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ABSTRACT
Stochastic climate models are mathematical representations of the Earth’s climate 
system that integrate stochastic components to simulate the inherent uncertainties 
and variability observed in the climate. These models are formed to capture the 
complex interactions between various elements of the climate system, such as the 
atmosphere, oceans, land surface, and ice. However, due to the high-dimensionality 
and randomness, simulation of stochastic climate models given by stochastic partial 
differential equations (SPDEs) often requires costly expensive computational resources. 
Therefore, it is important to develop efficient and effective techniques. In this paper, 
we explore the application of Wiener chaos expansion (WCE) and Monte Carlo (MC) 
methods for simulating stochastic El Niño Southern Oscillations (ENSO) that is modeled 
by coupled atmosphere, ocean and sea surface temperature (SST) mechanism in the 
equatorial Pacific. Initially, we first apply the WCE-based method on the simple ocean 
model driven by oceanic Kelvin and Rossby waves forced with white noise as a test 
bed problem, and show that the first few WCE-modes are able to closely approximate 
the theoretical variance values obtained by using the method of characteristics. Our 
results depict that statistical moments, (i.e., the mean and variance) of the solutions 
obtained from the WCE method provide remarkably accurate results with a reasonable 
convergence rate and error range. In light of the results of the test problem, we then 
employ a high-dimensional coupled linear stochastic ENSO model and show that Monte 
Carlo (MC) simulations with a large number of ensembles can converge to the results with 
few WCE modes. We also show that the WCE-based approach requires less computation 
time with a reasonable convergence rate. Along with the comparison of computational 
cost, this combination of WCE with MC methods is particularly practical when dealing 
with problems or complex high-dimensional stochastic models, where analytical or 
exact solutions are not easily available, as similar to stochastic ENSO models.
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1 INTRODUCTION

The El Niño Southern Oscillation (ENSO) is a complex and 
recurrent climate phenomenon that originates in the 
tropical Pacific Ocean. It involves the interaction between 
the ocean and the atmosphere and has significant 
impacts on weather patterns around the world. First 
remarks of climatic anomalies at low-latitudes are 
based on the observations of Bjerknes in the late 
1960s (Bjerknes, 1969) by recognizing the correlation 
between SST and equatorial atmospheric circulations. 
Such observations are considered as the links between 
El Niño and the Southern Oscillations. Along with the 
empirical approach, Matsuno and Gill utilized simplest 
and effective one-layer shallow-water models with 
damping and provided analytical solutions (Gill, 1980). 
The Matsuno-Gill model represents the atmospheric 
response in terms of equatorial Kelvin and Rossby 
waves. In addition to analytical solutions, experimental 
forecasts of ENSO have been made since the 1970s. 
Among the intermediate atmosphere-ocean coupled 
models derived from first principles, the Cane-Zebiak 
model (Zebiak and Cane, 1987) has proven influential 
results. The Cane-Zebiak model accurately captures the 
key elements of atmosphere-ocean coupled dynamics. 
Moreover, Neelin, Dijsktra and their co-workers proposed 
a comprehensive deterministic ENSO theory and analyzed 
system components (Dijkstra, 2006; Neelin et al., 1998).

Deterministic climate models serve as beneficial 
tools for gaining perspectives into the broad trends 
and dynamics of the Earth’s climate system. However, 
it is important to note that deterministic models have 
limitations, such as uncertainties in the initial conditions, 
simplifications in representing complex processes, and 
the deficiency to account for all relevant factors. In 
contrast to deterministic climate models, stochastic 
climate models introduce random processes to explain 
the internal variability and uncertainties associated 
with certain climate phenomena. These models are 
particularly useful for studying aspects of climate that 
exhibit inherent randomness, such as atmospheric 
noise, internal climate instability, and certain feedback 
mechanisms. Majda and co-workers recently developed 
a simple stochastic model that captures the main 
dynamics of ENSO (Chen, Majda, and Thual, 2018; 
Thual et al., 2016). Their approaches are based on the 
stochastic modeling of westerly wind bursts (WWBs) that 
adjust the sea temperature and shift the ocean phase. 
Depending on the strength of the stochastic forcing, 
the state is modeled as a multi-state Markov chain that 
switches between El Niño, non-El Niño and strong El 
Niño phases. Although developed models and schemes 
provide accurate results of ENSO, there are still several 
limitations for the prediction of ENSO phenomenon 
(Kleeman and Moore, 1997) due to the sensitivities to the 

stochastic forcing. Therefore, it is important to develop 
appropriate stochastic models, numerical schemes 
and effective techniques for the accurate prediction of 
ENSO dynamics.

