
A Study of the Time-Dependent Wind-Driven Circulation in a 
Homogeneous, Rectangular Ocean’ 

By G. VERONIS2 and G. W. MORGAN3 

(Manuscript received 29 May, 1954, revised December 10, 1954) 

Abstract 
A theoretical investigation of the ocean circulation induced by zonal winds whose amplitude 

varies harmonically with time is presented. The analysis is based on a perturbation scheme 
with respect to a small parameter which is essentially the frequency of the wind variation and 
the solutions are derived by boundary layer methods. Results are obtained for the variation 
of the intensity of the currents and their phase lag behind the wind, as well as for the devia- 
tion of the free surface from its equilibrium position. 

Introduction 

Much of the investigation, both theoretical 
and observational, in the field of oceanography 
has centered around the dynamics of ocean 
currents-including the mass transport of the 
Gulf Stream and the Kuroshio Current, and 
the general oceanic circulation. Recently 
interest has also developed regarding the 
response of the thermocline (the region of 
sharp vertical gradient of density) to a time- 
varying wind. 

Since the time of EKMAN’S (1905) first paper, 
a large number of articles dealing with various 
aspects of ocean currents have appeared in the 
literature. However, analytical investigations 
of the problem of general oceanic circulation 
have met with success only in recent years. In 
the past decade various interesting and mean- 

1 The results presented in this paper were obtained in 
the course of research sponsored by the Office of Naval 
Research under Contract N7onr-35801, NR-041-032, 
with Brown University. For a more detailed account 
of the work the reader is referred to [8] in the bibliog- 
raphy at the end of this paper. 

Research Assistant, Division of Applied Mathematics, 
Brown University, Providence, Rhode Island. Now at 
the Institute for Advanced Study, Princeton, New Jersey. 

Associate Professor, Division of Applied Mathe- 
matics, Brown University, Providence, Rhode Island. 

ingful mathematical models have been suggested 
by numerous investigators. SVERDRUP (1947), 
and REID (1948) proposed a fairly simple model 
which seems to give very good qualitative 
results for a region with only one north- 
south boundary. STOMMEL (1948) considered 
two linearized models with a simplified viscous 
term. His very important contribution to the 
overall problem is based on the difference 
between the results obtained with the two 
models. In one case, the Coriolis term was 
constant and the resulting streamline pattern is 
identical with the one in a model with no 
rotation. In the second case, the Coriolis term 
varied linearly with latitude and westward 
intensification resulted-a factor which was not 
present in the previous case. Since Stommel’s 
paper all problems dealing with general cir- 
culation contain a varying Coriolis parameter. 
MUNK (1950) refined all the previous work 
and included the general viscous terms in the 
equations of motion. He solved the problem 
of a steady wind blowing over an enclosed 
ocean, taking account of many of the salient 
features which are present in the real ocean. 
Munk‘s work was extended by MUNK and 
CARRIER (1950) to include oceans of various 
geometrical shapes, viz., triangular and semi- 
circular. It was further extended by MUNK, 
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GROVES, and CARRIER (1950) to include the 
non-linear terms by means of a perturbation 
procedure. 

Along with the American publications, a 
number of papers have appeared in Japan. 
Notable among the Ja anese authors is HIDAKA 

articles covering many of the interesting 
phenomena of oceanographic problems. 
Among his contributions are a series of three 
papers on drift currents in an enclosed ocean 
and a contribution concerning the neglect of 
the non-linear terms in the solution of problems 
in dynamic oceanography (HIDAKA, MIYOSHI, 

The general problem of oceanic circulation 
essentially consists of finding the dynamic 
pattern which results from a given distribution 
of winds acting on the ocean surface. The 
complete problem contains a large number of 
features, such as large-scale oceanic circulation, 
surface waves, upwelling, etc. To study all 
these features one would have to take into 
account the effects of wind, of density and 
temperature distributions, of the topography 
of the ocean bed, of the salinity variation, 
and of many other factors. Needless to say, a 
mathematical analysis including all these fea- 
tures is impossible. It is therefore necessary to 
decide what particular aspects of the problem 
one wishes to study. In this paper we shall 
confine our attention to the large-scale, wind- 
driven circulation. 

