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ABSTRACT
Maintenance of robust bias correction is a major challenge in the assimilation of 
meteorological polar-orbiting satellite data into limited-area Numerical Weather 
Prediction (NWP) systems. This article presents a variant of the variational bias 
correction algorithm suitable for use in convection-resolving systems. Stable bias 
correction requires continuous and representative sampling of predictor variables 
such as satellite view angles and air-mass properties. In convection-resolving NWP 
systems, the sampling is often compromised because of small computing domains, 
short assimilation time windows, and large diurnal variation in data availability.

The proposed variant is designed around the assumption of one recurring daily 
analysis hour at which a given satellite provides comprehensive data coverage inside 
the computing domain. The idea is to allow the variational algorithm to adjust the 
bias correction coefficients at that analysis hour only, and otherwise keep the updated 
coefficients constant during the analysis. The time of the daily coefficient update 
is to be specified separately for each satellite, taking account of the satellite orbit 
parameters. The proposal is an alternative to the widely-adopted operational practice 
where independent streams of coefficients are maintained and updated separately at 
each analysis hour.

The proposal is evaluated by data assimilation experiments in the context of a state-
of-the-art Northern-European limited-area NWP system. In comparison with the 
operational setup, the proposed method is found to slightly improve the satellite 
radiance data fit to the NWP model background. Nevertheless, verification against 
independent data sources indicates no solid and statistically significant impact on 
forecast system performance.
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1 INTRODUCTION

Operational data assimilation systems ingest large 
volumes of measurements from meteorological 
satellites. Especially in global applications of Numerical 
Weather Prediction (NWP), where the focus is generally 
in medium-range prediction capabilities, radiance 
sounders on polar-orbiting and geostationary platforms 
are among the most influential observing systems 
(e.g., Eyre et al. 2022). The radiance assimilation is 
commonplace in limited-area (regional) NWP systems 
too, albeit their relative importance in such applications 
tends to be less. The most common use case for radiance 
data is from sounders operating at microwave and 
infrared wavelengths (e.g., Kazumori, 2014; Lin et al., 
2017; Lindskog, Dybbroe & Randriamampianina, 2021). 
By now, a mature status has been reached also in the 
area of using microwave imagers (e.g., Geer et al., 2022).

Successful assimilation of radiance data requires 
careful handling of observation error. Radiance 
observations in most cases include a non-negligible 
contribution from systematic errors. Such observation 
biases may originate directly from instrument-specific 
characteristics and sensor design or indirectly from 
data assimilation practicalities, such as inaccuracies 
in radiative transfer modelling or observation quality 
control process. In the context of radiance assimilation, 
the careful handling of errors implies explicit treatment 
to account for the observation bias, i.e., an application of 
a bias correction algorithm (Harris & Kelly, 2001; Auligné, 
McNally & Dee, 2007).

Data assimilation algorithms retrieve meteorological 
information from departures of observations from their 
forward-modelled counterparts computed from a short-
range NWP forecast; these departures are sometimes 
called ‘innovations’ in the data assimilation terminology. 
Such departures may be affected by biases in either 
observations, the short-range forecast, or both. A well-
designed bias correction scheme should allow for 
correcting for the observation bias only. Harris & Kelly 
(2001) proposed their parametric formulation with this 
particular goal in mind, and their scheme still constitutes 
the basis for modern, more advanced bias correction 
schemes. In practice, the bias correction is derived from 
a set of geometric and physical predictor variables and 
weights (bias correction coefficients) assigned to each 
of them. The predictors typically include observation 
and solar view angles, air-mass thicknesses in selected 
pressure level intervals, and skin temperature. The 
most advanced variational systems have demonstrated 
capability to routinely optimize the weighting of the 
predictors inside the data assimilation process (Auligné, 
McNally & Dee, 2007; Benáček & Mile, 2019).

Adaptive schemes such as the Variational Bias 
Correction (VarBC; Auligné, McNally & Dee, 2007) review 
and update the bias correction coefficients at all analysis 

hours in a cycled forecasting system. The coefficients 
are made part of the assimilation control vector so 
that the updates take place simultaneously with the 
estimation of all other analysis state variables. For the 
process to be robust and reliable, there needs to be a 
reasonably large sample of observations that represent 
the full range of predictor values. When considering 
state-of-the-art convective-scale regional models of 
today, the requirement of sufficiently heterogeneous 
sampling is not easily fulfilled. Furthermore, such high-
resolution NWP systems often employ a frequent update 
cycle and relatively short assimilation time windows, 
implying that successive analyses are likely to have a 
highly variable coverage and data count from any given 
polar-orbiting satellite.