In this paper, we study the effects of the stochastic 
perturbations on the ENSO dynamics and explore novel 
modeling and numerical schemes based on the Wiener 
chaos expansion (WCE) and compare with the Monte 
Carlo (MC) simulations. WCE was originally introduced 
by Wiener (Wiener, 1938) in 1938 and later extended by 
Cameron and Martin (Cameron and Martin, 1947). The 
idea is the explicit discretization of white noise through 
Fourier expansion. WCE is closely associated with proper 
orthogonal decomposition (POD), Karhunen-Loève (KL) 
decomposition, and various other spectral methods (Xiu 
and Karniadakis, 2002).Theoretical foundations of WCE 
and some important numerical applications including 
1D wave equation, Burgers equations and Navier-Stokes 
equations can be found in (Kalpinelli, Frangos, and 
Yannacopoulos, 2013; Lototsky and Rozovskii, 2006; 
Luo, 2006).

The WCE framework offers several appealing 
characteristics that make it potentially well-suited for 
numerical computations. These include the advantageous 
separation of random and deterministic components of 
the dynamics, as well as the feasibility of the resulting 
approximations as probability densities in random 
physical systems. However, it has some limitations due 
to high dimensionality, nonlinearity, and approximation 
accuracy as broadly mentioned in (Majda and Branicki, 
2012).Therefore, combining and comparing WCE with 
the MC approach is particularly useful for dealing with 
random processes whose statistical properties are not 
well-known.

This paper is organized as follows: In Section (2), we 
work on the simple ocean model driven by white noise. 
The problem is modeled by the oceanic Kelvin and Rossby 
waves coupled at the ocean boundaries with reflective 
boundary conditions. We first analyze the discontinuities 
of the homogeneous model in Section (2.1) We provide 
the exact solution using method of characteristics and 
compare with the numerical solutions obtained by using 
WCE in Section (2.2). After introducing background and 
construction of white noise and WCE in (2.3), we compare 
the analytical and numerical solutions in (2.4). In Section 
(3), we study a linear stochastic ENSO model and provide 
some important deterministic and stochastic modeling 
features. In Section (4), we apply the WCE method on the 
Ornstein-Uhlenbeck process with a specific dissipation 
and noise strength and demonstrate that the first few 
WCE modes can capture over 90% of the variance energy. 
Finally, we present a WCE-based numerical solution and 
discuss the results by comparing the MC-based approach 
for high-dimensional stochastic ENSO model in Section 
(4) and (5).
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2 SIMPLE OCEAN MODEL DRIVEN BY 
WHITE NOISE

An essential component of ENSO modeling is the 
propagation of ocean waves. To analyze and test the 
efficiency of the proposed WCE method, we first employ 
the simple ocean problem modeled by the oceanic Kelvin 
and Rossby waves driven by white noise. The problem 
u(t, x) = [K(t, x), R(t, x)]T can be formulated as follows:

ℳ𝜕𝜕u
𝜕𝜕t
(t, x) = ℒ(u) + ΞẆ(t)

where ℳ = [1 0
0 1] ; ℒ = [

−c 𝜕𝜕
𝜕𝜕x

0

0 c

3

𝜕𝜕
𝜕𝜕x

] and Ξ = [𝜎𝜎K𝜎𝜎R
]
 (1)

where K(t, x), R(t, x) and W(t) represent the oceanic Kelvin 
and Rossby waves and Brownian motion with a constant 
noise strength Ξ = [𝜎𝜎K, 𝜎𝜎R], respectively. Therefore, the 
solution u(t, x) is the function of spatial-time variable, 
but also the Brownian motion. The model has reflective 
boundary conditions

 K(t,0) = rWR(t,0) and R(t, L) = rEK(t, L) (2)

where rW = 0.5 and rE = 0.5 are coupling coefficients at 
the western and eastern ocean boundaries, respectively. 
Initial conditions that are shown explicitly in the next 
section are defined as:

 K(0, x) = f(x) and R(0, x) = g(x) (3)

Kelvin and Rossby waves play significant roles in the 
dynamics of the ENSO in the tropical Pacific Ocean. Kelvin 
waves travel eastward along the equator, constrained by 
the Coriolis effect, which is zero at the equator. On the 
other hand, Rossby waves, which travel westward and 
are much slower than Kelvin waves, are large-scale waves 
generated by the Earth’s rotation and the variation of the 
Coriolis effect with latitude. In climate models, accurately 
representing these waves is essential for simulating the 
timing, intensity, and duration of ENSO events. These 
waves are also the first meridional basis projection to the 
originally two-dimensional PDEs-(x, y) and help modulate 
the sea surface temperature anomalies that are central to 
ENSO dynamics, as discussed in more detail in Section (3).

2.1 DISCONTINUITIES OF THE 
HOMOGENEOUS MODEL
To analyze the model features, we consider the 
homogeneous (unforced) case of equations (1)–(3) 
where 𝜎𝜎K = 0 and 𝜎𝜎R = 0. Due to the reflective boundary 
condition at the ocean boundaries, the model has 
discontinuities. We use a simple linear initial condition as 
shown in Figure 1. Although this initial condition may not 
be physical, it is one of the simplest choices that satisfy 
the boundary condition of the model.

