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ABSTRACT
A new index for high-impact weather forecasting is introduced and assessed in 
comparison with the well-established extreme forecast index (EFI). Two other 
ensemble summary statistics are also included in this comparison study: the shift-
of-tail and a standardised ensemble mean anomaly. All these forecasts are based on 
the same ingredients: the ensemble forecast run at the European Centre for Medium-
Range Weather Forecasts and the corresponding model climatology derived from 
a set of reforecasts. The new index emerges from recent developments in forecast 
verification of extreme events: it is derived as a consistent forecast with the diagonal 
score, a weighted version of the continuous ranked probability score targetting high-
impact events. In this study, we emphasise the importance of forecast discretisation 
for communication purposes and decision-making. A forecast is actionable in the 
situation where a user can decide to take action when a threshold is exceeded by 
the forecast. Forecast verification is performed to assess both the potential skill of 
the different indices as well as their specific skill as actionable forecasts. Among the 
investigated actionable forecasts, the new proposed index demonstrates the strongest 
discrimination power, in particular at longer lead times, paving the way for seamless 
predictions of high-impact weather across time ranges.
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1 INTRODUCTION

Ensemble weather forecasts consist of a set of weather 
scenarios that capture a range of equally probable (or 
at least possible) outcomes. Ensembles serve as a basis 
for quantifying forecast uncertainty and generating 
probabilistic forecasts. Our ability to predict high-impact 
weather events using ensemble forecasts has improved 
over the past decades (Ben Bouallègue et al., 2019). 
However, the use and communication of probabilistic 
forecasts for effective decision-making is still in its 
infancy, in particular when it comes to “low-probability, 
high-impact” events (Fundel et al., 2019).

At the beginning of the century, the extreme forecast 
index (EFI) was introduced by Lalaurette (2003) to provide 
support for generating early warnings of extreme events. 
This index highlights situations related to “unusual” 
forecasts by comparing an ensemble forecast distribution 
with a model climate distribution. The EFI is an indicator 
of the likelihood of an extreme event but doesn’t provide 
information about the intensity of the event, in partiuclar 
when forecasts are exceeding the climatological records. 
For this reason, the EFI is often complemented by the 
shift-of-tail (SOT), a normalised quantile forecast using the 
climatological quantiles for normalisation (Zsoter, 2006).

Several studies have illustrated the predictive power 
of EFI not only for raising early awareness of extreme 
precipitation (Lavers et al., 2016; 2017; 2018, in particular 
in case of severe convection, Tsonevsky et al. 2018), but 
also for early warning of extreme winds and extreme 
windstorms (Petroliagis and Pinson, 2014; Boisserie et al., 
2016). SOT predictive performance is less explored in the 
literature but seems to show a comparable level of skill 
as the EFI (Boisserie et al., 2016; Raynaud et al., 2018). 
Another ensemble summary statistic has also been 
suggested for the early detection of extreme weather: 
the ensemble mean anomaly forecast (ANF, Guan and 
Zhu, 2017). ANF appears highly correlated to the EFI 
for temperature with slightly higher skill in predicting 
extreme cold events.

In this study, we introduced and assessed a new 
index for high-impact weather forecasting. We are 
building on the concept of crossing-point forecast (CPF) 
that has emerged from recent developments in forecast 
verification of extreme events (Ben Bouallègue, 2021). A 
CPF is a consistent forecast with the diagonal score which 
is a weighted version of the continuous ranked probability 
score (Ben Bouallègue et al., 2018). The diagonal score is 
routinely used at ECMWF for assessing the performance 
of the ensemble forecasting system (Haiden et al., 2021), 
but the underlying actionable forecast has not been 
exploited so far.

An actionable forecast is defined as a forecast 
discretised with a set of decision thresholds such that 
a user can decide to take action when a threshold is 
exceeded by the forecast. Seamless forecasting across 

lead times would rely on actionable forecasts that could 
be used across time ranges, without the need to change 
the forecast definition or the set of decision thresholds 
with the forecast lead time. In the following, the focus 
is on actionable forecasts derived from an ensemble 
prediction system.

The CPF, like the EFI, is a summary statistic of both 
the ensemble forecast and its model climatology. In 
the CPF case, the focus is set on the intersection point 
between the two cumulative probability distributions. 
This intersection marks the limit between the situation 
where the risk of an event is higher in general (in the 
climatology, with no specific information about the 
current weather situation) or in particular for a given day 
(in the forecast, given the information available at the 
start of the prediction). The CPF is a probabilistic forecast 
which takes value between 0 and 1 so one can use it as 
a forecast index. Here, we explore the CPF performance 
as a forecast index for extreme daily precipitation events.

This paper is organised as follows: a definition of 
the different types of forecasts compared in this study 
is provided in Section 2, two case studies are shown 
and commented on in Section 3, forecast intrinsic 
characteristics and their interpretation are discussed in 
Section 4, general verification results are presented in 
Section 5 followed by a focus on actionable forecasts 
for seamless prediction of extreme events in Section 6 
before to conclude in Section 7.

