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TOMAS LANDELIUS3, 1CNRM-GAME, Météo-France, Toulouse, France; 2DCSC/AVH,
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ABSTRACT

In this article, we describe the design and the validation of the Mescan precipitation analysis system developed

for climatological purposes under the EURO4M project. The system is based on an optimal interpolation

algorithm using the 24-h aggregated gauge measurements from the surface network. The background fields are

the total accumulated precipitation forecasts at different resolutions from the ALADIN or HIRLAMmesoscale

models, downscaled to 5.5 km grid spacing, chosen to match the time period of the climatological gauge reports.

The validation of the Mescan system is carried out over the French territory employing various metrics and by

providing forcing to a hydrological model to produce river discharges. The investigations have shown that the

precipitation analyses have almost the same quality as the well-validated SAFRAN analysis system. In addition,

the analysis of the precipitation variance spectra computed on the same horizontal domain has indicated that

at short wavelengths the downscaled fields have significantly lower variability than a field produced by time

integrating a forecast model. The Mescan precipitation analysis system has successfully been used to produce

24-h total accumulated precipitation re-analyses on a 5.5 km grid over Europe for the period 2007�2010.

Keywords: optimum interpolation, limited area, various background resolutions, rain gauge data

1. Introduction

Among the meteorological variables, precipitation is of

essential interest in weather forecasting and climate applica-

tions. It is also the most important one in hydrology,

water management or agrometeorology. As such, long-

term precipitation data sets have been produced by various

large-scale global atmospheric re-analysesmade available by

leadingmeteorological centres such asNCEP-NCAR (Kalnay

et al., 1996; Kistler et al., 2001), ECMWF (Uppala et al.,

2005; Dee et al., 2011) and JMA (Onogi et al., 2005) (see

Appendix A for the acronyms). Those re-analyses data

spanning long time periods and different spatial scales have

already proved their quality and usefulness in various

research studies. However, they have been performed at

horizontal grid spacing greater than 80 km that may be

considered too coarse for applications used to examine

weather variables over areas in which small-scale topogra-

phical influence and land-sea contrast are important. In

addition, the accumulated precipitation fields are the result

of a time-integrated forecasting model, the gauge measure-

ments not being directly analysed by the data assimilation

system.

A number of limited-area precipitation analysis systems

based on the univariate optimum interpolation algorithm

are described, for example, in Bhargava and Danard (1994),

Häggmark et al. (2000), Mahfouf et al. (2007) and recently

in Lespinas et al. (2015). Conceptually, the systems differ

through the choice of the variable defined to carry out the

analysis. Whereas Bhargava and Danard decided to carry

out the analysis in the physical space on the precipitation

value, in Häggmark et al. the variable is the precipitation

value normalised by the standard deviation of the daily

gauge measurements at the stations. A specific optimum

interpolation analysis system, called SAFRAN, designed

to provide forcing for an avalanche-forecasting model over

French Alps is described by Durand et al. (1993, 1999). The

design of SAFRANmakes it hardly portable over any other

region outside France since it performs analysis of atmo-

spheric variables on climatologically homogeneous areas of

irregular shapes. A description of a modified SAFRAN

version extended to cover France, together with some of its

applications, is provided in Quintana-Seguı́ et al. (2008).
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In all these approaches, the underlying principle consists

of assuming that the precipitation and their associated

errors are normally distributed both for background and

observations. Assuming a log-normal distribution,Mahfouf

et al. (2007) developed a precipitation analysis system in

which the analysis is carried out on a transformed variable.

This approach was also applied at ECMWFbyLopez (2011)

in their 4D-Var data assimilation system.Recently, Lespinas

et al. (2015) presented an assessment of the operational

Canadian precipitation analysis system [initially developed

by Mahfouf et al. (2007)] in which the analysis is performed

on a cubic-root transformed variable as proposed by Fortin

(2007).

In this article, we describe the Mescan precipitation

analysis system designed and implemented as part of the

EURO4M1 project, which was conceived to demonstrate

the capacity of generating and providing reliable high-

resolution gridded data sets of essential climate variables at

the European scale. TheMescan analysis system has a wider

range of options being capable to perform not only the

precipitation analysis but also analyses of temperature and

relative humidity at 2 m (Soci et al., 2013). The Mescan

precipitation analysis system has been primarily designed to

be run in a hindcast mode, for climatological purposes, but

it can also be used for daily meteorological or hydrological

operational activities. It has been developed to ingest 24-h

accumulated precipitation data available in the long-term

historical data sets from SYNOP and climate stations,

which can be found in some European databases (e.g.