By using the method of characteristics, we observe 
that K(t, x) has a jump discontinuity at all times 0 < t < L/c 
and 3L/c < t < 4L/c. At time t = L/2c, the exact solution 
can be written as:

 K(L/2c, x) = {
1

2
R((−x + L/2)/3) if 0 ≤ x ≤ L/2

K(x − L/2) if L/2 ≤ x ≤ L
 (4)

Similarly, R(t, x) has one jump discontinuity at 
times 0 < t ≤ L/c and 3L/c < t < 4L/c and two jump 
discontinuities at times L/c < t < 3L/c. We have the 
solution for R(t, x) at time t = 2L/c as follows:

 R(2L/c, x) =
⎧⎪
⎨⎪
⎩

R(x + 2L

3
) if 0 ≤ x ≤ L/3

1

2
K(2L − 3x) if L/3 ≤ x ≤ 2L/3

1

4
R(x − 2L

3
) if 2L/3 ≤ x ≤ L

 (5)

Figure 1 depicts the comparison of numerical solution 
and exact solution obtained from the characteristics of 
Kelvin wave at time t = L/2c and Rossby wave at time 
t = 2L/c. The figures illustrate that the error between the 
exact and numerical solutions is remarkably small.

2.2 MEAN AND VARIANCE THROUGH 
CHARACTERISTIC LINES
In this section, we study the exact solution of the 
statistical moments of the ocean problem (1)–(3). We 
obtain mean and variance solutions at the terminal 
terminal time and then compare with the numerical 
solutions generated from the WCE.

Figure 2 illustrates the propagation of oceanic Kelvin 
and Rossby waves through characteristic lines. The 
horizontal axis represents the position of the waves in 
the ocean domain, while the vertical axis indicates the 

Figure 1 Initial conditions for Kelvin and Rossby waves at time t = 0 that satisfy the boundary conditions (left), Kelvin wave at time 
t = L/2c (middle) and Rossby wave at time t = 2L/c (right)
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reflection times at the boundaries. Waves starting their 
motion at the point y ∈ [0, L] return to the same point 
y within one-period time, calculated as T = 4L/c for this 
problem. At the boundaries, the waves transform into 
each other due to the reflective boundary conditions. The 
mean value of K(y,4L/c) is rWrEf(y) while the variance is 
given by

 r2Er
2
W𝜎𝜎

2
K(
L − y
c

) + r2W𝜎𝜎
2
R(
3L
c
) + 𝜎𝜎2K(

y
c
) (6)

Similarly, the mean value of R(y,4L/c) is rErWg(y) while 
the variance is given by

 r2Er
2
W𝜎𝜎

2
R(
3y
c
) + r2E𝜎𝜎

2
K(
L
c
) + 𝜎𝜎2R(

3L − 3y
c

) (7)

In the next section, we compare the exact solutions of 
the mean and variance equations (6)–(7) at the terminal 
time with the numerical solutions obtained from the 
WCE-based method.

2.3 WIENER CHAOS EXPANSION
Wiener chaos expansion is a mathematical technique 
used in stochastic analysis to represent random variables 
or stochastic processes as infinite series of orthogonal 
polynomials. The method is particularly applied in the 
context of stochastic partial differential equations (SPDEs) 
to efficiently describe the randomness in the solution. A 
SPDE forced by Brownian motion has the general form

 ut = ℒ(u) + 𝜎𝜎(x, t,u)dWt (8)

where ℒ(u) is a (linear or nonlinear) differential operator 
and Wt is a Brownian motion. The solution of SPDE (8) 
depends on the realization of the Brownian motion 
forcing. For any fixed time T > 0, assume mi(s), i = 1,2, ... 
are a set of complete orthonormal bases in the Hilbert 

space L2([0, T]). Then, Brownian motion {W(s); 0 ≤ s ≤ T} 
can be constructed by using the following Fourier 
expansion

 
W(s) =

∞
∑
i=1

𝜉𝜉i∫
T

0
mi(𝜏𝜏)d𝜏𝜏 0 ≤ s ≤ T

where 𝜉𝜉i = ∫
T

0
mi(s)dW(s) i = 1,2, ...

 (9)

That can be interpreted as the projection of the white 
noise Ẇ(s) onto the L2 basis function mi(s). In this paper, 
we use the following orthonormal basis functions of the 
Brownian motion:

 m1(s) =
1

√T
, mi(s) = √

2
T
cos (𝜋𝜋(i − 1)s

T
)  (10)

where 2 ≤ i ≤ K , 0 ≤ s ≤ T in which K depends on the 
order of truncation. In (Luo, 2006), it is shown that the 
expansion (9) converges in the mean square sense for 
all s ≤ T:

 𝔼𝔼[W(s) −
N

∑
i=1

𝜉𝜉i∫
s

0
mi(𝜏𝜏)d𝜏𝜏]

2
≤ T
𝜋𝜋N  (11)

Thus, using a large number of L2 basis functions results in 
a closer approximation to Brownian motion with reduced 
error. According to the Cameron and Martin theorem 
(Cameron and Martin, 1947), the solution u(x, t;Wt