2 FROM AN ENSEMBLE FORECAST TO 
ACTIONABLE FORECASTS

For high-impact weather forecasting, a set of ensemble-
based indicators can be generated by comparing an 
ensemble forecast with a local model climatology. A 
link between forecast intensity and potential impact is 
made by interpreting a forecast in the context of a local 
climate: the climatological frequency of an event serves 
as a measure of its rareness and its potential impact. 
Also, the local variability of the weather can serve to 
contextualise the uncertainty of a forecast (as measured 
by the ensemble spread, for example). Ensemble-derived 
indicators become actionable forecasts when discretised 
with a set of decision thresholds for visualisation and 
decision-making purposes as discussed in Section 6.

In the following, forecast and climatology take the 
form of cumulative probability distributions denoted F 
and G, respectively. The forecast empirical distribution 
is derived from the 50-member ensemble forecast run 
operationally at ECMWF while the climate empirical 
distribution is derived from reforecasts which consist of 
10 members run twice weekly over the past 20 years 
(Lalaurette, 2003). A local climatology is built using all 
reforecasts available within a time window of ±2 weeks 
with respect to the validity date of the forecast.
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The climate distribution that reflects the model 
climatology is referred to as the M-climate in opposition 
to the observed climate that is estimated based on 
observations (and used for verification). In any case, 
climatology is meant here in a local sense both in space 
and time: a climatology distribution is associated with a 
given grid point (or point observation) and a given day of 
the year. In practice, the empirical climate distributions 
are described by percentiles from 0% (minimum) to 
100% (maximum) with 1% intervals.

In this study, we compare 4 different types of 
forecasts, all derived from both F and G. CPF is based on 
the intersection point between F and G, EFI is an integral 
of F with respect to G, SOT focuses on one percentile 
of the tail of F compared with the tail of G, while ANF 
is a standardised mean of F using the first and second 
moments of G. We provide below a formal definition of 
each of these ensemble-derived forecasts.

2.1 CROSSING-POINT FORECAST
Consider the single crossing condition: F and G satisfy the 
single crossing condition if there exists a y⋆ such that

∀ ⇒,  ( ) ( )x x y F x G x   (1)

and

∀ ⇒,   ( . )  ( )x x y F x G x   (2)

When y⋆ exists, the crossing-point forecast is defined as:

= CPF : ( )G y  (3)

and is interpreted as a probabilistic worst-case scenario 
(Ben Bouallègue, 2021). CPF corresponds to the most 
extreme forecast event such that the risk in the forecast 
is larger than the climate risk. This event is expressed 
in terms of a quantile of the climate distribution. This 

quantile q can easily be translated in terms of a local 
return period r. For example, if q = 0.95, r = 20 years, if 
q = 0.99, r = 100 years, and so on. As the M-climate is 
specific for a given day, the derived return period should 
be carefully interpreted as a return period for a given 
time of the year.

We use synthetic data to illustrate the concept of CPF in 
Figure 1. While the plot on the left represents a canonical 
example, the plot on the right illustrates the difficulty 
of dealing with bounded variables. For precipitation (or 
wind), forecast and climate cdfs overlap at the point-
mass 0. In that case, in practice, CPF is derived by 
scanning F(x) and G(x) with increasing x > 0 (from left 
to right) until an intersection point is found (such that 
F crosses G from F < G to F > G, and not the other way 
around). When no intersection exists, CPF takes the value 
0 or 1 depending on whether the F is always above or 
below G, respectively.

2.2 EXTREME FORECAST INDEX
In Zsoter (2006) and Tsonevsky et al. (2018), the 
ensemble forecast index EFI is defined as:

 

1

0

2 ( ) ( )
EFI : d ( )

( )(1 ( ))
G x F x

G x
G x G xπ

−
=

−∫  (4)

The denominator helps provide more weight to the tails 
of the distribution. The index takes values in [–1, 1]. The 
closer the EFI values to –1 or 1, the more abnormal the 
ensemble forecast and the more likely an extreme event.

2.3 SHIFT OF TAILS
The shift of tails (SOT) is designed to compare the tails of 
F and G. For the upper tail, the SOT is defined as:

− −

− −

−
= −

−

1 1

1 1

(0.99) (0.9)
SOT :

(0.99) (0.9)
G F
G G

 (5)

Figure 1 Synthetic examples of CPF in the case of (a) temperature-like distributions and (b) precipitation-like distributions with F in red 
and G in blue.
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with G–1(τ) and F–1(τ) the τ-quantile of the climate and 
forecast distribution, respectively. When SOT is greater 
than 0, it means that at least 10% of the ensemble 
members are beyond the 99th M-climate percentile. 
The larger the SOT, the further these 10% are from 
the M-climate. SOT was designed as a complementary 
forecast to the EFI, conveying a piece of information 
about the intensity of the expected extreme event.