Most of the existing work in this particular 
field is concerned with steady state motions. 
In the Atlantic Ocean these include the Gulf 
Stream and its counter-currents, the Sargasso 
Sea, etc. It is the purpose of this work to 
investigate the response of the large-scale 
motions to a prescribed time variation in the 
wind. This time-dependent problem has also 
been considered by ICHIYE (1951) and we shall 
discuss his work later on in this paper. 

There is no doubt that the vertical variation 
of density plays an important role in the 
response of the ocean to a time varying wind 
and should therefore be taken into account. 
For purposes of clarity of exposition, we shall, 
however, reserve an examination of the effects 
of this density variation for a future paper and 
shall assume in the present paper that the ocean 
is homogeneous, and, moreover, that it is of 
uniform depth. 

(1950 a, b, 1951) w R o published a series of 

1949). 
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Formulation 

W e  assume that the motion which we want 
to study can be defined mathematically by the 
Navier-Stokes equations of motion referred 
to a rotating sphere with the viscous terms 
replaced by terms arising from a macroscopic 
viscosity, viz., an eddy viscosity'. These 
equations are 

and the equation of conservation of mass is 

where q denotes the relative velocity vector 
on the rotating sphere, 

9 denotes the (constant) density, 
p denotes the pressure, 
r 

52 

denotes the radius vector from the 
center of the sphere, 
denotes the angular velocity vec- 
tor representing the rotation of 
the earth, 
denotes the external forces per 
unit mass (in our case, gravita- 
tion), 

E(q) represents the eddy viscosity 
term which will be defined speci- 
fically later. 

F 

The full non-linear problem is too compli- 
cated to solve analytically. As a result, we shall 
make a series of simplifylng assumptions which 
we shall list below. The reader is referred to 
VERONIS and MORGAN (1953) for a detailed 
study of some of these assumptions. 

I. The fluid is assumed to be incompres- 
sible. The continuity equation (2), therefore, 
reduces to 

v * q = o  

2. The equations on a rotating sphere are 
approximated by equations in a rectangular 

(2 a) 

- 
1 The eddy viscosity term approximately replaces the 

Reynolds' stresses arising from turbulence. The numerical 
value of the eddy viscosity coefficient is chosen so as to 
give a reasonable width to the Gulf Stream. 
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Cartesian system. The effect of the sphericity 
of the earth is retained by allowing the Coriolis 
parameter to depend on the latitude. 

3. The vertical acceleration terms and the 
viscous terms are neglected in the equation of 
vertical motion so that, in effect, hydrostatic 
pressure is assumed, i.e., a laz = - g  Q. We 
let 7 be the free surface [eight and require 
that p = o at z = 7. 

4. The non-linear terms in the equations of 
motion are neglected. MUNK, GROVES, and 
CARRIER (1950) have concluded that inclusion of 
the non-linear terms does not alter the quali- 
tative behavior of the steady state solution. 
While, in the authors’ opinion, this point de- 
serves further careful investigation, we shall 
assume here that the conclusion of these 
authors is correct, and moreover, that it also 
holds in the non-steady case. It should be 
pointed out, however, that in view of the very 
drastic simplification made, the purpose of our 
analysis is the determination of the conse- 

uences of stipulating a particular, simple, 
Leoretical model, rather than the investiga- 
tion of a model which, on the basis of sound 
reasoning, may confidently be expected to 
resemble the real ocean. 

5 .  The Coriolis parameter is linearized. In 

effect, we write 2Q sin (i) FZ By where B = 

= 2Q/R.  Here, R is thi mean radius of the 
earth, Q is the angular speed of rotation of 
the earth and y is the south-north coordinate 
measured positive northward. 