0) can 
be represented by infinite series as a Fourier-Hermite 
series of Gaussian random variables

 u(t, x,Wt
0) = ∑

𝛼𝛼𝛼𝛼𝛼
u𝛼𝛼(t, x)V𝛼𝛼(𝜉𝜉) (12)

where u𝛼𝛼(t, x) are deterministic WCE coefficients 
(also called propagators (Lototsky, Mikulevicius, and 

Figure 2 Kelvin and Rossby waves through characteristics.
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Rozovskii, 1997; Lototsky and Rozovskii, 2006; Luo, 
2006)) and V𝛼𝛼(𝜉𝜉𝜉 are multi-variable Hermite polynomials 
(also known as Wick polynomials) of Gaussian random 
variables as

 V𝛼𝛼(𝜉𝜉i) =
∞
∏
i=1

H𝛼𝛼i
(𝜉𝜉i) (13)

The expansion (12) particularly separates the 
deterministic effects from the randomness in the 
random field solution. Once the solutions of propagators 
u𝛼𝛼(t, x) are found by using standard numerical methods, 
statistical moments such as mean and variance can be 
calculated by using the solutions of WCE coefficients. To 
obtain a systematic recursive set of equations, the set 𝒥𝒥 
of multi-indices is defined as

 𝒥𝒥 𝒥 𝒥𝒥𝒥 𝒥 𝒥𝒥𝒥i; i ≥ 1)|𝒥𝒥i ∈ 𝒥0,1,2, ...}, |𝒥𝒥| 𝒥
∞
∑
i=1

𝒥𝒥i < ∞} (14)

The set 𝒥𝒥 is countable and for every 𝛼𝛼 𝛼 𝛼𝛼, only 
finitely many of 𝛼𝛼i are not equal to zero. For instance, 
𝛼𝛼 𝛼 𝛼0,0,0, ...,0) is order |𝛼𝛼| 𝛼 0 index while 
𝛼𝛼 𝛼 𝛼1,0,0, ...,0) or 𝛼𝛼 𝛼 𝛼0,0,1, ...,0) are the order |𝛼𝛼| 𝛼 1 
indexes. Higher order indexes 𝛼𝛼 𝛼 𝛼1,0,1,0, ...,0) or 
𝛼𝛼 𝛼 𝛼2,0,0, ...,0) are order |𝛼𝛼| 𝛼 2 and are computed for 
the nonlinear problems. However, it should be noted 
that, for the linear problems of this paper, the stochastic 
part is written first order Hermite polynomials H1(𝜉𝜉𝜉 𝜉 𝜉𝜉. 
The mean and variance of the problem can be calculated 
by using the following propagators, respectively:

 𝔼𝔼𝔼u(t, x)] = u|0|(t, x) (15)

and

 𝔼𝔼[(u(t, x) − u|0|(t, x))
2
] = ∑

𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼0
|u𝛼𝛼(t, x)|2 (16)

2.4 COMPARISON OF THEORETICAL AND 
NUMERICAL RESULTS
We simulate the model until T = 4L/c, which corresponds 
to one-period time where L = 1.2 and c = 0.5. Figure 3 
illustrates the evolution of Kelvin and Rossby wave mean 
and variance, calculated using Equations (15)–(16), over 
one-period. We compare the mean and variance results 
of the exact solution (as obtained in the previous section 
using characteristics) with those from the WCE at the 
terminal time T = 9.6 and find reasonable agreement 
using 1-WCE mode for the mean 9-WCE modes for the 
variance. As the mean solution decays due to dissipation 
at the boundaries, the variance increases over time due to 
stochastic forcing. Due to discontinuities in the boundary 
conditions, some errors are observed in the numerical 
solution at the boundaries for the mean calculations.

To obtain the random solution for 
u(t, x) = [K(t, x), R(t, x)]T, we combine the deterministic 
propagators u𝛼𝛼(t, x) = [K𝛼𝛼(t, x), R𝛼𝛼(t, x)]T with the 
corresponding Hermite polynomials. Random numbers 
are generated by using the Python package numpy.
random.normal with a normal distribution 𝒩𝒩𝒩0,1). 
Table 1 shows one set of random variables to obtain a 
complete random solution of model (1). After deriving 
the expressions for the propagators, we combine them 
with the corresponding random Hermite bases. Figure 4 
displays five ensemble solutions of Kelvin and Rossby 
waves. Due to the stochastic nature of the solutions, 
each ensemble exhibits different wave evolution.