ECA&D2, ECMWF). At this development stage, it is not

envisaged to use radar data in the system because these are

neither long-term data nor covering whole Europe. Though

the EUMETNET OPERA programme has expressed the

endeavour to gather radar data across the western half

of Europe, hard work has to be done in order to create

reliable radar products that can be successfully used in data

assimilation. In order to reach the demonstrative goal of

the EURO4M project, 24-h accumulated precipitation re-

analyses at 5.5 km grid spacing over Europe for the period

2007�2010 have been produced.

The article is organised as follows. Section 2 briefly

describes the Mescan precipitation analysis system, the

experimental setup together with the ensemble of the results

and the methods used for the tuning of error statistics.

Some aspects related to the high-resolution precipitation re-

analyses at the scale of Europe are presented in Section 3,

and a summary and the concluding remarks are provided in

Section 4.

2. Precipitation analysis

This section provides a brief presentation of the optimum

interpolation algorithm (Section 2.1) used as a tool to pro-

duce gridded analyses in meteorological data assimilation.

A comprehensive description can be found, for example,

in Lorenc (1981), Daley (1991) and Kalnay (2002). Also, in

Section 2.1, some aspects of the Mescan system are briefly

described. The experimental setup is presented in Section

2.2, while the validation is presented in Section 2.3. At the

end of this section, we discuss some results related to the

high-resolution precipitation analysis and spectral analysis.

2.1. Optimum interpolation

The optimum interpolation algorithm is generally derived,

from a Bayesian perspective (Gelman et al., 1995), from the

viewpoint of the minimum analysis error variance. It is a

spatial interpolation algorithm that produces the best

unbiased linear combination of observations with a first

guess. Usually, the first guess, also called the background,

is a short-range forecast from a numerical weather predic-

tion model. The interpolation method is said to be optimal

in the sense that it minimises the variance of interpola-

tion errors if some hypotheses are verified, which in-

cludes knowing the error statistics of observations and

background.

Let us denote the background by the vector

xb ¼ fxb
1; . . . ; xb

ng of dimension N, yo ¼ fyo
1; . . . ; yo

mg the

observation vector of dimension M and the analysis vector

to be determined xa ¼ fxa
1; . . . ; xa

ng of dimension N. Let H

be the observation operator that transforms the model

forecast variable to the observation location, and Hðxb
j Þ be

the background value interpolated at observation point j.

For a particular grid point i influenced by p nearby

observations, the optimum interpolation analysis equation

can be written as

xa
i ¼ xb

i þ
Xp

j¼1

wij ½yo
j �Hðxb

j Þ� (1)

The difference yo
j �Hðxb

j Þ is called the innovation

(Talagrand, 1997), observational increment or background

departure. The weights wij are found as the solution of the

linear system (Kalnay, 2002, p. 160):

Xp

j¼1

wijðBjk þ RjkÞ ¼ Bik (2)

where k�1, . . ., p. In practice, the system is solved for each

analysis grid point by utilising a number of 16 nearby

observations that lay within a radius of 200 km of the point

of analysis. In eq. (2), Bjk and Bik are the horizontal

background error covariances between the observations

1Information about the EURO4M project financed by the

European Union and the availability of data sets can be found

at www.euro4m.eu
2For more information visit http://www.eca.knmi.nl
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points j and k, respectively, a model grid point i and an

observation point k. Rjk is the covariance of the observa-

tion error between the points j and k. It is assumed that

the background error correlation between two points is

homogeneous and isotropic and also that the background

and the observation errors are uncorrelated. Furthermore,

under the hypothesis of uncorrelated observation errors,

R become a diagonal matrix, Rjk ¼ r2
odjk. Here so is the

standard deviation of the observation error considered as

the sum of the measurement and representativeness errors,

and djk is the Kronecker symbol. The representativeness

error is caused by any physical scales, features or processes

that affect the observation but are unresolved in the

forecast model (Ingleby, 2015).

In the development of the Mescan precipitation analysis

system described in this article, we have chosen to use the

covariance of the background errors modelled by a second-

order auto-regressive function as in Mahfouf et al. (2007),

that for two points i and k is given by

Bik ¼ r2
b 1þ rik

L

� �
exp � rik

L

� �
(3)

where sb stands for the standard deviation of background

errors, rik is the distance between the points i and k on the

same horizontal surface, and L is a characteristic horizontal

correlation length scale. The background error covariances

determine the spatial scales and the amplitude of the

corrections applied to the background.

