogenous turbulence for which all points are equally 
important, TCs possess an eye whose dynamics and 
thermodynamics are different from the rest. Using 
spectral analyses, Kieu and Rotunno (2022) showed, in 
fact, that the power spectrum of kinetic energy is different 
between these radial and azimuthal directions. In both 
directions, the error growth approaches a saturation 
limit between 9–18 hours, again suggesting limited 
predictability for TC intensity from the energy spectra 
perspective. Quantifying the TIP range in this multi-scale 
framework requires an error growth equation for each 
direction that is beyond the scope of ML applications. 
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Thus, we have not applied ML to studying TC intensity 
predictability within the multi-scale framework in this 
study.
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