The Scandinavian-Baltic NWP group MetCoOp 
(Meteorological Co-operation on Operational NWP; 
Müller et al. (2017)) operates limited-area systems in 
convection-resolving scales. Figure 1 illustrates the large 
variability of satellite data coverage in their flagship 
operational product (MetCoOp Ensemble Prediction 
System; MEPS). The rectangle indicates the limited-
area modelling domain and dots show locations of 
observations collected from one satellite instrument, that 
is the Advanced Microwave Sounding Unit -A (AMSU-A) of 
the Metop-C satellite. The data are shown at the synoptic 
analysis hours from 06 to 21 UTC on one day. There is no 
data inside the domain at 00 and 03 UTC (not shown). 
Also at 06 and 15 UTC (panels (a) and (d)), the coverage 
is poor and there are only a few data points close to 
the lateral boundaries. The data coverage is arguably 
sufficient for useful assimilation from descending-node 
overpasses at 09 and 12 UTC (panels (b) and (c)) and 
from ascending-node overpasses at 18 and 21 UTC ( (e) 
and (f)). At all analysis hours, the observation geometry 
differs substantially from both the previous and the 
following analysis. Given that Metop-C is in a maintained 
sun-synchronous orbit, the data coverage at each 
analysis hour is broadly similar on consecutive days.

Considering the aspects of robustness and reliability 
in the adaptive bias correction process for the specific 
example shown in Figure 1, the representation of all 
possible predictor values is best guaranteed at 09 and 
18 UTC. At these analysis hours, the ground track of the 
satellite (the gray arrow) aligns such that the full range of 
viewing angles is captured within the computing domain. 
At other analysis hours the data coverage is restricted to 
either left- or right-hand-side of the ground track so that 
the sampling of the view angles is non-exhaustive.

VarBC implementations in limited-area NWP systems 
have previously been discussed in a number of studies. Lin 
et al. (2017) reported no particular difficulty associated 
with the variations in data coverage, which suggests 
that the problem described above is specific to relatively 
small computing domain sizes. The solution suggested 
by Kazumori (2014) is to refrain from updating the bias 
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correction coefficients inside the limited-area analysis, 
but instead employ coefficient values as they appear 
in the latest available analysis in a global NWP system. 
Randriamampianina, Iversen & Storto (2011) suggested 
cycling the VarBC coefficient information in 24-hour 
intervals and doing this separately at each daily analysis 
hour. This is a reasonably valid approach since the sun-
synchronous satellites always provide approximately 
the same data coverage at 24-hour intervals. Benáček & 
Mile (2019) conducted a systematic comparison of the 
methods of Kazumori (2014) and Randriamampianina, 
Iversen & Storto (2011) and ended up suggesting the 
latter as more appropriate, largely because the selection 
of predictors in global NWP systems is not directly 
applicable to limited-area systems with relatively low 
model top.

In addition to the sun-synchronous satellite missions 
considered here, there are meteorological satellites in 
non-sun-synchronous low Earth orbits too. The methods 
discusses in this work are mostly not applicable to such 
satellites.

In this article, we propose an alternative approach to 
implementing VarBC in limited-area systems. In essence, 
we suggest to modify the daily update scheme of 
Randriamampianina, Iversen & Storto (2011) such that 
the coefficients get updated only at those analysis hours 
when the data coverage is expected to be sufficient for 
robust estimation. The underlying assumption is that 
such robust coefficients will be sufficiently representative 

of the data at other analysis hours too. We describe the 
proposal in a general sense in Section 2 and from the 
point of view of a specific application in the MetCoOp NWP 
systems in Section 3. Later, we present a performance 
evaluation of the proposed scheme in Section 4 and 
concluding remarks in Section 5.

2 THREE VARIANTS OF VarBC

Variational data assimilation searches for the model 
state xa, also called the analysis, that minimizes the 
quadratic distance to the background xb on the one hand 
and to the observations y on the other. Mathematically, 
the problem is formulated in terms of the cost function 
J(x)

( ) ( )

( ) ( )

1

1

1
( )

2
1

[ ] [ ]
2

T
b b

T

J

H H

-

-

= - -

+ - -

x x x B x x

y x R y x
� (1)

where x is the model state and matrices B and R are 
representations of stochastic error covariances in the 
background and observations, respectively. The operator 
H is the forward model (observation operator) that 
transforms the model state into observation space. The 
statistically optimal analysis is the model state that 
minimizes J, i.e.,

Figure 1 Example of satellite data coverage inside the MetCoOp NWP system domain. Dots indicate locations of the Advanced 
Microwave Sounding Unit -A (AMSU-A) observations from Metop-C satellite in three-hour time windows centred at synoptic times (a) 
06, (b) 09, (c) 12, (d) 15, (e) 18, and (f) 21 UTC on 1 February 2023. Arrows indicate the approximate ground tracks of the satellite.
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( ).a argmin J=x � (2)

In the VarBC scheme, the bias correction coefficients β 
are made part of the model state vector. To highlight this 
aspect, the cost function is rewritten as
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Here, the first term on the right-hand side is the same as 
in Eq. (1). The second term penalizes for the distance of 
the bias correction coefficients from their a priori values, 
denoted by βb. The error covariance associated to βb 
is accounted for in the matrix Bβ. The third term is the 
quadratic distance of the model state from observations, 
similar to the second term in Eq. (1), but with the 
additional dependency via the bias correction model f̂ .