The Mescan precipitation analysis system is based on

a two-dimensional univariate optimum interpolation

method to perform the analysis in the physical space on

the precipitation values, under the assumption that the

errors associated with precipitation are normally distrib-

uted with zero mean and the error variances are r2
o for the

observations and r2
b for the background.

Mescan is intended to be used in the EURO4M project to

produce retrospective analyses that best fit the observations,

not analyses for a numerical weather prediction system that

generates the best subsequent forecast. To this aim, an

important scalar is the ratio between the observation and

the background error variances, a ¼ r2
o=r

2
b. By tuning this

parameter, the analysis can be forced to draw more closely

to observations or to the background, respectively. Thus,

for a�0, it is assumed that the observation is perfect, a�1,

the observations and the background are supposed of the

same quality, and for a�1, a higher confidence is given to

the background.

The input observation data set to the analysis system is

produced as an external pre-processing task to select the

24-h gauge measurements that match the time period of the

climatological reports (06 UTC one day�06 UTC next day)

and to remove duplicated reports from the same station.

Once the input data set is ingested by the analysis system,

an automatic quality control can be performed on the

observations, innovations and departures from the analysis.

A first task is done at the observation location in order to

reject reports for which the difference in height between the

model orography and the station altitude is greater than

a specified value. The second task is to apply a statistical

test to each observation, at each measurement point j, by

comparing the normalised innovation with an assumed

threshold, T, that is

jyo
j �Hðxb

j Þj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

o þ r2
b

q
> T (4)

The default value for T is 10. The observation is flagged as:

(1) correct if the ratio is below 0.7 times T, (2) suspicious

if the ratio is between 0.7 times T and T, and (3) probably

incorrect if it is greater than T. The final step of quality

control is the consistency check (also called ‘buddy check’)

where each observation is compared to the average of

nearby observations within a circle of specified radius. At

this stage, the observation receives the final quality control

flag. Thus, some observations flagged as suspicious or

probably incorrect at the previous step can be re-flagged as

correct and admitted for analysis.

2.2. Experimental framework

To validate theMescan precipitation analysis system, a set of

experiments has been conducted in a hindcast mode over a

domain covering France. The experiments are summarised

in Table 1. One of the main arguments for performing the

validation over the French territory has been the availability

of the 24-h accumulated precipitation data from a high

density gauge network. This network consists of 4300

stations (synoptic, automatic and climatological) from

which about 1600 with reports sent on a daily basis and

2700 climatological stations with daily data available at the

Table 1. Summary of the experiments G1 and G2 performed for

the evaluation of Mescan precipitation analysis system over the

French territory

Experiment Background fields Error statistics

G1 � ALADIN forecasts at 5.5

km (native forecasts)

so�5 mm, sb�
13 mm, and L�35 km

� Downscaled ALADIN

forecasts from 9.5 to 5.5 km

idem

G2 � AROME forecasts at

2.5 km (native forecasts)

idem

� Downscaled ARPEGE

forecasts from 10 to 2.5 km

idem

EURO4M

re-analyses

� Downscaled HIRLAM

forecasts from 22 to 5.5 km

idem

HIGH-RESOLUTION PRECIPITATION RE-ANALYSIS SYSTEM 3



end of each month. Data from all these stations are quality

controlled and then archived in the Météo-France Climato-

logical database. However, the quality control does not

provide an error-free data set. Though different types of

errors (e.g. systematic errors due to the wind) are associated

with the in situ precipitation measurements, this problem

was not addressed in our study. Instead, we have considered

that allmeasurement errors aswell as representativeness errors

are specified in the statistics of the observational errors. A

comprehensive documentation of the various errors influen-

cing the precipitation measurements is given in the WMO-8

guide, Chapter 6 (WMO, 2012). In the following, the set of

the gauge measurements from 1600 stations with daily

reports is denoted as the operational network, whereas the

observation data set from the 2700 climatological stations

not used in the production of the analyses is referred to as the

independent observations and used to compute categorical

scores. The precipitation data were taken from the Météo-

France Climatological database and considered reliable and

gross error-free. Thus, in the analysis system, the quality

control of the observations was not applied.

A second argument was the presence of two high-

resolution precipitation gridded data sets over France

produced with SAFRAN and ANTILOPE operational

analysis systems allowing inter-comparisons to assess the

quality ofMescan analyses. ANTILOPE system (Laurantin,

2008) was developed at Météo-France to produce rainfall

products overFrance at a grid spacing of 1 km, by combining

radar and gauge data at a high temporal scale.