2.4 ANOMALY FORECAST
Anomaly forecasting focuses on the departure of the 
ensemble mean with respect to the climatology (Guan 
and Zhu, 2017). The anomaly forecast (ANF) is here 
defined as the standardised ensemble mean anomaly 
with respect to the M-climate mean. The standardisation 
is based on the standard deviation of the M-climate 
distribution. ANF is computed as follows:

µ µ
σ

−
=

+
( ) ( )

ANF :
( )
F G
G k  (6)

where μ and σ are the mean and standard deviation 
functions, respectively, and k is a constant set to 1 
for precipitation (to avoid numerical issues with ANF 
computation for arid areas), 0 for temperature for 
example.

3 CASE STUDIES

Let’s illustrate the similarities and specificities between 
these different forecasts with 2 case studies. We 
compare forecasts available 6 days and 1 day ahead of 
the event (lead time day 6 and day 1, respectively) but 
valid for the same dates. A subjective assessment of the 
forecast performance at day 6 can be achieved by using 
the forecast at day 1 as a proxy of the ‘truth’, keeping in 
mind that differences between EFI and CPF can persist at 
short lead times as discussed below. The 2 case studies 
are related to high-impact events that have affected 
Europe over Summer 2021.

3.1 EXAMPLE 1: HEAVY PRECIPITATION OVER 
BELGIUM AND GERMANY IN JULY 2021
Figure 2 shows CFP, EFI, SOT, and ANF of daily precipitation 
valid on July 14, 2021. Extreme rainfall on that day 
led to flash floods and large-scale flooding that had a 
catastrophic impact on parts of Belgium and western 
Germany.

Forecasts 6 days ahead of the event are shown in 
the left panels: CPF has a large-scale signal with high 
values over the Atlantic and Western/Central Europe 
in Figure 2(a) while EFI has a weak signal (if any) over 
the same areas in Figure 2(c). Forecasts one day before 

the event are presented in the right panels. We see a 
convergence of CPF and EFI towards a similar solution 
with the strongest signal over the impacted areas in 
Figure 2(b) and 2(d).

In this first example, the following general pattern 
emerges when comparing CPF and EFI:

(i) CPF displays a strong signal at a longer lead time 
but the signal is large-scale and noisy,

(ii) EFI presents a weak signal or no signal at all at 
longer lead times,

(iii) both forecasts converge at shorter lead times.

Regarding SOT and ANF, they have similar characteristics 
as EFI. Their signal appears smooth and/or weak at 
longer lead times in Figure 2(e) and 2(g), respectively, 
while a larger and sharper signal emerges closer to the 
event in Figure 2(f) and 2(h).

3.2 EXAMPLE 2: CONVECTIVE PRECIPITATION 
OVER LONDON IN JULY 2021
Figure 3 compares actionable forecasts for precipitation 
on July 25, 2021. On that date, flash floods were reported 
in the London area after intense precipitation in South-
East England. With respect to the previous example, this 
example deals with a more localised event, driven by 
convective activity.

Similarly to the previous example, we observe the 
following development with the forecast lead time 
as we approach the validity time: a noisy and large-
scale CPF signal becomes more accurate while a 
smooth and light EFI signal evolves into a stronger 
and more focused signal. As shown in Figure 3(a) 
and 3(c), the main differences between CPF and EFI 
are at longer lead times when the uncertainty in the 
ensemble forecast is large and the ensemble mean 
has not significantly departed from the climatological 
mean. In the same fashion as for EFI, a weak signal is 
noted at day 6 for SOT and ANF in Figure 3(e) and 3(g),  
respectively.

In this example, we can also notice differences 
between CPF and EFI at day 1, in particular over 
England, by comparing Figure 3(b) and 3(d). Due to 
the convective nature of the intense precipitation over 
South-East England on that day, the predictability of 
the event was quite low. This low level of predictability 
was appropriately captured by the ensemble: the 
ensemble spread was large (not shown) with only some 
members predicting intense rain. As the uncertainty 
remains high even at a shorter lead time, the EFI never 
reached high values (greater than 50%) even at day 1. 
The CPF signal over England was strong already at day 
6 but much more refined over the impacted area at  
day 1.
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4 FORECASTS INTRINSIC 
CHARACTERISTICS AND 
INTERPRETATION

4.1 CORRELATION BETWEEN FORECASTS
Following the visual inspection and comparison of CPF, 
EFI, SOT, and ANF in Figures 2 and 3, the forecasts are 
now compared quantitatively in terms of correlation. 
The level of similarity between the different forecasts 
is measured with the rank correlation coefficient (also 
known as Kendall-τ correlation coefficient). The spatial 

correlation is computed for daily fields and averaged 
over the verification period. The results are shown in 
Figure 4.

The correlation between CPF and EFI is 0.94 at day 1 
but decreases almost linearly with the forecast lead time 
to reach 0.86 at day 6. Also, the correlation of CPF with 
ANF and SOT as shown in Figure 4(a) is much smaller than 
the correlation of EFI with respect to the same quantities 
as shown in Figure 4(b). These results suggest that the 
signal captured by CPF has different characteristics than 
the one exhibited by EFI, SOT, and ANF.