The three VarBC variants discussed in this Section 
differ in terms of (i) where βb is taken from and (ii) 
whether β is allowed to deviate from βb at all analysis 
hours. In the simplest formulation in a cycled analysis-
forecasting system, such deviations are allowed at all 
hours and j

bb , i.e., the first guess provided to the analysis 
at time j, equals 1jb - , that is the state found optimal in 
the previous analysis time at j–1. Figure 2 is a schematic 
illustration of this variant, that we call “Single Stream 

Continuous Update” (SSCU) in this article. The cycling of 
βb goes at the regular cycling interval together with xb. 
This variant is best suited for use in global systems where 
there is a solid and reliable stream of observations from 
all satellite instruments at all analysis hours.

The SSCU variant performs poorly in convective-scale 
limited-area systems of today (Randriamampianina, 
Iversen & Storto, 2011; Kazumori, 2014; Benáček & 
Mile, 2019). Although VarBC algorithms (by design) are 
sufficiently flexible to take account of how the number 
of available observations varies from one analysis time 
to another, they cannot easily deal with scenarios where 
the sampling of predictors is irregular. Robust estimation 
of the bias correction coefficients requires that the range 
of predictor values is fully represented in the data, but 
this is generally not the case in limited-area systems 
such as the one illustrated in Figure 1.

In the context of the ACCORD (A Consortium for 
Convective-scale modelling Research and Development) 
consortium, comprising 26 meteorological offices 
from Europe and Mediterranean countries, most 
operational VarBC implementations follow the proposal 
of Randriamampianina, Iversen & Storto (2011). Figure 3 
is a schematic representation of this variant that we call 
“Multiple Stream Daily Update” (MSDU). The provision of βb 
is detached from the regular analysis-to-forecast cycling 
and instead taken from the state found optimal 24 hours 
earlier. Since the meteorological satellites in question 
here are in sun-synchronous orbits, the observation 

Figure 2 Cycling of VarBC coefficients in the Single Stream Continuous Update variant.
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coverage is broadly similar at 24-hour intervals, so 
the previously updated coefficients can be considered 
reasonably representative of the situation at hand. From 
any given satellite, data can still be assimilated several 
times daily, but there is no communication between the 
bias correction coefficients representative of different 
analysis hours.

The MSDU variant allows one to maintain independent 
streams of VarBC coefficients even at hours when no 
active assimilation is carried out (shown by the white 
rectangles in Figures 3–4). This is useful when a previously 
maintained satellite has started to drift in its orbit and the 
data coverage at a given analysis hour is slowly evolving 
over time. The analysis hours at which active assimilation 
is performed may then require reconsideration from time 
to time.

For now, we believe that MSDU is the best working 
solution in the operational domains within the ACCORD 
consortium. However, the method comes with certain 
unattractive properties that we list as follows:

•	 In operational context there often are other (non-
satellite) observation types that also require bias 
correction and may be poorly-suited for the 24-
hour cycling. Atmospheric Path Delay (APD) data 
processed from ground-based receiver networks 
of Global Navigation Satellite Systems (GNSS) is an 
example of such an observation type (Sánchez Arriola 
et al. 2016). It is a significant technical burden to 
maintain several VarBC cycling intervals in parallel.

•	 It can take a long time to mature the VarBC 
coefficients at those analysis hours when data 
coverage inside the limited-area modelling domain 
is partial (such as 12 and 21 UTC in the case of 
Metop-C in the MetCoOp domain; see Figure 1). This 
will increase the time it takes to start active use 
of new instruments, and there is a risk of reduced 
usability of data after sudden changes in instrument 
measurement characteristics.

•	 The observation minus background departures 
may contain systematic model-driven diurnal 
variations that the bias correction scheme struggles 
to distinguish from observation biases. It will be 
difficult to detect such diurnal patterns in multiple 
independent streams of bias-corrected data, and 
such patterns will likely be present in analyses too.

Our proposed modification to the MSDU scheme is 
illustrated in Figure 4. We call this variant “Single Stream 
Daily Update” (SSDU). Here, the cycling of βb goes along 
with the regular cycling interval, so it is sufficient to 
maintain only a single stream of VarBC coefficients that 
is considered valid at all analysis hours. Crucially though, 
coefficient updates are allowed only once per day for 
any given satellite instrument. The idea is to choose 
the analysis hour for the update separately for each 
satellite in a way that accounts for the expected data 
coverage and maximizes sampling of the full range of 
predictor values. This setup will avoid the unattractive 
characteristics of MSDU described above. However, SSDU 

Figure 3 Cycling of VarBC coefficients in the Multiple Stream Daily Update variant.
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is unable to account for possible diurnal variations in the 
observation biases, which may become a disadvantage 
in some circumstances.