The set of experiments (henceforth named G1) includes

analyses generated at 5.5 km grid spacing because this is the

horizontal mesh size at which the EURO4M re-analyses

were to be performed at the European scale (Fig. 1). The G1

experiments have been conducted in retrospective mode, for

a trial period spanning 9 months (October 2009�June 2010).
This period was chosen because the precipitation recorded

at the surface encompassed a wide range of rainy systems

from predominantly stratiform during the cold season

(defined here as October�February) to mainly convective

ones in the warm season (March�June).
The analyses were produced over an area selected to

be nested into the ALADIN-France domain, which was

operationally used atMétéo-France at the time of this work.

ALADIN (Horányi et al., 1996) is a limited-area numerical

weather prediction model developed within an international

cooperation. The selected area consists of 288�288 points

with a grid spacing of 5.5 km, centred at 46.2 8N and 2.2 8E.
The ALADIN-France domain has 300�300 points with

9.5 km grid, centred at about 46.5 8N and 2.5 8E. The back-
ground is a 24-h total accumulated precipitation field

initialised at 0600 UTC, downscaled from 9.5 to 5.5 km

grid spacing through a 12-point cubic interpolation techni-

que. By downscaling, a model field at coarse resolution is

projected on a higher-resolution grid with the purpose of

obtaining, as much as possible, more detailed information

over a certain geographic area. The interpolation technique

employed in our studies for downscaling purposes is the one

developed in the ALADIN model and used operationally.

30°N 30°N

35°N35°N

40°N 40°N

45°N45°N

50°N 50°N

55°N55°N

60°N 60°N

65°N65°N

70°N 70°N

20°W 15°W 10°W 5°W 0° 5°E 10°E 15°E 20°E 25°E 30°E 35°E 40°E

Fig. 1. EURO4M re-analysis domain and the spatial distribution of the 24-h precipitation observation network.
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Hereafter, the fields produced by downscaling will be

denoted as the downscaled forecasts. For convenience we

will refer to the forecasted fields performed at the higher-

resolution grid (e.g. 5.5 km grid spacing) as the native

forecasts. The 24-h total accumulated precipitation field

is the sum of the four ALADIN model variables, that is,

the stratiform and convective rain and snowfall amounts at

the surface, respectively. The ALADIN model provides the

snow field in terms of snow water equivalent. The back-

ground is chosen to match the time period of the climato-

logical gauge reports issued daily, which are supposed to

provide aggregated precipitation values from morning one

day at 0600 UTC until 0600 UTC next day. It is considered

that the model precipitation spin-up problem is reflected in

the statistics of the background errors. The gridded analyses

are generated at the resolution of the downscaled back-

ground, with observations ingested from the operational

network. In the statistical model, constant values as in

SAFRAN operational system were set up, as follows: the

standard deviation of the observation errors, so�5 mm, the

standard deviation of the background errors, sb�13 mm,

and the horizontal correlation length scale, L�35 km.

2.3. Validation of precipitation analysis system

A classical approach for validating an analysis is to apply

different metrics to measure the fit to independent observa-

tions and to assess the skill. Henceforth, this method is

referred to as the direct validation. A different approach is to

use the analysis together with a set of other atmospheric

variables, usually from a numerical forecast model, as initial

data to force other applications such as a hydrological

model to produce river flows or a surface model to simulate

a number of surface variables (e.g. snow depth and soil

moisture content). These derived output variables are then

compared with the in situ measurements. We denote this

approach the indirect validation.

We have performed direct validation for December,

January and June and indirect validation for the entire

period of 9 months (October 2009�June 2010).

2.3.1. Direct validations. Primarily, we have tested the

Mescan system for a severe weather event of 15 June 2010,

whenmesoscale convective systems caused, in the south-east

of France, extremely large 24-h accumulated precipitation

amounts. Figure 2 displays a zoom over the region of

interest. In the left panel are overlapped all the available

observations over that area and the background field,

whereas the right panel illustrates the precipitation analysis

and the observations from the operational network ingested

in the analysis. Thus, two stations report amounts greater

than 300 mm (with a peak magnitude of 397 mm in the Var

county), 10 greater than 200 mm, and 23 raingauge values

greater than 100 mm. Such high precipitation amounts, not

unusual in the southern France and responsible for casual-

ties and damages have an important societal impact despite

being outliers from a statistical point of view. As such, even

if the outlier is an accurate observation that contains small-

scale information unresolved by the forecast model, it is

usually rejected by the quality control of a data assimilation

system. As shown in the left panel of Fig. 2, the operational

ALADIN-France model at that time misforecasted the

precipitation field both in location that is displaced by
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about 200 km to the south-west over the Mediterranean Sea

and in maximum value (124 mm, hence of about three times

lower than the largest measured value). Figure 2 (right panel)

illustrates the ability of the Mescan system to represent this

extreme event though the maximum value of the analysis

is only 266 mm, which is about 33 % smaller than the

highest rain gauge measurement. An examination of the

innovations have shown values between �54 and 372 mm,

the model value interpolated at the peak measurement

location being of 25 mm.

