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Abstract 

The instability criterion and the rate of growth of long baroclinic disturbances in horizontally 
uniform zonal flow is derived for a sloping streamsurface. Both quantities are expressed by one 
explicit and simple function. Unstable disturbances are characterized by upward motion toward 
the cold air and downward motion toward the warm air. The slope of the streamsurface is 
eliminated, and the growth equation is compared with the results of other studies. The maximum 
rate of growth is small enough to indicate that numerical prediction of the development of 
baroclinic disturbances is practicable. Other results are that long waves may occur in a baroclinic 
atmosphere above a flat earth as well as above a spherical earth and that on a spherical earth 
unstable disturbances occur only north of a critical latitude. 

I. Historical Perspective 

The fundamental importance of differential 
heating in creation of the large scale atmos- 
pheric motions was stated long ago by HADLEY 
(1735-36). But only in recent years have 
observations been available to show that the 
actual motions differ markedly from the 
simple convective circulation envisaged by 
Hadley. Theory has been, if anything, even 
slower; the hydrodynamics of planetary 
atmospheres has been developed only in the 
past two decades, and it is still far from com- 
plete. 

Observations in low latitudes show that 
the zonal speed increases with latitude in 
rough conformity with conservation of angular 
momentum, and the dominant motion is 
relatively slow and steady (UNIVERSITY OF 
CHICAGO, 1947). By contrast, in middle and 
high latitudes the atmosphere is subject to 
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large amplitude disturbances, and the zonal 
speed decreases with latitude. These features 
of the atmospheric circulation pose several 

roblems; viz., (I) why are the regimes of 
L w  and high latitude dlfferent? (2) how is 
the middle latitude maximum of zonal wind 
speed maintained? (3) under what conditions 
does this zonal current “break down” into 
large scale meridional currents? Clearly, these 
problems are interrelated, but their complexity 
makes it desirable to treat them separately. 
This paper is concerned mainly with the third 
problem and to a lesser extent with the first. 

Observations suggest that the transformation 
from zonal to meridional currents is an 
instability phenomenon; that is, one in which 
small displacements are amplified with time. 
The standard method for determining the 
conditions necessary for instability (THOMSON, 
1871) consists of discovering the conditions 
under which the speed of periodic disturbances 
in the fluid is a complex function. The imagi- 
nary part of the complex function yields an 
exponential increase of the amplitude with 
time. 
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Studies of instability in the atmosphere stem 
from LORD RAYLEIGH’S (1878, 1880, 1887) in- 
vestigations of the conditions under whch 
small displacements at the boundary between 
two air streams grow into larger displace- 
ments and from HELMHOLTZ’ (1889) deter- 
mination that unstable gravitational waves 
may form on a surface separating two layers 
of different density and velocity. These two 
discoveries led to further studies of the effects 
of velocity shear at the boundary between 
fluids, and the term shearing instability has been 
used to describe instability of this type. This 
series of investigations culminated in the 
polar front theory of cyclone formation (V. 
BJERKNES et al., 1933). As a result of the 
widespread interest in t h s  theory, attention 
was focused on the region near a boundary 
between two fluids rather than on the behavior 
of a single extensive fluid. 

A second series of investigations has stemmed 
from HELMHOLTZ’ (1888) and RAYLEIGH’S 
(1913) studies of the relation of vorticity 
distribution to instability. SOLBERG (1936) 
showed that disturbances within a zonal 
atmospheric current are unstable if the me- 
ridional velocity shear along isentropic surfaces 
exceeds the value of the Coriolis parameter. 
Subsequent studies by ERTEL (1940), KLEIN- 
SCHMIDT (1941) and others and a more com- 
plete criterion derived by KUO (1949) re- 
present attempts to explain the more or less 
chronic instability of mid-latitude zonal flow 
on this basis. Instability of this type often is 
called dynamic instability, a particularly un- 
fortunate choice of terms because the label 
dynamic implies that other types of instability 
are unrelated to forces. Despite the unques- 
tioned validity of the instability criterion, 
observations gradually have made it clear that 
the criterion is so severe that the instability of 
zonal flow cannot be explained primarily b 
the quasi-horizontal shear of the zonal wind: 