3 LINEAR COUPLED STOCHASTIC 
ENSO MODEL

In this section, we utilize the linear stochastic ENSO 
model introduced by Majda and co-workers (Chen, 

Figure 3 Mean and variance of Kelvin and Rossby waves over time (left) and at the terminal time T = 4L/c (right).
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Majda, and Thual, 2018; Thual et al., 2016) to show 
the accuracy of the WCE method for high dimensional 
coupled problems. The dissipative steady atmosphere 
model is driven by atmospheric Kelvin KA(t, x) and Rossby 
RA(t, x) waves, respectively. Additionally, a dissipative 
shallow water ocean model forced by atmospheric waves 
and stochastic wind burst 𝜏𝜏𝜏t) is composed of oceanic 
Kelvin KO(t, x) and Rossby RO(t, x) waves. Final component 
of the coupled model is the sea surface temperature 
(SST) model T(t, x) that characterizes the temperature 
anomalies. Linear coupled PDEs in six variables 
u(t, x) = [KA(t, x), RA(t, x),KO(t, x), RO(t, x), T(t, x), 𝜏𝜏(t)]T can 
be written in differential equation form as

 ℳ𝜕𝜕u
𝜕𝜕t (t, x) = 𝒜𝒜(𝒜𝒜)u(t, x) + F(t) + 𝜎𝜎𝜎Ẇ(t) (17)

where the linear operator A(𝜅𝜅𝜅 in terms of bifurcation 𝜅𝜅, 
the wind stress coefficient

𝒜𝒜𝒜𝒜𝒜𝒜 𝒜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 𝜕𝜕
𝜕𝜕x
− 𝛾𝛾 0 0 0 𝜒𝜒A𝛼𝛼q𝒜2 − 2Q𝒜−1 0

0 1

3

𝜕𝜕
𝜕𝜕x
− 𝛾𝛾 0 0 𝜒𝜒A𝛼𝛼q𝒜3 − 3Q𝒜−1 0

𝜒𝜒O
c𝜅𝜅
2

−𝜒𝜒O
c𝜅𝜅
2

−c 𝜕𝜕
𝜕𝜕x
− 𝛿𝛿 0 0 sp𝒜x𝒜

−𝜒𝜒O
c𝜅𝜅
3

𝜒𝜒O
c𝜅𝜅
3

0 c

3

𝜕𝜕
𝜕𝜕x
− 𝛿𝛿 0 sp𝒜x𝒜

0 0 c𝜂𝜂𝒜x𝒜 c𝜂𝜂𝒜x𝒜 −c𝜉𝜉𝛼𝛼q 0
0 0 0 0 0 −dp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and ℳ is 6 × 6 constant matrix, F(t) external forcing 
vector and Ξ noise vector are given by

ℳ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; F(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0

−dp ̂𝜏𝜏

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; Ξ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

We have the following boundary conditions for the 
atmosphere variables that are confined in the ocean 
domain:

 KA(t,0) = e−𝛾𝛾𝛾LA−LO)KA(t, LO) and RA(t,0) = e3𝛾𝛾𝛾LA−LO)RA(t, LO) (18)

where LA and LO represent the length of the equatorial 
belt and Pacific ocean, respectively. We have the 
following reflective boundary conditions for the ocean 
variables:

 KO(t,0) = rWRO(t,0) and RO(t, LO) = rEKO(t, LO) (19)

where x = 0 and x = LO represent the western and 
eastern parts of the ocean, respectively. Initial conditions 
for the model can also be written as:

Figure 4 Random field solutions of oceanic Kelvin and Rossby waves generated using different stochastic bases.

ξP0 ξP1 ξP2 ξP3 ξP4 ξP5 ξP6 ξP7 ξP8 ξP9

1.0000 –1.3102 –0.0109 1.7551 1.3406 0.7429 –1.2924 1.0150 0.2958 2.0311

1.0000 0.3678 –0.5975 –0.0969 0.0215 –0.3817 –0.7041 0.3456 –0.6991 –0.1101

1.0000 0.7719 –0.6630 1.3424 0.7646 –1.2890 0.1414 –1.5045 –1.1763 –1.2049

1.0000 0.0194 –0.2582 0.6723 0.8448 –1.0832 2.0494 0.4994 1.1276 –2.1716

1.0000 –0.1005 –0.1200 –0.0088 0.8219 0.3810 0.1785 1.5316 –0.3415 –0.6532

Table 1 Gaussian random variables multiplied by the corresponding propagator coefficients for different sets.
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 KO(0, x) = fO(x) ; RO(x,0) = gO(x) ;

T(0, x) = TO(x) and 𝜏𝜏(0) = 0

 
(20)

Atmospheric and oceanic Kelvin and Rossby waves play 
crucial roles in the ENSO dynamics. During an El Niño 
event, Kelvin waves often cause the thermocline to 
deepen in the central and eastern Pacific. As these waves 
travel eastward, they can cause an increase in SST by 
bringing warmer waters to the central and eastern parts 
of the Pacific Ocean. On the other hand, Rossby waves 
can modulate the influence of Kelvin waves by altering 
the large-scale ocean circulation patterns and can 
contribute to the overall variability in SST by modulating 
oceanic heat transport and mixing processes.