With the above assumptions equations (I)  
and (2) in component form become 

- - B y ~ = - g - + A a u + ~ ( A , ~ )  27 (3)  
at J X  az 

aP 
= -ge  

au av aw 
ax ay az 
-+-+- = o  

where the eddy viscosity terms 

A a + 2 az (A, &) = A (& + $) +&(A, &) 

are chosen to have the same mathematical 
form as the viscosity term in laminar flow, 
subject to the assumption, however, that the 
kinematic eddy viscosity associated with lateral 
shear may be different from that associated 
with vertical shear, the former, A, being taken 
as a constant, the latter, A,, as an arbitrary 
function of position. 

The equations (3),  (4, and (6) together 
with the boundary conditions u = v = w = o 
on a land-water boundary and an appropriate 
free surface condition must be solved for u, v ,  
w,  7. The wind-stress enters as the value of 
the shear force at the free surface. 

The problem as it has been defined thus far 
is an extremely difficult one to solve because 
of the presence of four independent variables 
x, y,  z ,  t. Consequently, we propose to inte- 
grate the equations over the vertical coordinate, 
z ,  whereby information regarding the vertical 
distribution of the velocities is lost. As we are 
primarily concerned with general oceanic 
circulation and mass transport, however, and 
because the integration reduces the complexity 
of the equations considerably, the advantages 
gained more than balance the loss of informa- 
tion involved. 

Therefore, we choose a constant depth 
z = - D and integrate the equations from 
z = - D to the free surface z = q (x, y, t ) .  
Then the equations (3),  (4, become 

where 
n 

u= uedz, - 1  v= vedz - s  - D  - D  

We have neglected the non-linear terms result- 
ing from interchanging the derivatives and 
integrals of the velocity terms. 

The vertical viscous terms A, 
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components z,, zy at the free surface, z = q, 
and the bottom friction at the depth, z = - D. 
We assume that the bottom friction terms are 
negligible and approximate D + q by D. Then 

If the continuity equation is integrated and 
the free surface condition (LAMB, 1932) 

a )  ( ax ay ax 
a a a  
j j + u - + v - + w -  (q-z )=o 

is used, the integrated continuity equation 
becomes 

av+ av a(qe) --=-- 
ax ay at 

The depth z = - D represents either the 
depth of an ideal ocean of uniform depth or 
else a constant level above which the mass 
transports U, V are to be found and at which 
w is negligible. In either case the analysis 
assumes that the shear forces at x = - D are 
negligible. 

We now consider a rectangular ocean 
bounded by land at x = 0, x = rl, and by 
water at y = 0, y = s. Then the boundary 
conditions on x = 0, x = rl are that the mass 
transports U, V vanish there. 

- -  

- -  
The wind-stress is specified to be 

z,=-(W'+T'sinwt) cosny, z,=o (12) 

where W', r' represent the magnitude of the 
mean wind-stress and the am- 
plitude of the time variation of 
the wind-stress, respectively, 
is the frequency of wind varia- 
tion, 
is the wave number associated 
with the wind distribution. 

cu 

n 

One can consider the above form for the 
wind-stress as a typical term in a Fourier series 
for a more general wind distribution. The 
numerical results in this paper are based on a 
Tellus VII (1955). 2 

value of cu corresponding to a period of one 
year, and n is set equal to m / s ,  where s is the 
north-south length of the ocean, Fig. I. 

I 0 4  
( 0 )  ' (b)  

Fig. I. (a) The wind-stress distribution vs. y coordinate. 
(b) The rectangular ocean with dimensions in both the 
dimensional and non dimensional coordinate systems. 

The problem to be solved now consists of 
finding U, V, q from equations (9), (IO), and 
(I I) together with the boundary conditions 
U = I/ = o on x = 0, rl, and the specified 
wind-stress components (12). Since the y 
derivative of the wind-stress vanishes at y = 0, 
s, plausible boundary conditions at y = 0, s 
are that these lines be streamlines and that 
there be no lateral shear, i.e., a f i /ay  = 0. 