2. Baroclinic Instability 

The development of the hydrodynamics of 
planetary atmospheres began with ROSSBY’S 
(1939) demonstration that large-scale disturb- 
ances may exist in a barotropic atmosphere. 
SUTCLIFFE (1947) and CHARNEY (1947) extended 
the theory to a baroclinic atmosphere; their 
results showed that if the vertical shear of the 
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undisturbed zonal current (here called ba- 
roclinity) exceeds a certain critical value which 
depends on wavelength and latitude small 
disturbances will grow in amplitude. Accord- 
ing to t h s  criterion, waves of less than a 
critical length are unstable. The importance 
of this discovery quickly was recognized, so 
that since 1947 primary attention has shifted 
from instability arising from quasi-horizontal 
shear or from shear at boundaries between 
homogeneous air masses to instability arising 
from vertical wind shear. The term baroclinic 
instability has come to be used to describe this 
sort of instability, and extensions of the theory 
have been made. 

Several investigators, notably FJ0RTOFT 
(1g50), BERSON ( I ~ s I ) ,  Kuo (1g52), and 
THOMPSON (1953), have succeeded in extending 
the theory into the domain of unstable waves. 
The results of these studies show that maximum 
instability exists for waves of intermediate 
length. However, there is considerable dif- 
ference in these results. Kuo finds short waves 
unstable, whereas the others find them to be 
stable. Fjartoft attributes short-wave stability 
to non-geostrophic velocity at short wave- 
lengths, the others do not. Various boundary 
conditions have been used, but their effects 
on the solutions are not clear. 

3. Status of the Problem 

The foregoing brief survey of the history 
of baroclinic instability serves to illuminate 
the very rapid progress which has been made 
toward the solution of the problem. It also 
reveals that at present the role of non-geo- 
strophic wind in short waves is uncertain, and 
that understanding of the effects of various 
simplifying assumptions is incomplete. One 
must recognize, too, that the most complete 
solution to the y b l e m  (KUO, 1952) was 
possible only wit mathematical complexity 
so great as to defy clear understanding of the 
role layed by the various parameters of the 

Finally, it is appropriate to point out that 
each of the instability criteria contain param- 
eters llke vertical wind shear, hydrostatic 
stability, and undisturbed zonal wind speed 
which are, in part at least, products of the 
instability phenomenon and which, therefore, 
may depend on other parameters of the prob- 

prob P em. 
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lem. For this reason, it is possible that dis- 
turbances which are indicated as unstable by 
a theoretical criterion in reality may be stable, 
or vice-versa. To put it differently, arbitrary 
choice of the parameters of the problem may 
not be proper. 

There is, therefore, only limited importance 
in a discussion of whether one instability 
criterion or another is superior. The problem 
of greatest interest and importance at the 
present time is to incorporate more of the 
parameters into the solution or at least to gain 
additional insight into the relation of param- 
eters to solution. Eventually, of course, one 
hopes to consider a model in which the only 
arbitrary parameter is the distribution of 
solar energy absorbed at the earth's surface. 
Then the problem of the general circulation 
may be said to have been solved. 

4. Purpose 

The purpose of this paper is to clarify the 
influence of the various parameters in the 
development of long baroclinic disturbances, 
and, thereby, to gain further insight into the 
mechanism of the general circulation. 

5. Method 

The central difficulty encountered in de- 
veloping a frequency equation for a com- 
pressible baroclinic atmosphere appears when 
the solution or solutions are substituted into 
the boundary conditions. Typically, the re- 
sulting equation is a complex function and is 
hideously transcendental. However, this diffi- 
culty may be avoided if it is possible to in- 
corporate the boundary conditions or the 
results of observation in the equations at the 
outset in such a way that the number of 
dependent variables and their derivatives is 
equal to the number of inde endent equations. 
If this can be done, the P requency equation 
emerges promptly upon algebraic reduction. 

The normal component of velocity is 
required to vanish at rigid impervious surfaces; 
therefore, immediately above the horizontal 
ground surface the streamlines are horizontal. 
Computations by FLEAGLE (1947) and others 
indicate that above the ground the streamlines 
slope upward toward the pole. In a broad 
zonal current these streamlines are approxi- 
mately plane so that planes may be passed 

through individual streamlines to form surfaces 
as shown in Fig. I ,  These surfaces are referred 
to hereafter as streamsurfaces. The maximum 
slope of the streamsurfaces is reached in the 
middle troposphere, not always at the same 
height. If the streamsurface of greatest slope is 
selected as the x, y plane of a Cartesian coordi- 
nate system, then the velocity normal to the 
x, y plane and the normal gradient of the 
normal velocity vanishes everywhere on this 
plane. It follows that, so long as the equations 
are applied to the streamsurface of maximum 

,,,,,,,,,,,.,,,,,,,,,,~,,,,,~,,,,,~ 
- N o r l h  

Fig. I. Vertical cross section showing sloping stream- 
surfaces and orientation of the coordinate system. 

slope, the vertical component of velocity 
and its space derivatives do not appear in 
the hydrodynamic equations. 