Although we consider only the one-dimensional model in 
this paper, after solving the system (17), one can reconstruct 
the two-dimensional (zonal and meridional) model (x, y) 
using the atmospheric and oceanic parabolic cylinder 
functions, as illustrated in Figure 5. The first atmospheric 
parabolic functions read 𝜙𝜙0(y) = (𝜋𝜋)−1/4 exp(−y2/2),  
𝜙𝜙2(y) = (4𝜋𝜋)−1/4(2y2 − 1) exp(−y2/2), while the ocean 
parabolic functions read Ψm(Y) where Y = y/√c (Chen, 
Majda, and Thual, 2018; Thual et al., 2016). The parabolic 
cylinder functions in the ocean and atmosphere differ 

due to the Rossby radius. Some important features 
of the ENSO model are depicted in Figures 6 and 7. 
Stochastic wind bursts force the ocean variables with 
the spatial profile sp(x) notably impacting the western 
half of the ocean, particularly the first quarter, as shown 
in the Figure 6. The thermocline depth, influenced 
by the oceanic Kelvin wave KO(t, x) and Rossby wave 
RO(t, x), is incorporated into the SST component through 
the thermocline feedback variable 𝜂𝜂𝜂x).

In our numerical simulations, we observe that the initial 
conditions of the model keep dominating the system until 
around time T = 10.0. Therefore, we simulate the model 
until 3-period, which is Tf = 28.8, to analyze both transient 
and steady states. Ocean is forced by the atmosphere in 
two ways : (i) deterministic forcing caused by the wind 
flow KA(t, x) and RA(t, x) and (ii) stochastic forcing created 
by the wind burst activities 𝜏𝜏𝜏t). Figure 7 depicts the time 
evolution of atmospheric forcing (KA(t, x) − RA(t, x)) at the 
mid-ocean with coupling coefficient 𝜅𝜅 𝜅 5.75, dissipation 
dp = 1.0, noise strength 𝜎𝜎 𝜎 1.2 and mean ̂𝜏𝜏 𝜏 𝜏0.25.

Figure 7 also depicts the response of SST at the mid-
ocean to the coupling coefficient 𝜅𝜅 between atmosphere 
and ocean. As the coupling strength increases, the 
ocean is forced by the atmosphere with higher strength. 

Figure 6 Zonal wind burst profile sp(x) (left) and zonal thermocline feedback profile 𝜂𝜂𝜂x) (right).

Figure 5 Meridional profiles of atmosphere (𝜙𝜙0,2(y)) and ocean (Ψ0,2(Y)) parabolic cylinder functions and.
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This response grows significantly after surpassing a 
certain threshold value of 𝜅𝜅 which acts as a bifurcation 
parameter.

4 RESULTS

We first apply WCE to the Ornstein-Uhlenbeck (OU) 
process, which models stochastic wind burst activities 
affecting the ocean. Figure 8 shows the variance of the OU 
process for different numbers of WCE modes, along with 
the corresponding errors relative to the exact solution. 
We observe that a small number of modes, such as 2, 5, 
and 10, fail to capture more than 50% of the variance. In 
contrast, after using 40 modes, the WCE variance results 
converge closely to the exact values. Since 50 modes 
capture over 90% of the variance, we can effectively 
use 50 modes to represent the OU variance and coupled 
model, achieving a satisfactory convergence to the 
random field solution of the problem.

To apply WCE for the coupled high dimensional 
problem, we first truncate the propagator equations 
that can be solved by well-known numerical schemes. 
We use upwind finite difference schemes for the ocean 

and SST components and numerical integration for the 
atmosphere as shown in Appendix. The solutions of 
propagators are used to calculate the mean and variance 
of the model. Finally, one can construct the stochastic 
bases by using Gaussian random numbers and can 
combine them with the deterministic propagators to 
calculate random field solutions. Numerical scheme 
and spectral decomposition of the problem (17) are 
summarized in Table 2.

4.1 WIENER CHAOS EXPANSION AND MONTE 
CARLO SIMULATIONS
WCE can provide significant advantages in terms of 
convergence rate, efficiency, and analytical insights for 
many problems involving uncertainty quantification. 
However, for extremely high-dimensional, nonlinear, and 
discontinuous problems, WCE can become infeasible. 
Moreover, to analyze models where analytical or exact 
solutions are not easily available, such as stochastic 
ENSO models, one needs to utilize other numerical 
techniques to confirm convergence and efficiency. For 
this purpose, the coupled model (17) can be numerically 
solved by the Monte Carlo method. Monte Carlo methods 
are straightforward to implement and require minimal 

Figure 7 Deterministic and stochastic wind activities (left) and response of the SST to the different atmosphere-ocean coupling 𝜅𝜅 at 
the mid-ocean (right).

Figure 8 Variance of OU-process obtained from WCE with different number of modes 𝜎𝜎 𝜎 1.2, dp = 1.0 and ̂𝜏𝜏 𝜏 𝜏0.25 (left) and L1 
errors relative to the exact (analytical) solution (right).
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modifications to the underlying deterministic solver. This 
simplicity makes them accessible and widely applicable 
over WCE based methods. MC methods provide direct 
estimates of statistical quantities such as mean, variance, 
and higher-order moments through sampling. Although 
each method has its own advantages and drawbacks, 
a combination of them provides numerical proof of the 
convergence and accuracy of simulations.