3 A PROPOSAL ON IMPLEMENTATION 
OF SSDU AT MetCoOp

3.1 THE MetCoOp OPERATIONAL SUITES
The operational NWP systems at MetCoOp (Müller et 
al. 2017) apply 2.5 km horizontal grid spacing in the 
domain shown in Figure 1. In vertical, the grid applies 
a terrain-following hybrid coordinate system of 65 
levels. The lowest level is at the height of 12 meters 
and the highest is at 10 hPa pressure. Each forecast 
is initialized to an analyzed model state as obtained 
through three-dimensional variational data assimilation 
(3D-Var) and optimal interpolation (OI), respectively 
for the analyses of upper-air and surface variables. 
Lateral boundary forcing in one-hour resolution is taken 
from a global host model forecast, that comes from 
the operational NWP system of the European Centre 
for Medium-range Weather Forecasts (ECMWF). The 
ECMWF forecast data is also made use of through the 
so-called large-scale mixing process, that incorporates 
planetary scale information into the background 
field just before the data assimilation (Dahlgren & 
Gustafsson, 2012).

The numerical code base for the MetCoOp NWP 
systems comes from international collaboration 
effort taken within the High Resolution Limited Area 
Model (HIRLAM), Aire Limitée Adaptation dynamique 
Développement International (ALADIN), and ACCORD 
consortia. Operational suites are built on top of reference 
versions of the HIRLAM-ALADIN Research on Mesoscale 
Operational NWP in Euromed – Applications of Research 
to Operations at Mesoscale (HARMONIE-AROME) system 
(Bengtsson et al. 2017). Since March 2021, these 
operational suites have been based on the HARMONIE-
AROME reference cycle 43.

3.1.1 MetCoOp Ensemble Prediction System (MEPS)
MEPS is the primary operational NWP system at 
MetCoOp and it provides an hourly-updating ensemble 
forecast with maximum lead time at 66 hours. The 
MEPS analysis takes the background field from an earlier 
three-hour forecast (i.e., the cycling interval is three 
hours). The data assimilation considers the following 
observation types: (1) synoptic observations at surface 
stations and ships, (2) drifting buoys, (3) radiosondes, 
(4) aircrafts, (5) APD from ground-based GNSS receiver 
networks, (6) reflectivities and Doppler winds from 
ground-based meteorological radars, and (7) polar-
orbiting satellite data from instruments including the 
Advanced Microwave Sounding Unit -A (AMSU-A), 
Advanced Scatterometer (ASCAT), Advanced Technology 

Figure 4 Cycling of VarBC coefficients in the Single Stream Daily Update variant.
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Microwave Sounder (ATMS), Cross-track Infrared Sounder 
(CrIS), Infrared Atmospheric Sounding Interferometer 
(IASI), Micro-Wave Humidity Sounder –2 (MWHS-2), and 
Microwave Humidity Sounder (MHS). Time selection is 
applied to all satellite observations to avoid attempting 
to use data at analysis times when data coverage is 
poor, because no robust bias correction information is 
available at such times.

The MEPS ensemble consists of a deterministic and 
14 perturbed members. Stochastic perturbations are 
introduced to lateral boundary forcing, observations, 
analysed model state, and certain parameters in model 
physics description as documented in Frogner et al. (2019) 
and Frogner et al. (2022). The ensemble is distributed in 
time such that five new members are launched every 
hour. The deterministic (unperturbed) member and four 
perturbed members run at the synoptic analysis hours 
(hereafter S0 hours: 00, 03, 06, 09, 12, 15, 18, and 21 
UTC). The other 10 perturbed members are distributed 
evenly between the one-hour offset (hereafter S1 hours: 
01, 04, 07, 10, 13, 16, 19, and 22 UTC) and two-hour 
offset (hereafter S2 hours: 02, 05, 08, 11, 14, 17, 20, and 
23 UTC) with respect to the synoptic hours.

3.1.2 MetCoOp Nowcasting System (MNWC)
MetCoOp also maintains a separate operational NWP 
suite designed for use in forecasting at very short lead 
times, i.e., nowcasting. The MetCoOp Nowcasting System 
(MNWC) differs from MEPS in the following aspects:

•	 Forecast lead time is restricted to 12 hours.
•	 There is no ensemble of forecasts but only the 

deterministic unperturbed run.
•	 New unperturbed analysis and forecast are produced 

every hour.
•	 Assimilation time window is one hour (centred at 

each full hour).
•	 There is no internal forecast-to-analysis cycling. 

Instead, the MNWC analysis takes the background 
field from the deterministic MEPS forecast (at either 
3-, 4-, or 5-hour lead time depending on the analysis 
time).

•	 The cut-off time for observations is 25 minutes past 
the analysis time (in contrast with 75 minutes as 
in MEPS). This means using fewer observations in 
general, although the use of various observation 
types is the same as in MEPS.

•	 There is an additional step towards improving the 
consistency of cloud analysis with geostationary 
satellite imagery as described in Gregow et al. 
(2020).

The HARMONIE-AROME code base, as well as majority 
of settings applied in the use of observations, data 
assimilation, forecast model physics and numerical 
aspects are identical between MEPS and MNWC  
suites.