The quality of the G1 analyses set is evaluated for

December 2009�January 2010, a period encompassing several

snowfall events, and for June 2010 when heavy precipita-

tion affected mainly the south-eastern part of France. Over

these periods, categorical scores have been computed using

independent observations.

The skill of the precipitation analyses has been assessed at

the same spatial scales using gridded observations, following

a methodology described in Ghelli and Lalaurette (2000).

Thus, the independent observations from the French net-

work as well as the backgrounds, theMescan and SAFRAN

analyses have been projected onto a regular grid of 10 km.As

a measure of skill, a number of standard categorical scores

are computed (e.g. Heidke skill score, Frequency Bias Index,

Equitable Thread Score, Probability of Detection, False

Alarm Rate). A detailed explanation of such scores can be

found in Jolliffe and Stephenson (2003) or Wilks (2006).

Figure 3 shows the monthly values of the HSS calculated

against persistence as a function of classes of precipita-

tion for the background (black dotted line), respectively,

SAFRAN (blue dashed line) and Mescan (red solid line)

analyses. The HSS ranges between �1 and 1, with one for

a perfect analysis, zero for an analysis equivalent to per-

sistence and for negative values the analysis is worse than

the persistence. The persistence is the observation data set

shifted in time by one day. It means that the gauge report

frommorning yesterday from each station was considered as

if it were reported morning today, assuming that precipita-

tion exhibits a statistical dependence in time. When examin-

ing the plots inFig. 3a and b, it can be noticed that the quality

of backgrounds changes with the season. Thus, the reduced

skill in June (panel b) compared with December�January
(panel a) highlights a known weakness of the sub-grid

parametrisation of moist convective processes in the ALA-

DIN model, common to other mesoscale models. That is,

it produces too much precipitation when the small-scale

atmospheric forcing is strong, particularly over the complex

topography. Figure 3 also reveals the improved skill of

the Mescan analyses compared to the background, which

can be considered as a sanity check of the analysis system.

Furthermore, when comparing Mescan and SAFRAN

analyses, it appears that for precipitation classes greater

than 5 mm, Mescan is slightly better than SAFRAN,

whereas for lower values, SAFRAN has higher skill scores.
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Fig. 3. Monthly Heidke Skill Score against persistence computed as a function of classes of precipitation for (a) December 2009�January
2010, and (b) June 2010. Background (black dotted line), SAFRAN (blue dashed line) and Mescan (red solid line), respectively.

6 C. SOCI ET AL.



The small difference between the scores of the two analyses

illustrated in panel (a) can be related to the occurrence of the

stratiform precipitation type in winter when the large-scale

atmospheric forcing prevails.

An important aspect of precipitation products to exam-

ine, particularly for hydrological applications, is their

systematic errors. A common metric for such assessment,

is the Frequency Bias Index (FBI) defined as a ratio between

the frequency of forecasts and the frequency of actual

occurrences of the event (Jolliffe and Stephenson, 2003).

It ranges from zero to infinity. The optimal value for an

unbiased forecast is one, whereas for values above (below)

one, the model overestimates (underestimates) the precipita-

tion frequencies.

A comparison between monthly FBI for the background,

respectively,Mescan and SAFRAN analyses, computed as a

function of classes of precipitation is shown in Fig. 4. In

both panels, it can be noticed that the background (black

dotted line) is biased and overestimates the precipitation up

to the class 20 mm/day, particularly in June, and under-

estimates the larger amounts. The optimum interpolation

algorithm should provide an unbiased analysis under the

assumption that both the observations and the background

are unbiased estimates. As the background is biased, the

analyses away from the observations used to generate them

may also be biased. While in Fig. 4a both SAFRAN and

Mescan analyses are also underestimated, Fig. 4b reveals

an overestimation of precipitation amounts for rates lower

than 10 mm/day and an underestimation for higher rates.

The discrepancy between the two analyses is small especially

in June. Globally, over the 9 months period, the sum of

the daily mean accumulated amounts are 705.9 mm for

observations, 712.6 mm for Mescan and 723.2 mm for

SAFRAN, demonstrating that overallMescan is slightly less

biased than SAFRAN.