Solution 

The problem as defined in the previous 
paragraph can be solved by boundary layer 
methods. In order to apply boundary layer 
technique it is convenient to non-dimensio- 
nalize equations (9), (10), and (11). The choice1 
of the non-dimensional quantities suggested by 
an inspection of the equations is 

- -  

- -  

The extent of the rectangular ocean in 
dimensionless coordinates is given by 

o < x f < 5 = = r  o < y ' s I  

See VERONIS, MORGAN (1953) for details. 

S 
___- 
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Then (9), (IO), and (11) become A stream function y may be defined by 

2U JH 
at ax 

nsS --my V +  0 - = nse A U -  

- ( I  + tc sin t) cos nsy (13) 

JV aH 
nsS - + nsy U +  0 - = nse A V f rq)  a t  JY 

au av 2H - + - = - d -  
ax Jy at 

where we have dropped the’ primes from x’ 
and y’ and will work in the dimensionless co- 
ordinate system henceforth. 

Attempts to solve equations (13)  to (IS)  in 
closed form were unsuccessful. We therefore 
resort to seeking solutions by a perturbation 
expansion in the parameter 6. This implies 
“small” 6 and hence asmalh frequency. We 
shall learn later just what this means. Let 

u = u, + su, + s2u2 + . . . 
v = v, + sv, + s2v2 + . . . 
H = H, + SH, + S2H2 + . . . 

Our formal procedure is to regard the coef- 
ficients U,, U,, etc. as coefficients in a power 
series in 6. If these expansions be substituted 
into equations ( 1 3 )  to (IS) ,  then a series of 
independent equations will result by equating 
the coefficients of equal powers of S on the 
two sides of the equations. 

A. The zero-order eqrrations. We have 

JH,  -my V, + 0 - = nsea U,- 
ax 

- ( I  + OL sin t) cos nsy 

aH0 nsy U, + 0 - = nssa V, 
JY 

(16) 

(17) 

Eliminating H, between (16) and (17) we 
obtain 

E [ V L l X X X  + vox,, - u o x x y  - ~ O , , J  - V, = 

= ( I  + u sin z) sin nsy (19)  

so that (IS)  is satisfied identically. Then (19) 
becomes 

F A  A Y - ~ ~  = (I + tc sin t) sin nsy (21) 

a 4  a 4  a 4  . 
where A A -  ~ + 2 + - IS the bi- 

a x 4  a x 2 a y 2  a v 2  

harmonic operator and subsEripts x; y, t denote 
differentiation. 

The boundary conditions are 

y = y x  = o  on x = o  
y = y y v = o  on y = o  Y = I  

= } (22) 

The problem defined by (21) and (22) with 
tc = o is the one solved by MUNK (1950) .  

Because E is small a boundary layer1 analysis 
at the boundaries x = 0, r is convenient. The 
solution is found to be 

y = ( I  + tc sin t) sin nsy --x + r-8’18 + I 

From (20)  U, and V, are found to be 

U,= -ns ( I  + cc sin t) cos my 

1 MUNK and CARRIER (1950) used this method for 
solving the steady problem in a triangular ocean. A 
detailed discussion of the solution to the problem defined 
by (21) and (22) is presented in Appendix 5 of VERONIS, 
MORGAN (1953). 

Tellus VII (1955). 2 
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2 

Solving for H,, we have from (16) and (17) 
(neglecting terms of order E) ,  

OH, = ( I  + a sin t) (cos nsy + nsy sin nsy) - 
- ( - x + r - &'/a) 

+ ( I  + a sin t) nsy sin nsy &l/ae(x-f)e-l'* I 

B. T h e  first-order equations. These are 
nsU,,-nsy V,  + OHlX=ns~aUl  (27) 

nsV,, + nsy ul + @Hl,=ns&A Vl (28) 

u 1 X  + Vly= - H O T  (29) 

Eliminating Hl from (27) and (28), we find 

& [ V1xx.V + VlX,, - U1xxr - UI,,,] - Vl = 

= [ V ~ x -  u o y - y H O ] ,  (30) 

The boundary conditions are Ul = V,  = o on 
x = o ,  x =r.  