3.2 SSDU UPDATE HOURS IN MEPS AND MNWC
Each polar orbiter makes five or six daily overpasses of 
significance over the MetCoOp operational domain. As 
an example, the NOAA-20 and S-NPP satellites provide a 
substantial amount of data for use in the MEPS analyses 
at 00–05 and 08–13 UTC every day. The analysis hours of 
active assimilation with these satellites are indicated for 
the deterministic member by the shaded rectangles in 
Figures 2–4. As illustrated in Figure 3, the currently-used 
implementation of MSDU maintains eight independent 
streams of VarBC coefficients. To replace the MSDU 
implementation by one based on SSDU, one will need to 
specify the hour of daily coefficient update separately 
for each satellite. Furthermore, the daily update hours 
are needed separately for ensemble members running 
at S0, S1, and S2 hours. To choose the most appropriate 
update hours, we consider the typical availability of data 
inside the MetCoOp domain at different analysis hours. 
At the ideal update hour, there will be data from all scan 
positions and also the sampling of other VarBC predictors 
(i.e., air-mass thicknesses) is as comprehensive as 
possible. In our view, this will be the best guarantee for 
robust and reliable VarBC performance.

It is obvious that the time of the most comprehensive 
data availability depends on satellite orbit parameters, 
but it will also depend heavily on the limited-area 
modelling domain. For a practical application specifically 
in the MetCoOp domain, we apply subjective selection 
based on frequency distributions of data collected from 
each scan position at each analysis hour. Figure 5 is an 
illustration of the method and represents the cases of 
NOAA-20 ATMS and Metop-C AMSU-A as they appeared 
in August 2021. NOAA-20 and Metop-C are particularly 
illustrative since they are in maintained orbits and 
highlight typical data coverage that can be expected 
from satellites in the so-called afternoon and morning 
orbits. The accumulated data count is shown separately 
for each analysis hour and those falling into either S0, S1, 
or S2 hours are arranged in separate panels. As expected, 
all panels demonstrate a considerable variation in the 
sampled frequency distribution. It is not at all common to 
have uniform sampling across the range of scan positions. 
In the case of NOAA-20 (panels (a)–(c)), the sampling is 
reasonably uniform at 12 UTC and at 02 UTC. These are 
the ideal VarBC update hours for members running at S0 
and S2 hours, respectively. For members running at S1 
hours, the choice is not obvious, although the distribution 
at 01 UTC is perhaps the least non-uniform in this case. 
Applying the same criteria for Metop-C (panels (d)–(f)), 
the sampling distributions are most comprehensive 
across the scan positions at 09, 19, and 20 UTC.

The daily VarBC update hours that we suggest for 
adoption in all MEPS members are given in Table 1. The 
hours are provided for those satellites that are currently 
in operational use. The hours will need to be adjusted 
from time to time for those satellites that are in drifting 
orbits (i.e., NOAA-18 and NOAA-19 at the time of writing). 
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The orbit information shown in the table corresponds to 
the situation in August 2021.

The implementation in the MNWC suite is slightly 
different because the system operates at one-hourly 
update interval and the data assimilation time window is 
just one hour. Since the time window is considerably shorter 
than the orbital period of the polar-orbiting satellites (that 
is, one hour and 40 minutes), each daily analysis hour 
will be populated by data from a given satellite only up 
to 60% of days. Consequently, selecting one analysis 
hour for the daily update will result in frequently missing 
the chance to actually make the update. Our proposed 

solution is to allow up to three daily updates in MNWC. 
The analysis times of the potential updates are chosen to 
be the same as those selected for the S0, S1, and S2 hours 
in the proposed implementation in MEPS.

4 PERFORMANCE EVALUATION OF 
SSDU AGAINST MSDU

4.1 EXPERIMENT SETUP
Following basic technical testing of the proposed new 
functionality, the SSDU scheme has been implemented 
as a non-default option in the most recent reference 
version of the HARMONIE-AROME system (Cy43h2.2). 
We have conducted a more thorough evaluation of the 
setup in a numerical experiment that is broadly similar 
to the operational design of MEPS. The experiment is 
run using the high-performance computing facilities 
of ECMWF and it consists of three independent parallel 
components. Each component comprises a control run 
based on the MSDU variant and a test run based on SSDU. 
The setup of the SSDU scheme is as detailed in previous 
section. The three components mimic the practice to 
launch different MEPS members at different analysis 
hours. However, the ensemble perturbations are left 
out of consideration and thus all experiment runs are to 

Figure 5 Frequency distributions of data count collected at different scan positions in August 2021. Panels (a)–(c) are for NOAA-20 
ATMS and panels (d)–(f) for Metop-C AMSU-A. Thick solid, thick dashed, thin solid, and thin dashed lines indicate the data at different 
analysis hours in members run at S0, S1, and S2 hours, as shown in the legends.