Upon adopting the coordinate system 
described above, the five perturbation equa- 
tions which describe a compressible baroclinic 
atmosphere contain the dependent variables : 
pressure, density, vertical pressure gradient, 
and the velocity components in the x and y 
directions. 

The enormous simplification of the problem 
which is introduced by the elimination of the 
vertical velocity and its height derivative makes 
it possible to eliminate all five variables by 
algebraic reduction. This procedure, of course, 
leads only to the frequency equation; the 
vertical structure of the disturbance must be 
developed from the complete set of equations 
including the vertical velocity terms. Observa- 
tions indicate that growth of disturbances 
occurs simultaneously and at about the same 
rate throughout a large part of the troposphere. 

Tellus VII (1955). 2 
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Therefore, although the frequency equation 
derived for the streamsurface of greatest slope 
applies directly only to that surface, it also 
applies indirectly to a layer of considerable 
thickness. 

6. The Frequency Equation 

In the sloping Cartesian coordinate system 
described above the vectors representing the 
acceleration of gravity and the angular velocity 
of the earth may be resolved into components 
as follows: 

g = - g  (j sin 6 + k cos 6) 

a = f2 ( j  cos (4 - 6) + k sin (4 - 6)) 

( 1 )  

( 2 )  

The symbols used here and throughout the 
paper are defined in the Appendix. 

The perturbation method as described by 
HAURWITZ ( I  95 I )  is accurate for infinitesimal 
disturbances and therefore is the natural 
method for determination of instability criteria. 
The undisturbed motion will be assumed to 
be characterized by unchanging zonal flow 
which is constant in the x and y directions and 
which increases linearly with height (normal 
to the earth's surface). The equations of 
undsturbed motion given by HAURWITZ 
( 1  95 I )  then become 

v =  0 (3 )  

fU= -Q-lP,-gsinS (4) 

g cos 6 = - Q-' Pz ( 5 )  

IV, = 0 (6) 

dQldt = o (7) 

From (4) and ( 5 )  it follows that 

where Q-lQ, is represented by -gr cos 6. 

Because the undisturbed current is assumed 
to be independent of y, it seems reasonable to 
impose the arbitrary restriction that the ve- 
locity perturbations are independent of y. The 
only justification for this restriction is the 
observation that velocity disturbances which 
Tellur VII (1955) ,  2 

are approximately independent of y do occur, 
and thc conditions under which they develop 
do not appear to be markedly different from 
the conditions under which velocity disturb- 
ances develop which are dependent on y.  The 
perturbation equations siven by HAURWITZ 
(1951) may be written for this case in the form 

L (II) + ~ U ~ U ,  - fu = - Q - l p x  (9) 

L ( U) + f i l =  - Q-' p,, + 4 Qp2 P,, ( 10) 

L ( w ) + g q  __ Q-'= - Q-lp, ( 1 1 )  

L ( 4 )  + uQ, + Q1ix + (Qw), = o (12) 

( 1 3 )  

L (4 )  + uQ, + f/lbz - 7 [L(p) + upy + 
+ __ IVP,] = 0 

Upon applying these equations to the stream- 
surface of maximum slope, the underlined 
terms vanish. Then, if p v  is eliminated by 
cross differentiation of (9) and (10) 

L ( ~ x )  + fux + =Qp2 ( 4 2 ,  - pxQy)  (14) 

where /? represents i?f/Jy. 