Approximate solutions of eq. (29) and (30) 
may again be found by a boundary layer 
analysis. The solutions are 

[(yzns + OnY) sin nsy + y cos nsy] + 

a cos t u - - -- [znsy sin nsy + (y2n2s2 + 2 + 
1- @ 

I 
-a  cos t ns cos nsy [Al(y) - + 

u cos t 
-~ nsy sin nsy 0 

e 2 -  

\' 3 

- a  cos t ns cos nsy&-'/s + 

&-I/* + acost----' 
2 

Tellus VII (19J5), 2 
7-504223  
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The arbitrary functions of y can be evaluated 
by means of the boundary conditions Ul = 

c( cos t + -_ nsy sin nsy E - ' 1 s  . 0 
= V,  = o on x = 0, r. We  have 

+ y cos nsy] 
2 

&=I8 

0 I i- 
sin nsy A,  = - [ ( m y 2  + O n Y )  sin nsy + 

+ v ros ntvl (74')  

CC cos t c --. 
1 -  @ 

xe - 'I. 
-- CCCOSt . e  2 +- nsy sin nsy . n 

. { [znsy sin nsy + (yZnzs2 + z + 0n3s3) - cos nsy l .  

sin nsy C, = I 43 @ 

+--- 2 F  2 W ]  sin nsy + 

( #S 4 .  ) 
#S I O .  ) 

3 3  

+ 5 y cos nsy - - sin nsy r ~ ' 1 3  - 

- (9 y cos nsy - - sin nsy $18 + 

+ (r&z/s-&) (y2ns + @n2s2) sin nsy ] (36) 

'The first-order contribution to H can be 
found from equations (27), (28). It is 

ns tc cos t H-----. 
0 2  

1-  

. { [ ( ~ n s  + yz)  cos nsy + (y3ns + y0nzs2) sin m y ]  * 

The terms U,  and V,  do not satisfy the 
boundary conditions V,  = >U,/iJy = o on 
y = 0.1. W e  must recall that these boundary 
conditions were chosen rather arbitrarily as 
being plausible ones for the type of wind 
distribution specified, and the y dependence 
of the zero-order solution was accordingly 
chosen as sin nsy. W e  cannot expect such a y 
dependence to satisfy the conditions for each 
set of equations. The fact that U,  and Vl do 
not satisfy these boundary conditions does not 
seem to be very serious since we do not really 
know what conditions are appropriate. 

If we next consider the equations resulting 
from equating the coefficients of d2 in equa- 
tions (13) to (IS), we obtain 

In the first-order solution the unknown V, is of 
the same order of magnitude as the largest driving 
term, VOxT. In the present case, V,, is of order 
E-1 in the boundary layer and hence V,  can be 
expected to be of order since the equations 
are completely analogous. By a similar argu- 
ment, we can expect V, to be of order 
V,  to be of order% & - ' l a ,  etc. If we therefore 
write out the series 

Tellus VII (1955), 2 
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V = V, + BV, + B2V2 + B3V3 + 84V4 + . . . 
we have (in terms of orders of magnitude) 
near x = 0, 

I/= 0 (&-'is) + & - l / r O  (&-'/a) + &9-*/ao (&-'/a) + 

+ 83~-10(~- l /a )+  ... 
or factoring out the o (&-'/a), we have 

V = 0 ( E - y  [I + + ( B E - l q 2  + . . .] 
The perturbation scheme may be expected 

to be valid provided BE - ' / a<  I. We  can expect 
a fairly good approximation from only the 
first two terms provided the more stringent 
condition BE -'I* < I is imposed. If BE -'/a = I 15, 
the error involved in neglecting the third 
term is no larger than 5 yo of the first term. 