The idea of MC simulation is to sample the random 
forcing and solve the model equations sample by sample. 
The Brownian motion path is sampled by generating 
Gaussian random variables W(tn+1) −W(tn) = √Δt𝒩𝒩(0,1) 
repeatedly. The statistical moments of the random 
solution are computed by averaging many realizations in 
the MC simulation. For example, the mean of the random 
solution is estimated by the MC ensemble average:

 uMC
M (t, x) = 1

M

M

∑
k=1

u(t, x, 𝜔𝜔k) (21)

where u(t, x, 𝜔𝜔k) is a realization computed by the MC 
simulations, 𝜔𝜔k is the sample path of Brownian motion, 
and M is the total number of realizations. To analyze the 
convergence behavior of the MC simulation, we compute 
different numbers of ensembles as M ∈ [10,50,100,300]. 
The relative error of the mean is computed as

 𝜖𝜖u(M) =
||uMC

M (t, x) − 𝔼𝔼𝔼u(t, x)]||
||𝔼𝔼𝔼u(t, x)]||  (22)

where 𝔼𝔼𝔼u(t, x)] is the benchmark mean computed by 
WCE simulation. We also calculate the variance error 
using WCE and MC calculations. The variance of Monte 
Carlo ensembles is calculated as

 𝜎𝜎MC
u (M) =

(uMC
M (t, x) − 𝔼𝔼𝔼u(t, x)])2

M
 (23)

and the relative variance error is calculated as

 𝜖𝜖𝜎𝜎(M) =
||𝜎𝜎MC

u (M) − 𝜎𝜎WCE
u ||

||𝜎𝜎WCE
u ||

 (24)

Table 3 shows the relative error of WCE modes and MC 
ensembles for sea surface temperature T(t, x) computation 
times for simulating the ensembles of coupled model. The 
benchmark is computed with WCE mean and variance 
solutions. We observe that the mean and variance errors 
decrease as the number of Monte Carlo ensembles 
increases. However, the computation time dramatically 
increases depending on the ensembles. On the other hand, 
the computation time of the WCE solution takes remarkably 
shorter time with small mean and variance error.

Figure 9 shows the comparison of convergence of MC 
results of T(t, x) to the WCE at a fixed space point x = 0.6 
where x ∈ [0,1.2]. As the number of ensembles increases, 
the L1 error between the two methods decreases. 
However, the computational cost of the MC method is 
considerably higher compared to the WCE method.

Figures 10, 11, and 12 depict the mean and variance 
the oceanic Kelvin wave KO(t, x), Rossby wave RO(t, x), and 
sea surface temperature T(t, x) using both WCE and MC 
methods. We only need the first (unforced) propagator 
solution for the WCE mean results, which takes 15 
seconds. In contrast, the mean results for the MC 
simulations are obtained using 300 ensembles, requiring 
4880 seconds. Although the L1 error between these two 
methods is relatively small, the WCE method requires 
significantly less computation time to obtain the mean 
and variance solutions. As we make longer simulations, 
the error increases due to numerical inaccuracies. The 
variance of oceanic Kelvin and Rossby waves is confined 
in the first half of the ocean due to noise profile sp(x). The 
SST variance shifts towards the eastern part of the ocean, 
resulting in warmer water initiating El Niño events.

5 CONCLUSION

In this paper, we delved into a stochastic climate model 
by the numerical simulations based on Wiener chaos 
expansion and Monte Carlo methods. The utilization of 

NUMERICAL ALGORITHM FOR WIENER CHAOS EXPANSION

1. Choose a two-way of truncation for the (deterministic) propagator equations and random basis functions.

2. Truncate the number of propagator equations K ≥ 1.

3. Define grid points in the (t, x) ∈ [0, T] × U for the appropriate finite difference scheme.

4. In this problem, we use Δt ≈ 3.0 × 10−2 and Δx ≈ 2.4 × 10−2 and simulate the model with t ∈ [0,28.8] and x ∈ [0,1.2].

5. For each time ti = iΔt and xj = j(Δx1, ..., Δxn), solve the deterministic propagator system of equations.

6. From the propagator solutions, construct the statistical moments, i.e., mean and variance.

7. (optional) Generate random variable 𝜉𝜉k, k = 1,2, ... and compute the random field solution.

KA(t, x)= ∑
𝛼𝛼𝛼𝛼𝛼

KA𝛼𝛼(t, x)V𝛼𝛼(𝜉𝜉) ; RA(t, x) = ∑
𝛼𝛼𝛼𝛼𝛼

RA𝛼𝛼(t, x)V𝛼𝛼(𝜉𝜉) ; T(t, x) = ∑
𝛼𝛼𝛼𝛼𝛼

T𝛼𝛼(t, x)V𝛼𝛼(𝜉𝜉)

KO(t, x)= ∑
𝛼𝛼𝛼𝛼𝛼

KO𝛼𝛼(t, x)V𝛼𝛼(𝜉𝜉) ; RO(t, x) = ∑
𝛼𝛼𝛼𝛼𝛼

RO𝛼𝛼(t, x)V𝛼𝛼(𝜉𝜉) ; 𝜏𝜏(t) = ∑
𝛼𝛼𝛼𝛼𝛼

𝜏𝜏𝛼𝛼(t)V𝛼𝛼(𝜉𝜉)

Table 2 Numerical scheme for the solution of deterministic propagators and combining with the appropriate random basis to obtain 
WCE solution of SPDEs.
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WCE provided a comprehensive study based on spectral 
approach while MC simulations enhanced our ability to 
analyze stochastic models through ensemble methods. 
Although WCE and MC based methods have been applied 
to many problems, this paper investigated a relatively 
uncommon application on the high dimensional coupled 
SPDE models.