SATELLITE S0 S1 S2

NOAA-18 12 UTC 19 UTC 20 UTC

NOAA-19 06 UTC 07 UTC 17 UTC

S-NPP 12 UTC 01 UTC 02 UTC

NOAA-20 12 UTC 01 UTC 02 UTC

FengYun-3D 12 UTC 01 UTC 02 UTC

Metop-B 09 UTC 19 UTC 20 UTC

Metop-C 09 UTC 19 UTC 20 UTC

Table 1 The proposed daily update hours at MetCoOp NWP 
suites.
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be considered deterministic. The runs are based on the 
version Cy43h2.1 of the HARMONIE-AROME reference 
system. In terms of the use of novel observation types 
such as radar reflectivities, scatterometer winds, and 
satellite radiances, the experiment runs follow the 
operational practice as it stood in late 2021 at MetCoOp. 
Throughout the experiment, we use the MetCoOp domain 
and take lateral boundary forcing from global forecasts 
provided by ECMWF.

All the runs are started on 1st August and continued 
until 15th September 2021. At the start, the VarBC 
coefficients are initialized to the state determined 
by another (in broad terms similar but independent) 
experiment that had been run earlier and covered 
from late May to the end of July 2021. This experiment 
applied three-hour cycling (only at S0 hours) and the 
VarBC information was updated according to the MSDU 
scheme. The control run at S0 hours takes the initial 
VarBC information directly as it appears at the end of the 
independent experiment. The control runs at S1 and S2 
hours initialize the VarBC coefficients to the preceding S0 
hour (that is, the initial VarBC coefficients at 01 and 02 
UTC are the same as at 00 UTC, those at 04 and 05 UTC 
are the same as at 03 UTC, and so on).

Also the SSDU test runs initialize their VarBC coefficients 
to the state determined by the independent run at the 
end of July 2021. However, manual intervention is made 

such that the coefficients assigned to each satellite at 00 
UTC on 1st August match those updated at the relevant 
analysis hour on the last day of the independent run. 
For instance, the SSDU test run at S0 hours initializes the 
coefficients for NOAA-20, S-NPP, and FY-3D to the state 
updated at 12 UTC, while it initializes the coefficients for 
Metop-B and Metop-C to the state updated at 09 UTC. The 
initial coefficients at 00 UTC on 1st August are copied as 
such to the other two test runs started at 01 and 02 UTC.

Since the the initial VarBC coefficients at S0 hours have 
had more than two months to adjust in the independent 
run, we consider them appropriate as such for serious 
experimenting. However, the initial coefficients at S1 and 
S2 hours may not be that representative of the actual 
assimilation hours, which is why we apply an additional 
10-day warming-up period to allow for better adjusting 
to the actual analysis hours. Consequently, the data 
fit and forecast evaluations presented below (sections 
4.2.2–4.2.4) are all based on the 36-day period from 11th 
August to 15th September 2021.

4.2 RESULTS
4.2.1 Time series of mean observation minus 
background (O-B) departure
As the first diagnostic, we consider the time series of mean 
O-B departure as shown in Figure 6 for the full extent of 
the 46-day experiment. The figure shows representative 

Figure 6 Time series of mean observation minus background (O-B) departure in representative sounder channels. (a) Channel 7 of 
Metop-B AMSU-A, (b) channel 9 of NOAA-20 ATMS, (c) channel 5 of Metop-B MHS, and (d) channel 236 of Metop-B IASI. In each 
panel, the data at S0, S1, and S2 hours are shown at the top, middle, and bottom, respectively. Data of the control runs are shown 
by triangles, circles and squares; that of the test runs by dots, diamonds and asterisks. The thick dashed line indicates the start of the 
36-day evaluation period.



124Eresmaa Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.3259

examples of channel behaviour in temperature-sounding 
channels at microwave frequencies (panels (a) and (b)), 
a humidity-sounding channel at microwave frequencies 
(panel (c)), and a temperature-sounding channel at 
infrared frequencies (panel (d)). Timestep index on the 
x-axis goes from 1 to 1104 including all full hours from 00 
UTC on 1st August to 23 UTC on 15th September 2021. The 
data is stratified such that the S0, S1, and S2 hours are 
shown respectively at the top, middle, and bottom part 
of each panel (a)–(d).

At the S0 hours, the behaviour of the mean O-B 
departure shows only little difference between the 
control and test runs. In the humidity sounding channel 
at microwave (Figure 6c), there is a weak signal of mean 
O-B going occasionally close to -1.0 K while it usually stays 
within ±0.5 K. The outliers occur mostly in the control 
run at either 12 or 21 UTC analysis. These analysis hours 
sometimes suffer from relatively low data numbers from 
the Metop-B satellite. At S1 and S2 analysis hours, there 
is a stronger signal in temperature-sounding channels 
at both microwave and infrared frequencies. There are 
numerous cases of the control run (circles and squares) 
failing to provide a good O-B fit. This is particularly obvious 

in the infrared channel (Figure 6d) at the beginning of 
the time series. The fit, however, becomes seemingly 
good by the time the 36-day evaluation period kicks 
in (marked by the thick dashed lines), so we assume 
this to be associated to the sub-optimal use of the S0 
hour data when initializing the VarBC coefficients at the 
start of the experiment. In the temperature-sounding 
channels in microwave regime (panels (a) and (b)), the 
control run suffers from occasional poor fit throughout 
the evaluation period. The test runs applying the SSDU 
scheme do not reveal many such failures in the O-B fit.