Figure 2 Daily precipitation forecasts valid on July 14, 2021: (a, b) CPF, (c, d) EFI, (e, f) SOT, and (g, h) ANF generated 6 days ahead of 
the event (left) and 1 day ahead of the event (right).
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Figure 3 Same as Figure 2 but for forecasts valid on July 25, 2021.

Figure 4 Spatial correlation between daily precipitation forecasts over Europe averaged over Summer 2021. Correlation of (a) CPF and 
(b) EFI with respect to one another, SOT, and ANF. The grey lines showing the correlation between CPF and EFI are identical in both 
panels. The shade represents the 5% and 95% confidence intervals as estimated with 5-day block boot-strapping.
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The correlation of EFI with ANF is close to 0.9 for all 
lead times. Because ANF is independent of the ensemble 
spread, this result confirms that EFI is mainly driven 
by changes in the ensemble mean with occasional 
modulations by the ensemble spread. EFI sensitivity to 
changes in the ensemble mean and the ensemble spread 
is discussed more thoroughly in Dutra et al. (2013). 
The correlation of EFI with SOT is also high and slightly 
increases with lead time. SOT and ANF are themselves 
highly correlated (not shown) which can be explained 
by the heteroscedastic nature of the precipitation 
distributions: variations in the ensemble mean and in 
quantiles tend to be strongly linked.

4.2 FORECAST DISTRIBUTION AND FORECAST 
LEAD TIME
One key difference between the 4 types of forecasts 
investigated here is their evolution with forecast lead 
times as illustrated in the 2 case studies in Figures 2 and 
3. To support a discussion on this point, we now analyse 
the forecasts’ overall distributions during Summer 
2021 for the European domain. Figure 5 compares the 
distributions at day 1 and day 6 for each forecast type.

CPF exhibits, in general, larger values at longer lead 
times as shown in Figure 5(a). Indeed, the category 
closer to 1 is the most populated at day 6. At day 1, the 
distribution of CPF values tends to resemble a uniform 
distribution: the strong signal at longer lead times 
in CPF are tempered as we approach to the forecast 
validity time.

In contrast, large values of EFI, SOT, and ANF are 
issued predominantly at shorter lead times as shown in 
Figure 5(b, c, d), respectively. The forecast uncertainty 

has a smoothing effect on these high-impact weather 
indicators such that large values are enabled only 
when the ensemble spread is small. In other words, 
indication for an extreme event is only captured when 
the ensemble spread is small enough. This characteristic 
is a limiting factor to communicating effectively about 
low probability, high-impact events as discussed further 
in Section 6.

4.3 FORECASTS INTERPRETATION
CPF and EFI are both bounded forecasts taking values 
in [0,1] and [–1,1] respectively but they follow different 
interpretations. EFI is an index, a number between –1 and 
1 with no known statistical meaning attached to a single 
EFI value. Its interpretation is the following: the larger the 
EFI values the higher the risk of a high-impact event. The 
absence of a stringent statistical interpretation is an asset 
for use by a wider audience. However, one important 
limitation of the EFI is that no information is conveyed 
with this index about the event itself, its intensity, or its 
uncertainty as already pointed out in previous studies 
(Neal et al., 2014; Boisserie et al., 2016).

In contrast, the CPF can be interpreted as an index but 
has also a meaning in statistical terms: it is a quantile 
level of a climate distribution. Therefore, CPF values 
are directly related to local return periods (while EFI is 
somehow indirectly related to local return periods). For 
example, a CPF value of 0.95 corresponds to an event 
with a return period of 20 years with respect to the local 
climate. By expressing the forecast in return periods 
(or quantile level), systematic model errors are also 
automatically corrected while bypassing the need for 
a post-processing step involving observations (Fundel 

Figure 5 Forecast distribution at day 1 (red) and day 6 (blue) over Europe for Summer 2021: (a) CPF, (b) EFI, (c) SOT and (d) ANF of 
daily precipitation. Note the logarithmic scale of the y-axis in (c) and (d). CPF is the only type of forecasts exhibiting stronger values at 
longer lead times.
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et al., 2010; Prates and Buizza, 2011). In other words, a 
20-year return event derived from a model climatology 
can be interpreted by the users based on an observed 
climatology.

We should also emphasise that a finer discretisation 
and a more accurate representation of the distribution 
tails would be necessary for a focus on very extreme 
events. So far, we have used a climatology described with 
1% quantile intervals and a forecast empirical distribution 
based on 50 ensemble members. The relatively small 
ensemble size hinders an accurate estimation of extreme 
quantiles of the forecast distribution (Leutbecher, 
2019; Tempest et al., 2023). A finer discretisation of 
the tails could be achieved with the help of statistical 
methods based on extreme value theory and a more 
accurate representation of the forecast distribution tail 
by increasing the number of ensemble members by 
leveraging, for example, the potential to generate large 
ensembles with data-driven models based on machine 
learning (Ben Bouallègue et al., 2023).