2.3.2. Indirect validation. An indirect validation of

Mescan G1 precipitation analyses was carried out by using

the hydrological ISBA-MODCOU system (Habets et al.,

2008). ISBA (Noilhan and Mahfouf, 1996) is a land surface

model that predicts surface energy budgets from an indirect

atmospheric forcing. The input atmospheric variables for

the ISBA model are temperature and specific humidity at

2 m, wind speed at 10 m, short- and long-wave incoming

radiation fluxes and the precipitation flux (liquid or solid).

The surface runoff and drainage fluxes provided by ISBA

are used as input data to MODCOU (Ledoux et al.,

1989) to simulate the temporal evolution of river flow

(discharge) at the spatial scale of a river watershed. Aspects

related to the calibration of MODCOU can be found in

Golaz-Cavazzi et al. (2001) and Rousset et al. (2004). The

validation of MODCOU river flow estimates is performed

against measurements at the hydrological stations.
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In order to generate MODCOU forcing, three experi-

ments were conducted with ISBA by using a combination of

atmospheric variables from different sources: (1) accumu-

lated precipitation, incoming radiation and 10-mwind speed

forecasted by the ALADIN model and Mescan analyses

of temperature and relative humidity at 2 m (hereafter

this experiment is referred to as ALADIN); (2) incoming

radiation and 10-m wind speed fromALADIN and analyses

of temperature and relative humidity at 2 m and precipita-

tion fromMescan (experiment calledMescan); (3) SAFRAN

analyses (SAFRAN experiment) in which all the input

atmospheric variables necessary to run ISBA are produced

by SAFRAN. The precipitation analyses are produced using

observations from the operational network.

Figure 5 presents the daily river discharge of the Seine

River observed at Paris-Austerlitz for the period October

2009�June 2010. The forcing from the ALADIN forecast

model (red line) induces a large overestimation of the river

flow, exhibiting high peaks with large discrepancies against

observations, particularly at the beginning of January and

February by 500 m3 s�1, and April of about 700 m3 s�1. On

the other hand, Mescan (green line) and SAFRAN (black

line) experiments show that, although peaks have a delay

around 1 or 2 d, simulated river discharges follow very

closely the observations. The comparison of ALADIN and

Mescan curves reveals that the precipitation field is the main

ingredient for estimating the Seine River flow. The Mescan

analysis system clearly improves the quality of the forcing

by correcting the known overestimation of the precipitation

forecasts from the ALADIN model.

In contrast with the Seine watershed, which is rather flat,

the Rhône watershed contains large mountainous areas

including part of the French Alps and Massif Central. This

topographic feature enables the snow accumulation during

the cold season. Examining the river discharges with various

forcings for the Rhône River (Fig. 6), the difference between

ALADIN (red line) and the other experiments is not as large

as for the Seine River (Fig. 5).

A comparison between Mescan (green line) and SA-

FRAN (black line) forcings shows similar results except at

the beginning of May and during the month of June where

the river flow derived with Mescan forcing is underesti-

mated (Fig. 6). Figure 7 reveals that the underestimation of

the river discharge by Mescan compared with SAFRAN

is the result of a lower snowpack accumulation throughout

the Rhône watershed. It can be noticed that at the beginning

of January (February), the difference between the average

accumulated snowfall produced by SAFRAN (black dotted

line) andMescan (red dotted line) is of about 42 mm (53 mm).

Although seasonal cycle accumulation-melting occur, there

is a large underestimation of theMescan derived snow water

equivalent field (green solid line) compared with ALADIN

(red solid line).

This degradation can be explained by various factors

that would need further investigation, such as the large

discrepancy in mountainous areas between model orogra-

phy and station height, large observation errors induced by

non-heated rain gauges or blowing snow, incorrect speci-

fication of error statistics and correlation length scale.

Additionally, the 24-h precipitation analyses byMescan are

disaggregated into hourly precipitation with a phase change

from rain to snow when the 2-m temperature is lower than

0.5 8C. The phase change introduces errors that can locally

accumulate and become large particularly during the cold

season. These errors affecting the snowpack accumulation in

turn influence the river flow during the melting period.

2.4. Issues associated with the high-resolution

analyses

An additional set of experiments (hereafter G2) has been

performed at the 2.5 km grid spacing. The goal of the G2 is
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Fig. 5. Comparison of the time series (October 2009�June 2010) of daily river discharge for the Seine River at Paris-Austerlitz

hydrological station.
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twofold: (1) to compare Mescan analyses with ANTILOPE

precipitation products and (2) to assess the performance

and to show the limitation of the Mescan precipitation

system in the context in which further studies (or projects)

might concentrate on the production of very high-resolution

precipitation re-analyses by using observations from a sur-

face network with low data density compared to the spatial

scales resolved by the forecast model.