4.2.2 Aggregated O-B departure statistics in 
radiance data
The next diagnostic to consider is the O-B fit in the 
radiance data as aggregated over the whole of the 
36-day evaluation period. Figures 7 and 8 show the 
mean and standard deviation of the O-B departure 
in microwave sounder channels of NOAA-20 and 
Metop-C satellites (respectively). In both figures there 
are 12 panels corresponding to the daily analysis hours 
that include assimilation of the instrument data in 
question. The panels are arranged such that the S0, 

Figure 7 Observation minus background (O-B) departure statistics in the actively-assimilated channels of NOAA-20 ATMS. Control and 
test runs are shown by thick and thin lines, respectively. Dashed and solid lines represent mean and standard deviation. Bars indicate 
the 95% confidence intervals. The different panels indicate data at different analysis hours as shown in the headings.
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S1, and S2 hours go to the top, middle, and bottom 
rows, respectively. Furthermore, panels (a), (e), and (i) 
correspond to the analysis hours doing the daily update 
in the SSDU scheme.

In the case of NOAA-20 (Figure 7), the temperature-
sounding channels of ATMS are at indices 7–10 along 
the y-axis, while the humidity-sounding channels are at 
indices 19–22. In comparison with the MSDU scheme (thick 
lines), the SSDU scheme (thin lines) provides improved 
data fit at 00, 09, 04, 10, 05, and 08 UTC analysis hours. 
At all these hours, either mean or standard deviation (or 
both) of O-B are on average closer to zero in the SSDU 
test run than in the MSDU control run. The difference is 
in most cases significant at 95% confidence level. There 
is opposite behaviour, i.e., the data fit is degraded in the 
SSDU test run, at 12 and 13 UTC. At other analysis times, 
there either is very little difference between the two, or 
the superiority is controversial.

In the case of Metop-C (Figure 8), the temperature-
sounding channels of AMSU-A are at indices 6–9 on the 
y-axis, while the humidity-sounding channels of MHS 
correspond to indices 3–5. The SSDU scheme indicates 
superior performance in fitting the data at 18, 21, 10, 
22, and 08 UTC. At no analysis time does the SSDU 
perform worse than MSDU overall, but there is a notable 

degradation in the fit to humidity-sounding channels at 
11 and 17 UTC.

On balance, in terms of the data fit, the SSDU test runs 
outperform the MSDU controls at more analysis hours than 
vice versa. Judging against the frequency distributions as 
a function of scan position (shown in Figure 5), there is 
a feel that the SSDU scheme performs better at times 
when the data coverage is strongly skewed towards 
either end of the range of scan positions. At times when 
the data coverage is more evenly distributed across the 
scan positions, the MSDU scheme is robust and there is 
no added benefit from switching to the SSDU scheme.

4.2.3 The impact on the background fit to 
independent data types
The next step is to evaluate the performance of the SSDU 
scheme in terms of short-range forecast accuracy. The 
common approach is to compute statistical measures 
of O-B departure in independent observation types 
and compare with the same score computed from 
the control run. Such a comparison is shown in Figure 
9 for the case of a combination of radiosonde and 
aircraft measurement data. In this experiment and 
also in HARMONIE-AROME systems in general, these 
conventional observation types are handled without 

Figure 8 Observation minus background (O-B) departure statistics in the actively-assimilated microwave sounder channels of 
Metop-C. Channel indices go from 3 to 5 in MHS and from 6 to 9 in AMSU-A. Lines are as in Figure 7.
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applying any bias correction. The statistic shown is the 
standard deviation of O-B departure in the test runs, but 
the scores are normalized with the equivalent score in 
the control runs. The bars indicate the 95% confidence 
intervals. The figure shows only a few examples of a 
statistically significant signal. The vector wind score 
shows up to 0.5% reduction, i.e., a positive impact, in the 
test run at S0 hours (panel (a)). The experiment runs at 
the S1 and S2 hours do not show a similar feature (panels 
(b) and (c)). The temperature scores higher than the 1000 
hPa pressure level (panels (d)–(f)) are exclusively within 
the confidence intervals. At the 1000 hPa level, all three 
test runs consistently indicate a small negative impact, 
which is a potential source of concern. The experiments 
make only little use of low-peaking channels that could 
be directly attributed to this signal. There is a possible 
connection with the lowest-peaking channels of MHS 
and MWHS-2, since these channels are assimilated 
both over sea and over low-orography land areas south 
of the latitude 55°N. The significance of this possibility 
remains a topic of further investigation. The scores 
computed from humidity data (panels (g)–(i)) are not  
conclusive.