For yearly variation of the wind, Be -'/a rn I /6 
Hence we shall kee only the first two terms of 

the magnitude of the effect of the erturbation 
of the 

expansion. 

Discussion of Results 
In order to discuss the above solutions, we 

shall prescribe numerical values for the con- 
stants of the problem. Let 

the series. It shoul B be noted that u determines 

but it has no bearing on the vaidity P 

r1 =6.5 x 108 cm 
s = 5  x108cm D = ~ x ~ o ~ c m  
A = 5  x 107 cm2 sec-l u) =2 x 10-7 sec-l 
n =zn/s W' =0.65 gm cm-l s e c 2  

The magnitudes of rI, s, A,  D correspond 
roughly to the Atlantic Ocean parameters. 
The value of is chosen so as to give the best 
approximation to the Coriolis parameter in 
the latitude of Cape Hatteras. The equality 
n = 2 n / s  corresponds roughly to the east-west 
components of the trades and the westerlies. 
The value of w corresponds to yearly frequency 
of the wind variation, and W' = 0.65 gm 
cm-l s e r 2  is the value used by MUNK (1950) 
for the wind-stress. 

Then the dimensionless constants have the 
values 

j3 =2 x 10 - l~  cm-1 sec-l 

r = 1.3 

Also r' has been chosen so that 

tl = 0.2 

I .- 
-I 0 

Fig. 2. The non-dimensional mass transport function V near x'= o (western boundary) showing 
Gulf Stream and counter current 

Tellus VII (1955). 2 



240 G. V E R O N I S  and'G. W. M O R G A N  

r.0- 

r * 3 - -  
r;r" - - 
I , . - . . . - 

120 121 122 123 124 125 126 127 128 123 13 

Fig. 3. Non-dimensional mass transport function C' near x'= r (eastern boundary) 

-V 

. 1.2 

- ID 

- 08 

- 06 

- 0.4 

The results for this numerical example are 
shown in Figs. 2-6. 

In Fig. z the non-dimensional, south-north 
component, V, of the mass transport is plotted 
against x' near x' = o for the value y' = 0.25.  
The region of large V corresponds to the Gulf 
Stream and the section adjacent to the Gulf 
Stream, with negative V, corresponds to the 
off-shore counter-current. 

Assuming that the complete solution is 
represented sufficiently accurately by the first 
two terms of the perturbation series, we see 
that the transport V is given by Vo + SVl or 
(I + a sin z) Q-S (a cos z) L where Q and L 
are functions of the dimensionless coordinates 
x and y and of the parameters E and 0. Since 
the wind is given by I + asin z, this shows 
that there exists a phase lag, 0, between the 
wind and the transport such that tan 0 = L6/Q, 
which, since 0 < I ,  is approximately given by 
0 = L6/Q. In terms of dimensional quantities, 
if 0 = cot,, then, since 6 = co/Bs, to = (L/Q) - 
. (I  ips) and to gives the lag in the variation of 
the transport behind that of the wind. The lag 
is independent of frequency co and the relative 
amplitude of the wind variation a. For the 
transport shown in Fig. 2 ,  the lag is 3 days near 
the center of the Gulf Stream and 41/2 days 
near the center of the counter-current. The 
maximum transport is Q(I +a) +d2crL2/zQ and 
it occurs at z = njz  + 0. Within the accuracy 
of the present treatment we can approximate 

the maximum transport by Q(I +a) since 
62aL2/zQ2 = o (d2&-'/r), i.e., the correction is 
of second-order. 

It is apparent from Fig. z that the out-of- 
phase effect is of relatively greater importance 
in the counter-current than in the main stream. 
The inertial effects introduced by the time 
dependency give a relatively larger out-of- 
phase correction and hence, as noted previously, 
a larger time lag in the counter-current. The 
graph shows the various effects only up to the 
eastern edge of the counter-current at x' = 0.1. 
For x' > 0.1 only the mean value of the 
transport is plotted since the deviations from 
this mean value are very small. 