5 GENERAL PERFORMANCE 
CHARACTERISTICS

Assessing forecast performance for high-impact events 
is challenging because, by definition, these events are 
extreme and rare.1 Here, we consider relative rather than 
absolute extreme events: we focus on events with a local 
return period of 20 years for a given point in space and 
time. In other words, we focus on threshold-exceedance 
events where a threshold is defined as the 95th percentile 
of the local climate distribution. Following this approach 
and using synoptic observations as a reference, we mimic 
the standard EFI verification setup used to assess and 
communicate EFI performance as an ECMWF headline 
score (Tsonevsky et al., 2018; Haiden et al., 2021). Here, 
the verification sample covers Europe over Summer 2021.

The forecasts that we compare here differ by their 
very own nature. For example, CPF is a summary statistic 
consistent with a proper score while EFI is an index with no 
statistical meaning. Aiming at a fair comparison, CPF and 

EFI are both considered actionable forecasts in the form 
of an index for the prediction of high-impact weather 
events. Both indices follow the same interpretation: a 
larger CPF (or EFI) value indicates a higher risk of a high-
impact event materializing. Similarly, for SOT and ANF, 
a larger value in the forecast is interpreted as a higher 
risk of a precipitation event without directly taking into 
account the actual numerical value of the forecast.

Forecast performance is explored using contingency 
tables. A decision threshold is applied to the forecast 
to transform it into a binary (yes/no) forecast while an 
observation is transformed into binary observation 
using a climate quantile as an event-threshold. For 
the discretisation of the forecast, a set of decision 
thresholds needs to be defined for each forecast type. It 
follows that contingency tables are populated for each 
decision threshold of each forecast type. Eventually, 
hit rate (H) and false alarm rate (F) are estimated from 
these contingency tables to derive diagnostic plots and 
summary verification metrics. In particular, Relative 
Operating Characteristics (ROC) curves and economic 
value plots are generated and commented on below.

5.1 POTENTIAL DISCRIMINATION ABILITY
Discrimination is assessed within the ROC framework. A 
ROC curve is a set of points (F, H) for increasing decision-
thresholds (see Ben Bouallègue and Richardson, 2022, 
and references within). Potential discrimination is 
assessed by using a large number of decision thresholds 
in order to span all possible forecast values.2 Here we use 
500 different decision thresholds equally spaced between 
the minimum and the maximum possible value of each 
forecast type. We talk about “potential” discrimination 
because, in practice, 500 different forecast values could 
not be distinguished on a map for decision-making.

ROC curves based on 500 decision thresholds are 
shown in Figure 6 for CPF, EFI, SOT, and ANF at 3 
different lead times. The ROC curves are similar for all 
4 types of forecasts indicating similar levels of potential 
discrimination ability, noting that CPF is slightly better 
and SOT slightly worse at the shorter lead time. Recalling 
the correlation coefficients in Figure 4, one could infer 

Figure 6 ROC curves assessing the potential discrimination ability of CPF, EFI, ANF, and SOT for daily precipitation exceeding the 95% 
climate percentile. Resulst for forecast lead times (a) day1, (b) day 3, and (c) day 6.
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some level of complementarity between the different 
types of forecasts that could be further exploited in a 
post-processing framework.

5.2 DISCRIMINATING BETWEEN MODERATE 
AND HEAVY PRECIPITATION EVENTS
We propose now to compare the potential ability of the 
4 different types of forecasts to distinguish between 
“moderate” and “heavy” precipitation events. We 
consider the situation where “wet” areas (with observed 
precipitation) can be identified in advance and assess 
the forecast’s ability to pinpoint subareas with heavy 
precipitation.

In a ROC framework, the forecast is conditioned on the 
observation. For example, H, the hit rate, is an estimate 
of the probability of a correct forecast given that the 
event actually materialised. From a theoretical point of 
view, discrimination is assessed based on a likelihood/
base-rate factorization of the forecast/observation joint 
probability distribution (Murphy and Winkler, 1987). For 
this reason, the verification dataset can be stratified 
as a function of the observations while preserving the 
interpretability of the results.3

Here, we assess whether the forecast is able to 
discriminate between extreme precipitation events 
(observations exceeding the 95% percentile) among 
lighter precipitation events (observation exceeding the 
70% percentile of the local climate). For this purpose, we 
build contingency tables from a verification dataset that 
contains only cases where the observation exceeds the 
70% percentile of the climate distribution.

The results of this conditional verification exercise are 
shown in Figure 7. CPF and SOT appear better than ANF 
and EFI in this verification setting particularly at lead 
times day 3 and day 6. EFI is the type of forecast showing 
the smallest ability to discriminate between extreme and 
less extreme precipitation events, at these time ranges. 
In future work, the differences between ROC curves could 
be re-assessed using longer verification periods and 
checking for statistical significance.

5.3 POTENTIAL ECONOMIC VALUE
The economic value of a forecast is estimated with the 
help of a standard cost-loss model. We consider the case 
where a forecast user can mitigate the loss associated 
with the occurrence of a weather event by taking 
preventive action. The user decides to take action or not 
based on an actionable forecast. The key parameters of 
this model are 1) the cost of taking action and 2) the loss 
encountered if no protective action is taken but the event 
occurs. The cost-loss ratio characterises a user in the 
sense that it reflects a specific user-defined application. 
Building on this model, the so-called potential economic 
value is derived from the elements of the contingency 
table (Richardson, 2000; 2011).