Equations (9)-(14) are linear equations so 
that solutions may be superimposed. Therefore, 
no loss of generality occurs if the disturbances 
are assumed to have the simple form given by 

= A ( z )  fx - 

v = B ( z )  eia fx -4  

p = D ( z )  fx - (0 

( I S )  

(16) 

(17) 

q = F ( z ) e i l f x - c I )  (18) 

Substitution of (15)-(18) in (9), ( I I ) ,  (12), 
(13) ,  (14) yields five simultaneous algebraic 
equations in A, B, D,  D,, and F. In order that 
non-trivial solutions exist for A, B, D,  F,  and 
Dz, the determinant of the coefficients must 
vanish. It follows directly that 

- y ( c -  U)3[a'(c-  U)+/9] + ( c -  U)2(a2+ 

+f '7) + (C - u) [B +fQ-' (Q, - 27 p y ) I  - 
- 4-' py (Qy - 7J'y) = 0 (19) 

The first term in (19) is small compared to the 
second for all values of c - U much smaller 
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than the speed of sound; it therefore is neg- 
lected. If the meridional velocity had been 
assumed to obey the geostrophic equation, 
this term would not have appeared; but 
equation (19) would otherwise be unchanged. 
So, it must be concluded that the quasi- 
geostrophic assumption does not lead to 
significant error for  disturbances in which the 
velocity perturbations are independent of y .  

Elimination of the first term in (19) leads 
di rec tly to 

F [B' + 2 16fa-l (Qy - 2~ J'y) + 4a2Q-'Py (Qy - 

- YP,,) +f'Q-zQ;]'> (20) 

Substitution of (4) and (8) in (20) gives a 
cumbersome equation which, for long baro- 
clinic disturbances, may be simplified by the 
following approximations. 

a2 +f"y % a2 sin 6 w 6 

Z Y - r w y  cos 6 R3 I 

ui - 2us,  = u, 
p + 2 f 2 U y  + 2f"uz/s = p 

It follows that (20) may be written 

For unstable disturbances the wave speed 
given by (21) is complex; the real part describes 
the speed and the imaginary part describes the 
rate of growth of the unstable waves. Thus 

The preceding derivation may be performed 
in spherical coordinates as readily as in Cartesian 
coordinates. The result is very nearly identical 
with (22) and (23) except very near the poles. 
Equation (23) shows that instability depends 

in a direct sense on U,, the baroclinity. How- 
ever, instability is possible only if 6 is positive; 
therefore, upward motion to the east and 
downward motion to the west of pressure 
troughs is essential in order that disturbances 
grow. This relationship is reflected in the 
fact that cloudiness and precipitation occur 
to the east of low pressure systems and clear 
skies prevail to the west. The first term in (23) 
indicates that instability is possible for positive 
gsZS only if gs,6 is less thanfU,; that is, if the 
slope of the streamsurface is less than the slope 
of the isentropic surface. The second term 
in (23) indicates that very long waves are 
stable and shorter waves are unstable. This 
coiiclusion is valid, of course, only if 6, as 
well as other parameters, is reasonably inde- 
pendent of wavelength. 

For the case of horizontal motion, 6 vanishes; 
only stable disturbances are possible, and (21) 
reduces to the trough formula for a barotropic 
atmosphere. This reduction demonstrates that, 
although horizontal velocities in large dis- 
turbances are three orders of magnitude greater 
than the vertical velocities, vertical velocity 
plays a role of crucial importance in the 
conversion of the potential energy of the 
baroclinic atmosphere to kinetic energy. 

7. Elimination of the Slope of the 
Streamsurface 

The slope of the streamsurface may be 
eliminated from (21) by evaluating the ratio 
of the vcrtical to the meridional velocity 
components at the surface of its maximum 
value. This requires manipulation of the 
perturbation equations (9), (11), (IZ), (13), 
(14) including the vertical velocity terms. 
Upon eliminating from these equations the 
perturbation pressure and erturbation veloc- 

result. 
ity in the x direction, the P ollowing equations 
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uzL( 8) + g  qxx + L2( 42) + Q&(vz) + 
+ L [ ( Q W ) ~ ~ ]  +QL(wxx) + UzQyux +fQzvx + 

+fQvzx = 0 (26) 

Then, upon substituting solutions (IS)-( 18) 
there result three algebraic equations. Small 
terms may be eliminated at this point if care is 
taken to ensure that the remaining large terms 
do not cancel at a subsequent step. The relative 
magnitudes of all small terms but two are 
independent of wavelength. The exceptions 
are negligible for all disturbances more than 
several hundred kilometers in length. Elimina- 
tion of the small terms leads to the equations 

atfF + i f (QC)z - i[u2(c - U) + B]QB = o (27) 
ia(c- U)F+s,QC-f[U,/g+yc- 

TU] Q B  = o (28) 

agF - i f (QB)z = o (29) 

where C represents the amplitude of the 
vertical velocity perturbation. It is easy to 
show that if quasi-geostrophic and quasi- 
hydrostatic equilibrium had been assumed at 
the outset, equations (27), (28), and (29) 
would have resulted without the final eli- 
mination of small terms. So, f i r  disturbances in 
which the velocity perturbations are independent 
of the y coordinate, these assumptions are valid, 
at least down to wavelengths of a few hundred 
kilometers. 