Initially, we applied the WCE-based scheme on the 
simple ocean model formed by oceanic Kelvin and 

Rossby waves forced with white noise. The WCE approach 
with 10 propagators converged exact mean and variance 
values obtained from the method of characteristics 
with high accuracy. These results demonstrated that 
the WCE method would be an appropriate method 
for high dimensional and more complicated models. 
Subsequently, we utilized a linear stochastic ENSO model 
forced by the Ornstein-Uhlenbeck process to show 
the accuracy of the method. We compared the WCE 

RELATIVE ERROR COMPARISON: MC ENSEMBLES VS. WCE

METHOD MEAN ERROR COMPUTATION TIME VARIANCE ERROR

10 MC Ensembles 0.3792 168 sec 0.4150

50 MC Ensembles 0.0853 798 sec 0.1241

100 MC Ensembles 0.0645 1627 sec 0.1066

300 MC Ensembles 0.0635 4880 sec 0.0616

50 WCE Modes – 801 sec –

Table 3 Comparison of relative mean and variance errors for MC ensembles and WCE method for sea surface temperature T(t, x), 
including computation times on a common laptop.

Figure 9 Comparison of WCE and MC variance results of T(t, x) with different number of ensembles at a fixed space point x = 0.6.

Figure 10 (a) Mean of oceanic Kelvin wave KO(t, x) obtained from WCE (1st propagator), MC (300 ensembles), and the corresponding L1 
error. (b) Variance of oceanic Kelvin wave obtained from WCE (50 propagators), MC (300 ensembles).



203Aydogdu and Sri Namachchivaya Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.4067

results formed by 50 modes, which is assumed to be 
the benchmark for the solution, with 300 MC ensembles. 
We showed that the mean and variance results of the 
stochastic model based on MC method converges to 
the WCE results. Remarkably, the model simulation with 
WCE required less computational resources as opposed 
to MC ensembles. Along with the noise construction 
with specific model parameters, this work provides an 
alternative approach for simulations of stochastic climate 
models with accurate and less computational resources 
that can be considered as the first step of more complex 
and longer simulation.

Despite the fact that WCE provides several advantages 
both numerical and theoretical, it has its drawbacks. 
As WCE is applied to particularly high dimensional 
nonlinear problems, it becomes more computationally 
expensive due to the increasing number terms in the 
chaos expansions. The simulation of stochastic models 
involving non-Gaussian processes through WCE may not 
be the most efficient and effective approach. Depending 
on the type of problem, MC or other numerical methods 
can be more suitable.

APPENDIX
Consider the boundary value problem related to the 
ENSO atmosphere equation

U′(x) = −𝛼𝛼U(x) + T(x) 0 ≤ x ≤ LO

with boundary conditions U(LO) = rU(0). Here, T(x) is a 
given function of temperature, and r is a given constant, 
and we wish to find U that could be KA(x) or RA(x). The 
general solution is

U(x) = e−𝛼𝛼xU(0) + e−𝛼𝛼x∫
x

0
e𝛼𝛼yT(y)dy

The boundary condition gives

rU(0) = e−𝛼𝛼LU(0) +∫
L

0
e𝛼𝛼yT(y)

so that

U(0) = 1
r − e−𝛼𝛼L

e−𝛼𝛼L∫
L

0
e𝛼𝛼yT(y)dy

and hence

U(x) = e−𝛼𝛼x

r − e−𝛼𝛼L
e−𝛼𝛼L∫

L

0
e𝛼𝛼yT(y)dy + e−𝛼𝛼x∫

x

0
e𝛼𝛼yT(y)dy

Let V(x) denote the solution to the ODE with the initial 
condition V(0) = 0. Then

V(x) = e−𝛼𝛼x∫
x

0
e𝛼𝛼yT(y)dy

and so

U(x) = e−𝛼𝛼x

r − e−𝛼𝛼L
.V(L) + V(x)

Figure 12 (a) Mean of sea surface temperature (SST) T(t, x) obtained from WCE (1st propagator), MC (300 ensembles), and the 
corresponding L1 error. (b) Variance of sea surface temperature (SST) obtained from WCE (50 propagators), MC (300 ensembles).

Figure 11 (a) Mean of oceanic Rossby wave RO(t, x) obtained from WCE (1st propagator), MC (300 ensembles), and the corresponding 
L1 error. (b) Variance of oceanic Rossby wave obtained from WCE (50 propagators), MC (300 ensembles).
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