When considering extreme events, we can hypothesise 
that their monetary impact is generally larger than the 
cost of preventive action. In this context, we can recall 
that, by design, the diagonal score (the score consistent 
with CPF) links the cost-loss ratio of a user with the 
rarity of the corresponding event: the rarer the event, 
the smaller the cost-loss ratio. More precisely, the CPF is 
designed as an optimal forecast for a user whose cost-
lost ratio varies linearly with the event base rate. This 
relationship is purely theoretical but helped derive a 
score with the useful meta-property of equitability (see 
Ben Bouallègue et al., 2018, for more details).

Figure 8 shows the potential economic value of CPF, 
EFI, SOT, and ANF as a function of the user’s cost-loss 
ratio. Here again, we use 500 decision thresholds and 
results are drawn from the same contingency tables as 
for the plots in Figure 6. A log scale is used on the X-axis 
to emphasize forecast performance for users with a 
small cost-loss ratio. The user with a cost-loss ratio equal 
to the event base rate is indicated with a vertical line. 
By construction, the maximum forecast value is always 
reached precisely for this cost-loss ratio.

CPF has a similar value as EFI for most users. Users 
that should prefer EFI to CPF for decision-making are 
users with large cost-loss ratios, that is users with a 
potential loss close to the cost for preventive action. This 

Figure 7 Potential discrimination ability to distinguish between “moderate” and “heavy” precipitation events. Same as Figure 6 but for 
the discrimination among the observed cases where precipitation exceed the 70% climate percentile.
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type of user would take preventive action only when 
the event likelihood is high (the uncertainty is low). EFI 
appears more appropriate than CPF in that case. For 
situations where the user’s cost-loss is close to the event 
base rate, CPF has more value than EFI, SOT, or ANF at 
day 1 and day 3. With larger score uncertainty at longer 
time ranges, day 6 results show that all forecasts have 
an estimated economic value in the same ballpark at this 
time range.

5.4 CPF RELIABILITY
So far, CPF has been interpreted and assessed as an 
index, that is with no statistical meaning attached to its 
values. However, CPF is an ensemble summary statistic 
which is also interpretable as a probabilistic forecast. So 
we propose to assess the CPF reliability because reliability 
is, along discrimination, a key attribute of a probabilistic 
forecast. An example of what reliability means for CPF 
is the following: for all cases where CPF takes value 
0.95, it is expected that the observations exceed the 
95% quantile of the climatology in 5% of the time. This 
attribute can be checked with the help of a so-called 
reliability diagram.

The reliability diagrams for CPF of daily precipitation 
are shown in Figure 9. In these plots, we show only cases 
where CPF is greater than 0.725, for categories centred 
around 0.75, 0.8, 0.85, 0.9, 0.95, and 0.99. The bottom 
panels show the reliability curves that ideally should 
be close to the diagonal (dashed line). The upper panel 
shows the percentage of cases when CPF falls within 
each of these categories.

In terms of consistency with the observations, 
precipitation CPFs exhibit better reliability at longer lead 
times than at shorter ones. The ensemble forecast is 
notably under-spread over the first days of the forecast 
(day 1 and 3). This characteristic is reflected in the CFP 
reliability plot in the lower panel of Figure 9(a, b). In the 
upper panel, we see that high values of CPF are more 
frequent at longer lead times, as already discussed in 
Section 4.2.

Reliability is an important forecast attribute for users 
who take forecasts at face value. As the CPF has an 
interpretation in probabilistic terms, forecast reliability 
ensures that the attached meaning to a forecast value and 
its actual meaning are aligned. Reliability is a necessary 
condition for optimal decision making (Wilks, 2018).

Figure 8 Potential economic value of daily precipitation forecasts as a function of a user’s cost-loss ratio. Results at (a) day 1, (b) day 
3, and (c) day 6 for Europe over Summer 2021. Note that the x-axis is distorted (using a log-scale).

Figure 9 Reliability diagram for CPF of daily precipitation. Results are shown for forecasts at lead times (a) day 1, (b) day 3, and 
(c) day 7. In the lower panel, the observation relative frequency is aggregated for different CPF categories and perfect reliability is 
indicated with a dashed line. The upper panel shows the distribution of CPF in each category.
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6 ACTIONABLE FORECASTS FOR 
SEAMLESS PREDICTIONS OF EXTREME 
EVENTS

An actionable forecast is defined as a single value 
forecast4 discretised with a set of decision thresholds such 
that a user can decide to take action when a threshold is 
exceeded by the forecast. Seamless forecasting across 
lead times would rely on actionable forecasts that could 
be used across time ranges, without the need to change 
the forecast definition or the set of decision thresholds 
with the forecast lead time.