If F is eliminated from (27), (28), and (29) 

gf(QC)z +f2c(QB)z =g[a2(c - U )  + B]QB (30) 

gszc +f(csz - Uz)B =f(c - U)Bz (31) 

At the streamsurface of greatest slope 
(QC)z S ~ ( Q B ) ~ .  This condition serves the 
function of boundary conditions in the com- 
plete integration of the hydrodynamic equa- 
tions and makes it possible to eliminate ( Q C ) z  
and (QB)z  between (30) and (31). If, as before, 
only terms of the largest order of magnitude 
are retained, there results 

If only unstable disturbances are considered, 
(c - U )  may be eliminated from (32) by the 
use of (22). This gives 
Tellur VII (1955). 2 
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Substitution of (33) in (22) and 
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(33) 

(23) gives 

These relations can be obtained without the 
prior derivation of (21), but this would leave 
somewhat obscure the role of vertical motion 
in the release of baroclinic instability. 

Inspection of (35) shows that short disturb- 
ances (large a) are slightly unstable, longer 
disturbances are more unstable, but very long 
disturbances are stable. The wavelength of 
greatest instability is given by 

8. Comparison with Results of Other Studies 

The critical curves and the amplification 
per 24 hours computed from (35) is shown in 
Fig. 2. The parameters chosen are those used 
by CHARNEY (I947), FJ0RTOFT (1950), and 
K u o  (1952). The critical curve found by 
Charney and Kuo is indicated for comparison. 
The critical curve for a different lapse rate 
also is shown. 

The difference between the results shown in 
Fig. 2 and KUO’S (1952) results must reflect 
differences in the atmospheric models used. 
The advantage of Kuo’s treatment lies in its 
generality; his frequency equation was ob- 
tained from the perturbation equations by in- 
troducing special and rather sim le boundary 

given here lies in its simplicity; the result was 
obtained by using the fact of the existence of 
a streamsurface of maximum slope. It ma be 

of the streamsurfaces to increase upward 
without limit, presumably, as a result of an 
unrealistic upper boundary condition. It is 

conditions. The advantage of t x e treatment 

noted that Kuo’s solution requires the s i ope 
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Fig. 2. Critical curves (labelled ci = 0) and the 24 hour 
amplification (labelled (2) and (3)) computed from (35) 
for latitude of 45' N, and temperature lapse rate of 
6.5 K km-' compared with thc critical curves found by 
CHARNEY (1947) and K u o  (1952). The critical curve for 
a temperature lapse rate of 8.2 K km-1 is shown by 

the thin line. 

not possible to conclude which frequency 
equation is the more accurate description 
of the real atmosphere, but this is a matter 
of little importance because other simplifica- 
tions in the models and in the mathematical 
treatment probably exert greater influences 
on the final accuracy. One need only mention 
the assumption of horizontally uniform un- 
changing mean flow with infinitesimal per- 
turbations, an assumption which is never ful- 
filled by the atmosphere. 

In order to gain insight into the short-wave 
stability found by FJORTOFT (rgjo), BERSON 
(I~sI), and THOMPSON (1953), the stream- 
surface may be eliminated from (22) and (23) 
by integrating (30) from sea level to the surface 
of greatest slope. If the height of this surface 
is chosen independently of wavelength, short 
waves are markedly stable. Similar arbitrary 
choices of characteristic heights were made by 
Fjmtoft, Berson, and Thompson with very 
similar results. This comparison indicates 
that the short-wave stability arose from the 
assumption that a characteristic height was 
independent of wavelength ; the stability 
probably is not inherent in the real atmosphere. 