The background fields have been taken from two Météo-

France operational models with contrasted horizontal

resolutions, respectively, AROME-France and ARPEGE.

The forecasts are initialised at 0600UTC and cover 24 h such

as to match the daily gauge measurement reports. AROME

(Seity et al., 2011) is a limited-area convective permitting

non-hydrostatic model integrated at 2.5 km grid spacing.

ARPEGE is a global model (Courtier et al., 1991) run with

a variable horizontal resolution which has a grid spacing of

10 km over France. Therefore, the background fields from

ARPEGE have been downscaled from 10 to 2.5 km grid on

the same domain as used byAROME.The 24-h accumulated

precipitation analyses have been producedwith observations

from the operational network, for the cold season December

2013�January 2014 and also for the warm season June�
August 2013. The error statistics and the correlation length

scale are the same as in the G1 experiments.

The evaluation of the analyses from G2 experiments is

similar to that from G1 experiments. Mescan analyses and

ANTILOPE products were upscaled on a regular grid of

10 km. Likewise, the data from the 2700 independent

stations were projected on the same regular grid and after-

wards a number of categorical scores have been calculated.

Figure 8a shows theHSS scores for the cold season, computed

against persistence as a function of classes of accumulated

precipitation. The skill of the two types of backgrounds

is to some extent the same for precipitation in the range of

2�10 mm/day. For classes lower than 5 mm/day, the skill

of AROME backgrounds is of about 3 % better than the

downscaled ARPEGE forecasts, whereas for classes greater
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than 10 mm/day, in average there is an increased skill by

about 5 % for ARPEGE. Same behaviour has been found

for the warm season (not shown), except that the difference

of skill between AROME and ARPEGE increases both

for precipitation lower than 5 mm/day, to about 22 % for

AROMEside, and for precipitation greater than 10mm/day,

by about 26 % in average for ARPEGE. The decreased skill

of AROME background compared with ARPEGE may

arise from displacement and intensity errors, and does not

convey a negative signal related to the overall performance

of the model to forecast large amounts of precipitation. The

small-scale patterns developed by AROME enhance the

spatial variability at the observation location andmay depict

more accurately the overall precipitation system than

ARPEGE, though, for example, it can miss the location

of the precipitation maxima. The better skill in terms of HSS

of ANTILOPE analyses compared with Mescan may

indicate the beneficial impact of radar data in the very

high-resolution surface analysis process. To improve the

skill of the analyses performed using very high-resolution

background fields, further work should concentrate, on one

hand, on the tuning of error statistics and horizontal length

scale and, on the other hand, on the usage of radar data in

addition to the gauge measurements. The radar data are

available at 1 km with spatial and temporal scales that are

not represented in the background field. For this reason, a

data upscaling work is necessary in order to create data at

spatial resolution that provide useful information to the

analysis system. The weather radar, however, does not

measure precipitation directly, but reflectivity, which is a

measure of the returned signal power, backscattered from

the hydrometeors in an atmospheric scanned volume. The

conversion from reflectivity to precipitation rate is done by

making an assumption on the particle size distribution.

It means that in addition to the gauge measurement errors,

the analysis system has to account for the errors of the radar-

derived precipitation data as well. The added value

of assimilating radar quantitative precipitation estimates to

produce 6-h gridded precipitation analyses is shown by

Fortin et al. (2015).

The plots in Fig. 8b, illustrating the FBI computed on the

same regular grid of 10 km and using the same observation

data set as for the HSS, reveal that while AROME exhibits

an overall tendency to produce too much precipitation, the

downscaled ARPEGE forecast fields underestimate the

accumulated precipitation greater than 5 mm/day. It also

appears that the precipitation analyses are all underesti-

mated. The overall bias of Mescan analyses performed

with AROME backgrounds is reduced compared with the

ANTILOPE product. However, it is important to recall that

the FBI is a measure of relative frequencies and not a

measure of how well the analyses fit to the observations.