Potential discrimination was examined in the previous 
section. Now, we assess the forecast information content 
communicated to the end user for decision-making. 
Forecast visualisation plays a key role in translating 
potential into actual discrimination ability. The success 
of this translation is measured using a verification setting 
consistent with the forecast visualisation: the same set 
of decision thresholds is used for both applications. The 
rationale is that a piece of information that exists but is 
not communicated is not useful and has no value. This 
is typically the case when small probability values are 
attached to high-impact weather events, especially in 
the medium-range.

6.1 PERFORMANCE OF ACTIONABLE 
FORECASTS
The forecasts are now discretised using a small set 
of decision thresholds that can be used for plotting, 
communication, and eventually decision-making 
purposes. For consistency, performance assessment 
relies on the same set of thresholds to build contingency 
tables. The CPF decision thresholds are 0.85, 0.95, 0.98, 
0.99, and 0.999, and the EFI ones are 0.3, 0.5, 0.6, 0.7, 
0.8, and 0.9, and can be visualised in Figures 2 and 3. 
In these illustrations, the first decision threshold is 
represented by a contour line while the colour coding is 
used to show the other decision thresholds on the map. 
Note that the EFI visualisation in this study is identical to 

the one used on the ECMWF official web charts. For SOT, 
the thresholds used for plotting SOT contours on the 
same charts are 0, 1, 2, 5, and 8. ANF is not included in 
this analysis because this forecast type does not belong 
to the current ECMWF portfolio for medium-range 
weather forecasts.

ROC curves built using these sets of decision thresholds 
are plotted in Figure 10. Results are shown for CPF and EFI 
at 3 different lead times, day 1, day 3, and day 6. For each 
curve, one point is highlighted. This point corresponds to 
the combination (H, F) for a given decision threshold: the 
decision thresholds selected for illustration are 0.95 for 
CPF and 0.7 for EFI. In these plots, the ROC curves for SOT 
are also displayed for reference.

Two key messages emerge from the inspection of 
Figure 10. First, the empirical ROC curves are “incomplete” 
for EFI (and SOT) while they are almost complete for CPF. 
Second, the general performance associated with the 
selected decision thresholds (indicated with ◉) varies 
with the forecast lead time for EFI but not for CPF. These 
2 aspects are closely related and contribute to CPF being 
an appropriate actionable forecast for high-impact 
weather, in particular at longer lead times.

The EFI curves are not complete because the set of 
decision thresholds does not include values smaller than 
0.5, but at day 6 for example, most of the EFI values are 
below 0.5 as illustrated in Figure 5(b). By changing the EFI 
discretisation and adding smaller decision thresholds, 
more points would contribute to the ROC curve leading 
to a higher AUC. A finer discretisation of low EFI values 
would be particularly beneficial for forecasts at longer 
lead times while the current discretisation seems more 
appropriate for forecasts at shorter lead times.

So, for EFI, an ideal set of decision thresholds would 
vary with forecast lead time. To improve the EFI actual 
discrimination power, one would recommend a finer 
discretisation of low EFI values at longer lead times, 
when the uncertainty is large and EFI generally small. By 
contrast, with CPF, a consistent set of decision thresholds 
can be used seamlessly throughout all lead times.

Figure 10 Discrimination ability of the actionable forecasts as plotted on ECMWF charts. Same as Figure 6 but when considering a 
fixed set of decision thresholds for each type of forecast.
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6.2 SEAMLESS PREDICTION OF EXTREME 
EVENTS
Seamless forecasting is possible with CPF because the 
set of decision thresholds maintains their performance 
characteristics and meaning with lead time.

The highlighted points on the CPF curves (points 
associated with a given CPF decision threshold) do 
not dramatically change position on the curves with 
the forecast lead time. A direct link exists between 
the position on a ROC curve and the optimal decision 
threshold for a given application. Indeed, a given 
combination of false alarm rate F and hit rate H is more 
appropriate for some users than for others. In other 
words, for an application with a given cost-loss ratio, 
a forecaster can focus on a single decision threshold 
when using CPF. By contrast, the optimal decision 
threshold would vary with forecast lead time when 
using EFI (or SOT).

The optimal decision threshold is known apriori for 
CPF when CPF is well calibrated.5 For example, a user 
with a cost-loss ratio of 0.05 should use the CPF with 
a decision threshold of 0.95. More generally, a more 
complete ROC curve means more users would benefit 
from the forecast, especially users with a small cost-
loss ratio. This is reflected in the economic value plots in 
Figure 11. Here, the economic value of CPF, EFI, and SOT 
is estimated with the same contingency tables as for the 
ROC curves in Figure 10.

Differences between potential and actual 
discrimination are visible when comparing ROC curves 
in Figures 6 and 10, respectively. We can also directly 
compare these differences by computing the area under 
the ROC curve (AUC). Relative differences in discrimination 
ability are assessed by computing the corresponding skill 
score measuring here the relative performance of CPF 
with respect to EFI:

−
−

AUC AUC
.

1 AUC
CPF EFI

EFI

 (7)

AUC results as a function of the forecast lead time are 
presented in Figure 12.