In Fig. 3 the transport V is shown near the 
eastern boundary of the ocean. 

Figures 4, 5 ,  and 6 show surface contours 
for the southern half of the rectangular ocean 
for z = 0, n / z ,  n, 3n/2. The contribution of 
SH, is very small throughout the ocean1 and 

If for any of the variables the magnitude of the 
coefficient of 6 in the perturbation solution is of the same 
order as that of the zero-order term, the coefficient 
6 = 0.002 renders such a correction negligible. Through- 
out the present example, the only sizable contribution of 
the out-of-phase term is found in the north-south 
transport V in the boundary layer where the function 
V increases by order &-'/*. However, H,, and HI have 
the same order of magnitude throughout the ocean so 
that the first-order correction €fI can be neglected 
throughout. 

T'ellur VII (1955). 2 
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Fig. 4. 5 and 6 - Height in cms of free surface for southern half of rectangular ocean for 
different ,times,, t=o, n / z ,  z, 3~12. The correction of the perturbation terms in negligible. 

has therefore been neglected. Thus the graphs 
for z = o and t = z coincide. 

Our results are based on the assumption that 
the depth, D, is 5 0 0  meters. If we change the 
value of D, the first-order velocities are also 
changed since they are dependent on H, whch 
is itself directly dependent on D. In particular, 
had we chosen, say, D = 250 meters rather 
than D = 5 0 0  meters, the value of H, would 
have been doubled and consequently the values 
of H,, V,, U ,  would have been increased. 
Their quantitative change must be found by 
numerical computation. 
Tellur VII (1955). 2 

The above results appear to invahdate the 
solution of the problem as obtained by ICHIYE 
(1951). Ichiye neglected the contribution of 
the non-steady term in the inte rated con- 

the parameters used in this section, the mag- 
nitude of h s  term in the interior of the ocean 
is as much as ten times that of the remaining non- 
steady terms which were retained in Ichye's 
analysis. Even though we have neglected the 
contribution of these terms in the interior of the 
ocean, they are important for the purposes of 
matching with the boundary layer solution. 

tinuity equation. However, with tf e values of 
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The steady mass transport of the Gulf Stream 
derived here for SI = o is 26.6 - I O ~  metric tons 
per second as compared to MUNK'S value (1950) 
of 36 - 106 and the observed value of 72-80. - 106 metric tons per second. MUNK (1950) 
used the east-west component of an empirical 
wind system and the discrepancy is therefore 
due to the difference between the two wind 
systems. The maximum (minimum) transport 
is I +a (I - a) times the steady transport. In 
the counter-current the steady mass transport 
is 4.61 106 metric tons per second or ap- 
proximately 17 yo of the mass transport of the 
Gulf Stream. The relative value of 17 yo agrees 
with observation, though the absolute value 
4.61 - 106 is about one-third of the observed 
counter-current transpl m. 

The difference between the computed and the 
observed values is not surprising when one 
considers the many idealizing assumptions 
made. Such features as the straight coast lines, 
the simplified theory of turbulence used, the 
neglect of the non-linear terms, and the 
idealized stress-effect of the wind on the water 
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could easily combine to yield quantitative 
results which differ from the observed values 
by a factor of two or three. 

The problem as stated and solved by the 
above method gives no sensible east-west 
variation in the position of the Gulf Stream, 
but a careful investigation of the eastern 
boundary of the Gulf Stream shows a vep 
small narrowing of the stream. How well su 
a result agrees with field evidence is uncer 
since our solution yields no inshore cow ,_*- 
current. 

It would be interesting to ascertain how well 
our predicted results agree with observation; 
specifically, if the mass transport of the Gulf 
Stream responds as indicated to variations in 
the wind and if the lag of the transport is inde- 
pendent of the frequency. 
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