4.2.4 The impact on forecast system performance
The final step of the performance evaluation assesses 
the impact on forecast scores at lead times relevant in 
limited-area NWP. Verification scores computed against 
observations taken at synoptic ground stations are 
shown in Figure 10. The figure shows root-mean-square 
of forecast error in the test runs at the S0 (panels (a), (d), 
and (g)), S1 (panels (b), (e), and (h)), and S2 (panels (c), 
(f), and (i)) hours. In each case, the score is normalized 
by its counterpart in the respective control run, such 
that negative values along the y-axis are indicative of a 
positive impact in the test runs. Again, the bars indicate 
the confidence intervals at the 95% significance level. 
Also in this verification there are only a few indications of 
statistically significant impact. The most notable impact 
is in the verification of mean sea level pressure in the test 
run at S2 hours (panel (c)). The statistically significant 
positive impact there reaches out to 12 hour forecast 
range, but no further. There are weak suggestions 
of isolated significant impacts (some positive, some 
negative) also in panels (b), (d), (f), and (h). Overall, we 
must conclude that the forecast verification provides no 
solid evidence of either positive or negative impact.

Figure 9 Short-range forecast impact of switching from MSDU to SSDU. The O-B data fit is shown in independent conventional 
measurements based on radiosondes and aircraft reports. The score is the control-normalized standard deviation of the O-B 
departure such that x-axis values less than one indicate a positive impact. The bars show the confidence intervals at 95% statistical 
significance level. (a)–(c) vector wind, (d)–(f) temperature, and (g)–(i) specific humidity. Panels (a), (d), and (g) are from the 
experiment run at S0 hours, panels (b), (e), and (h) at S1 hours, and panels (c), (f), and (i) at S2 hours.
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5 CONCLUSIONS AND FUTURE 
PROSPECTS

We have presented an evaluation of a specific variant 
(SSDU) of the VarBC algorithm tailored for the use in 
convective-scale limited-area NWP systems. The SSDU 
variant is intended as an alternative to the MSDU variant 
that is part of most operational implementations within 
the ACCORD consortium. The specific feature of SSDU is to 
allow only one daily update to the VarBC coefficients and 
otherwise keep them fixed during the analysis. However, 
the hour of the daily update is chosen separately for each 
polar orbiter. The underlying assumption is that doing the 
one daily update at an appropriate time is sufficient to 
ensure validity of VarBC coefficients at all analysis times.

The proposed setup is evaluated in the context of the 
operational convective-scale 3D-Var data assimilation 
system of the MetCoOp group. Switching from MSDU to 
SSDU is found to provide no statistically significant impact 
on forecast quality, although there are relatively minor 
improvements in the radiance data fit against the NWP 
model background. Overall the results are sufficiently 
encouraging for operational implementation in MetCoOp 
NWP suites.

The SSDU variant may allow to proceed towards 
assimilating polar-orbiting satellite data at all analysis 
times in limited-area NWP systems. The MSDU variant is 
unable to maintain robust VarBC coefficient information 
at those analysis hours when data coverage inside 

the computing domain tends to be poor. Such data is 
currently blacklisted from entering the assimilation. There 
is an associated excess burden via the need to reconsider 
the blacklisting hours from time to time for each satellite. 
From the point of view of technical maintenance, it would 
be desirable to remove the need for such blacklisting. 
No major meteorological impact is expected from such 
development though, since the number of additional 
data in the assimilation would be low.

There is a possibility to further improve the robustness 
of the bias correction through introducing automated 
recognition of sufficient representativeness in the 
sampling of predictors. The proposed SSDU variant 
involves a manual step to identify the analysis hour of 
the daily update for each satellite. Particularly with 
satellites in drifting orbits, the hour of the update will 
need to be revisited every now and then. The automated 
approach would avoid this manual work. Furthermore, 
an automated scheme would open up a possibility to 
assimilate radiance data from satellites in non-sun-
synchronous orbits.

DATA ACCESSIBILITY STATEMENT

Analysis-time- and experiment-run-specific statistical 
data that is used in the production of the figures is 
available for download at https://drive.google.com/file/
d/1SOTUYikBrK4TKyxZLtNm_seckIHh-ead.

Figure 10 Forecast verification of switching from MSDU to SSDU. The scores are computed against verifying observations taken at 
synoptic ground stations. The score is the control-normalized root-mean-square of forecast error and positive impact manifests itself 
by negative values on the y-axis. The bars indicate the confidence intervals at 95% statistical significance level. (a)–(c) mean sea level 
pressure, (d)–(f) temperature, and (g)–(i) specific humidity. Panels (a), (d), and (g) are from the experiment run at S0 hours, panels 
(b), (e), and (h) at S1 hours, and panels (c), (f), and (i) at S2 hours.

https://drive.google.com/file/d/1SOTUYikBrK4TKyxZLtNm_seckIHh-ead
https://drive.google.com/file/d/1SOTUYikBrK4TKyxZLtNm_seckIHh-ead
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