9. The Rate of Growth 

Fig. 2 indicates that the amplitude of disturb- 
ances cannot grow at a rate exceeding a 
factor of from one to three per day for the 
vertical shear and hydrostatic stability com- 
monly observed. It is difficult, therefore, to 
believe that major disturbances ever develop 
by the process described here from very small 
more or less random disturbances; rather, the 
disturbance in its initial stage must be only 
about an order of magnitude less than ih its 
fully developed stage. The initial disturbance 
presumably could be created by topography, by 
heating, or by the effects of dispersion acting 
on disturbances in a remote part of the zonal 
current. In any case, the fairly deliberate 
growth of these unstable disturbances makes 
prediction of their amplitude and movement 
a practicable possibility. This must be carried 
out, of course, by numerical integration of 
nonlinear equations. However, insights gained 
from this study of linear equations may be of 
value in the selection of nonlinear atmospheric 
models. 

10. Effect of the Spherical Shape of the Earth 

Equation (35) shows that for any combina- 
tion of baroclinity and wavelength, instability 
increases with latitude. In Fig. 3 the critical 
curves are illustrated for several baroclinities. 

I I 1 
2 4 6 a I0 

). 110' hm 1 

Fig. 3. Critical latitude south of which disturbances are 
stable for a temperature lapse rate of 6.5 K km-' ( (com- 
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Instability is possible for reasonable baroclini- 
ties only north of about 30 degrees. This is 
consistent with the observation that large 
scale disturbances are characteristic of middle 
and high latitudes and do not penetrate to 
low latitudes. 

vanishes. 
Equation (34) shows that disturbances charac- 
teristic of observations are still ossible, so 

considerations make understandable the ob- 
servations of long waves in a rotating dishpan, 
described by Long.2 The generation of the 
waves in this case is to be attributed to the 
baroclinity rather than to conservation of 
potential vorticity . 
11. Conclusions and Inferences 

The frequency equation for long baroclinic 
disturbances has been expressed in very 
simple form (equations 34 and 35). The 
results are in substantial agreement with those 
of Kuo (1952)~ but the simpler form derived 
here makes it easy to determine the dependence 
of the wave speed and the rate of growth of 
unstable disturbances on baroclinity, hydro- 
static stability, wavelength, and latitude. 

Equations (34) and (35) show that disturb- 
ances of about four thousand kilometer length 
may be expected to develop in middle latitudes 
where the baroclinity reaches 3 to 4 m sec-1 
km-1. On the other hand instability is not to 
be expected south of about 30" latitude. It 
follows that a relatively steady large scale 
circulation controlled primarily by differential 
heating and conservation of angular mo- 
mentum is more likely in the tropics than at 
hgher latitude. 

The results suggest a qualitative insight 
into the problem of the meridional distribu- 
tion of zonal wind speed. Although (35) 
indicates that greatest instability should occur 
at the pole, it is intuitively plausible that the 
atmosphere selects the mode of instability 

On  a flat earth,fis constant and 

long as the atmosphere is baroc f inic. These 

LONG, R. R., 1951: Research on experimental hydro- 
dynamics in relation to large-scale meteorological 
phenomena. Prog. Rep. No. 5 ,  5 5  pp. 

which permits the greatest conversion of 
potential to kinetic energy. This would occur 
sufficiently far from the pole that a substantial 
part of the atmosphere could take part in the 
instability process but still north of the critical 
latitude. Viewed in this way, the maximum 
zonal speed observed in middle latitudes is a 
consequence of the conversion of potential 
energy of the baroclinic atmosphere to kinetic 
energy. It may be analogous to the localized 
vertical convection currents associated with 
hydrostatic instability. 

Appendix 

List of Symbols : 
g : acceleration of gravity 
6: slope of the streamsurface 
4 :  latitude 
9:  angular velocity of earth 
U :  undisturbed velocity component inx 

u,  v ,  w : perturbation velocity components in x, 
direction 

y and z directions, respectively 
f: 2 9 sin (4  - 6) and 2 9 sin 4 
t :  time 

. 

Q, q : undisturbed and perturbation densities, 

P, p : undisturbed and perturbation pressures, 

j, k: unit vectors in y and x directions, 

A,B,C,D,F: amplitudes of u, v,  w , p ,  q, per- 

respectively 

respectively 

respectively 

turbations, res ectively 

to that variable 
Subscripts : partial di 2 erentiation with respect 

y : coefficient of piezotropy 
T: -(gQ)-I Q, sec 6 and -(gQ)-' Q, 
L : operator, (a/& + U a/&) 

CI : wave number 
1 : wavelength 
c : complex wave speed 

c,: real part of wave speed of unstable 

i c i :  imaginary part of wave speed 
s, : hydrostatic stability 

B :  a!aY 

wave 

Tellus VII (1955). 2 
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