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Abstract 

Bernoulli’s Theorem is applied to the problem of the control of salinity in an estuary by 
a transition. 

STOMMEL and FARMER (1953) have developed 
a theoretical reason to explain why the mouth 
of a vertically stratdied estuary should act as 
a check on the amount of salt water available 
for mixing in the estuary. The criterion for 
“overmixing” was obtained from the equation 
for a stationary interfacial wave, the equation 
of continuity, and the equation for the con- 
servation of salt. However, the physical reason 
why the inflow of salt water cannot rise 
beyond a certain limit, in spite of a very 
thorough mixing, is, that an increased inflow 
of salt water wdl cause a decrease of the density 
difference between the ocean and the estuary 
and, consequently, a decrease of the forces 
driving the double flow. We  shall therefore 
study the double flow through a transition by 
applying Bernoulli’s Theorem. 

We  can consider an estuary connecting a 
river to the ocean through a narrow transition. 
We  assume the mixing to be complete in the 
estuary as well as in the ocean, at least down to 
the level occupied by the bottom of the 
transition, which implies that neither the 
estuary nor the ocean are vertically stratified 
above the level referred to. Density and salinity 
in the estuary are denoted el and sl, in the 
ocean e2 and sz. The depths of the upper and 
lower layers in the transition are respectively 
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y and D -  y, D being the depth of the transi- 
tion. The width of the transition, B = B(z),  
is a function of the depth below the surface. 
W e  consider no other forces in the transition 
than the horizontal pressure gradients due to the 
higher level of the free surface in the estuary 
and the density difference between the ocean 
and the estuary. When el and e2 occur as 
factors, we make them equal to one. 

In the transition the current velocity as well 
as the pressure gradient are zero in the interface. 
At the level z we have a pressure difference 
g (e2- el) (y-z)  between both ends of the 
transition. The flows, Q1 and Q2, in the upper 
and lower layers are 

0 

n 

Y 

If the discharge, Qo, of the river exceeds a 
certain value, Q, there is no double flow in 
the transition. We  find Q by making y = D 
in (I). 
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Q=/\!g(e,-a B ( z ) ( D - ~ ) " ~ d z  (3) 
0 

where eo denotes the density of the fresh 
water. W e  have, further 

Qi- Q z =  Qo (4) 

Qisi- Q Z S Z = O  (5) 

Putting e2 - el = a (s, - sl) and e2- eo = 

= as, we find e2- el = asp Qo : Q1 and 
D 

Q=/(F, B(z) (D-Z) '~ .  dz = A  (6)  

Q ; ' / a = / \ ! G  B(z) (y-z)'"dz=A, (7) 

0 

Y 

0 

Q'/aQ;'/a(Q 1 0  - a ) =  

= r d G  B(z)  ( z  - y)'/s dz = A, (8) 

Taking the quotients of (7) and (6), and (8) 
and (6), and denoting by a,, a,, qo, and q, the 
quotients A,  : A,  A,  : A, Qo : Q, and Q, : Q 
respectively, we have 

Y 

1 (9) 

(10) 

qy q;'/: =a 

&/* q;'/a (q  1 - 40 ) -a2 - 

The quantities a, and a, are determined by 
the geometric dimensions of the transition, 
and consequently the inflow of salt water, 
q2 = 4,- qo, is influenced by the discharge of 
the river and the geometrical dimensions of 
the transition but is not dependent on the 
density of the sea water, when the critical 
discharge Q is used as a unit. The equations (9) 
and (10) enable us to determine qo, ql, and q,. 

Applying this procedure to a transition with 
a rectangular section, and denoting y : D = q, 
we have 

a, = $4, 0,  = (I -$/a (14) 

Elimination of 7, using (9) and (IO), leads 
to the equation 

ql+q:" ( q  1 - qo )*/:-q'l1=0 0 (15) 

The equation is valid for values of qo 
between o and I.  Though there is nothing to 
prevent qo from rising above I ,  the present 
problem would not exist in that case, as there 
is no double flow if qo 2 I .  For a numerical 
computation it is convenient to use (11), (IZ), 
and (13); q1 and q2 are given in Fig. I as 
functions of qo. When qo is small we have 
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Fig. I .  Upper and lower flow (dotted line resp. full- 
drawn line) in a transition with a rectangular section, as 
functions of the discharge of the river. The discharge 
that is just sufficient to prevent a double flow in the 

transition is used as a unit. 

q n  

approximately 0,  = a,, or 7 = 112, whence, 
according to (9), q1 = 1/2 4). However, as 
qo rises, the relationship very soon becomes 
practically linear. The flow in the lower layer 
also rises very quickly with qo, when qo is 
small. At qo = 0.142, q,  has a maximum 
= 0.171, and then q,  is coming down to zero 
as qo increases to I .  The relationship between 
7 and qo is approximately linear, as shown by 
Fig. 2. With s1 : s, = Y, then v = q2 : q1 = 
= a2 : a,. 
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Fig. 2. Ratio of the depth of the upper flow and the total 
depth of the transition (7) as a function of the discharge 
of the river. Full-drawn line refers to transition with a 
rectangular section, dotted &ne to transition with a 

triangular section. 

Applying the same procedure to a transition 
with a triangular section, we have 

2 
a2= -(I-$/* 

3 
It foilows that the flow is independent of 

the shape of the triangle, if the critical dis- 
charge Q is used as a unit. The maximal 
inflow of salt water is smaller than in the case 
of a rectangular transition, and corresponds 
to a smaller discharge of the river. By making 
a ,  = a2 we fmd that qo = o requires 17 = 0.316, 
which implies that the sectional area occupied 
by the upper layer is but slightly more than 
half the sectional area of the transition. Once 
again the relationship between 7 and qo is 
approximately linear (Fig. 2). When qo is 
small we have approximately q1 = 0.316 42. 
The quotient of the s&ty in the estuary and 
that in the ocean is 
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Fig. 3. The ratio (v) of salinities of the upper and lower 
layers as a function of the ratio ( E )  of the area occupied 
by the upper flow and the total area of the transition. 
Full-drawn line refers to transition with a rectangular 
section, dotted line to transition with a triangular section. 

In Fig. 3 v is plotted as a function of the 
quotient of the sectional area occupied by the 
upper flow and the total sectional area of the 
transition. It appears that there is no great 
difference between the two cases of a rec- 
tangular section and a triangular one. It follows 
that interjacant cases, such as transitions with 
a trapezium for a section, do not differ ap- 
preciably from the two cases treated above. 

Any transition with an irregular section can 
be treated according to (11), (IZ), and (13). 

We have found, among other things, that if 
the mixing is complete, so as to eliminate 
vertical stratification, the quotient of the 
inflow of salt water and the discharge of the 
river tends to become infinite when the dis- 
charge is coming down to zero. Though the 
case of a less thorough mixing is not treated 
in this paper, it should be pointed out that the 
same quotient preserves a finite value, when 
the discharge is coming down to zero, if the 
mixing is not complete. 
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