In Figure 12(a), a large difference between potential 
discrimination (solid lines) and actual discrimination 
(dashed line) is an indication that the current way of 
communicating a forecast could be improved. A clear 
gap exists for EFI and this gap increases with lead time. 
As already noted by Raynaud et al. (2018), “[...] a more 
accurate calibration of optimal thresholds would be 
necessary in order to improve the EFI utilisation.” The 
difference between potential and actual discrimination 
is much smaller for CPF and is constant with lead time.

In Figure 12(b), CPF appears significantly better at 
actually discriminating than EFI at all lead times. The 
superiority of CPF in terms of actual discrimination 
increases with the forecast lead time reaching a skill 

Figure 11 Economic value of daily precipitation actionable forecast. Same as Figure 8 but when considering the same set of decision-
threolds as in Figure 10, that is the thresolds used for the forecast visualisation in Figures 2 and 3.

Figure 12 (a) Area under the ROC curve as a function of the forecast lead time and (b) corresponding skill score of CPF using 
EFI as a reference forecast. The solid lines indicate the potential discrimination ability while the dashed lines indicate the actual 
discrimination ability when considering a limited set of decision thresholds. In (b), the shade represents the 5% and 95% confidence 
intervals as estimated with 5-day block boot-strapping. Forecast discretisation has a negative impact on EFI discrimination while CPF 
discrimination is preserved at all lead times.
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score of almost 40% at day 6. With CPF, a forecaster is 
able to actually discriminate the occurence of extreme 
precipitation events 7 days ahead with the same ability 
as 4 days ahead when using EFI.

7 CONCLUSION

This study discusses the specificity and performance 
of a new index for the early detection of high-impact 
weather events. Case studies and results focus on daily 
precipitation, but the concept can be applied to any other 
weather variable. We show that:

(i) the new index has a statistical meaning related 
to the concept of return-period and is directly 
linked to a proper score,

(ii) the new index has similar potential 
discrimination ability but a different evolution 
with lead time compared to all the other key 
indicators of extreme events investigated here,

(iii) the new index can display a strong signal at 
longer lead times pointing to a potential high-
impact weather event leading to an enhanced 
actual discrimination power on visualised maps,

The new proposed index is derived from the crossing-
point forecast (CPF) which is a consistent forecast 
with the diagonal score used for assessing ensemble 
forecasts with a focus on extreme events. The CPF can 
be interpreted as a “worst-case scenario in a probabilistic 
sense” for which the concept of reliability holds and can 
be further assessed. CPF encompasses a duality risk/
intensity in its interpretation: its value refers at the same 
time to a risk level and to an event intensity that can 
be expressed in terms of a return period. Conveniently, 
the index takes a value between 0 and 1, so it can be 
used and visualised as an index. But more importantly, 
its (statistical) meaning and characteristics do not vary 
with lead time.

A comparison with the well-established extreme 
forecast index EFI reveals that the new index has a similar 
potential discrimination ability of extreme precipitation 
events and a lower correlation with EFI than the shift of 
tail SOT or the ensemble mean standardised anomaly 
ANF. The new index is the only forecast among those 
analysed here that exhibits a stronger signal for extreme 
events at longer rather than shorter lead times. This 
new type of forecast is particularly well-suited for users 
sensitive to missed events but could accept a higher 
level of false alarms. Typically, the users who should 
most benefit from the new index have a small cost-loss 
ratio, in other words, their cost of taking a preventive 
action is rather lower compared to the potential loss 

in case of a missed event. The new index is also better 
at distinguishing the most extreme events from lower-
intensity precipitation events.

Close to the event, CPF and EFI converge to similar 
“solutions”, but at longer lead times, we observe a 
complementarity between CPF and EFI: EFI tends to be 
muted which reduces false alarms while CPF tends to 
have a large-scale signal which reduces missed events. 
In most cases, EFI does not exceed 0.5 at day 6 because 
it is highly correlated with the ensemble mean anomaly 
and dampened as the ensemble spread increases. While 
it might be difficult to trigger forecasters’ attention on 
an event with a small probability of occurrence in the 
forecast or an EFI close to 0, with CPF, low-probability 
events are put forward when the forecast risk exceeds the 
climatological risk. As a result, a signal for a rare event can 
be present even when the forecast uncertainty is large, 
but with the caveat that this signal requires confirmation 
with the following forecast runs to limit false alarms. As 
illustrated with two case studies, precipitation events 
with low probability and potentially high impact can be 
seamlessly captured and communicated at the medium-
range time scale with the help of the new index.

NOTES
1 Exposure and vulnerability are not considered in this study.

2 Alternatively, one could also examine distribution-fitted ROC 
curves (see for example Ben Bouallègue and Richardson, 2022), 
but this approach is not explored here.

3 Note that a stratification as a function of the observation 
only would violate the necessary condition for proper score 
estimations.

4 Sometime also referred to as a point forecast, by opposition to 
an ensemble forecast.

5 At longer lead times, CPF is not far from calibration as illustrated 
in Figure 9(c).
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