The presence of detailed small-scale spatial patterns is an

important feature in high-resolution regional re-analyses

compared with global re-analyses, which make them more

suitable, for example, in hydrology and climate applica-

tions. Fine scales are developed by time integrating a high-

resolution numerical forecast model. When employing a

spatial interpolation method to downscale a prior atmo-

spheric field from a coarse to a higher-resolution horizontal

Fig. 8. (a) HSS against persistence and (b) FBI as a function of classes of 24-h accumulated precipitation for December 2013�January
2014 for background fields from AROME forecasts (red dashed line) and downscaled ARPEGE forecasts (blue dashed line), ANTILOPE

analyses (black solid line), analyses with AROME background (red solid line), analyses with downscaled ARPEGE forecast (blue solid

line), respectively.
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grid, spurious noise is introduced. We have quantified this

noise by computing the variance spectra of the monthly

mean 24-h total accumulated precipitation over the AR-

OME-France domain at Dx�2.5 km, and over a much

larger domain of 1080�1000 points with 5.5 km grid

spacing covering Europe, set up at Météo-France to

produce re-analyses under the EURO4M project. Variance

spectra were computed based on an algorithm that employs

a discrete cosine transform, proposed by Denis et al. (2002).

Figure 9a and b displays the variance spectra of the

monthly mean 24-h total accumulated precipitation fields

for December 2009. In both panels, it can be noticed that at

the shortest wavelength represented in the model, that is,

2 Dx, the variance of the downscaled forecasts is signifi-

cantly lower than the variance of the native forecasts. There

is also a steep decrease of the variance at the wavelength

corresponding to 3 Dx for native forecasts. As explained in

Ricard et al. (2013), the reduction in the spatial variabi-

lity comes from the quadratic truncation applied to the

model orography. Furthermore, Fig. 9a shows that such a

decrease is also triggered in the downscaled fields at about

12 Dx, corresponding to three times the value of the coarser

ARPEGE grid, that is, the decrease of the variability begins

below 3 Dx of the input grid. This finding may indicate that

the decrease of the variability is triggered at the wavelength

corresponding to the quadratic truncation applied to the

input model orography. The precipitation analysis increases

the variance at short wavelengths when the background is a

downscaled forecast (dashed green line) and has a rather

neutral impact when it is performed with background

from a native forecast (dashed red line). Note that the black

solid line and the red dashed line overlap. The effect of the

analysis is to modify the mean value of the precipitation

field. Same results have been obtained for the month of June

2013 (not shown). These findings show that for applications

in which the small-scale spatial variability is important (e.g.

in hydrology), it is more desirable to run a high-resolution

model than to downscale fields employing the 12-point

cubic interpolation technique, particularly when there is a

large difference between the initial and the final grid

resolutions. An alternative downscaling method, such as

the statistical downscaling using regression models, that

potentially may improve the quality of the background,

may not generate physically consistent small-scale features.

Indeed, Fowler et al. (2007) noted that in comparison to

the dynamical downscaling, the statistical methods tend

to underestimate variance and poorly represent extreme

events.

The added value of using a background field from a

high-resolution native forecast instead of downscaled one

is shown in the spectral analysis but is hidden from the

categorical scores without using a denser observation net-

work. In order to demonstrate the better skill of forecasts at

2.5 km grid spacing, non-traditional verification methods

such as the fuzzy techniques are required (Ebert, 2008;

Amodei and Stein, 2009).

2.5. Estimation of error statistics

The goal of this section is to describe the tuning of the

horizontal correlation length scale and the estimation of

error statistics which have been performed based on the

hypotheses of homogeneity and isotropy. The standard

deviation of background and observation errors is estimated

under the assumption of optimality, following the a posteriori

diagnostic approach proposed by Desroziers et al. (2005).

Fig. 9. The variance spectra of the monthly mean 24-h total accumulated precipitation as a function of wavelength computed on (a)

AROME-France domain at 2.5 km grid (for January 2014), and (b) a domain for running ALADIN model at 5.5 km grid covering Europe

(for December 2009). The blue dotted lines stand for the downscaled forecast fields, the green dashed lines for the analyses performed with

downscaled fields, the black solid lines for native forecasts at 2.5 km (5.5 km) grid and the red dashed lines correspond to the analyses

performed with backgrounds from native forecasts. Note that the scales of the abscissa differ in (a) and (b).
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2.5.1. Correlation length scale. TheNMCmethod (Parrish

and Derber, 1992) provides a pragmatic formulation to

compute the background error covariance matrix using

the forecast error statistics deduced from lagged forecasts

valid at the same time. In order to estimate the statistics of

background errors, we have considered differences of 24-h

accumulated precipitation forecasts from ALADIN-France

downscaled at 5.5 km, lagged by 12 h, as follows:

� fc 18UTCþ36
d�1 -fc 18UTCþ12

d�1 denoted as F 1;

� fc 06UTCþ24
d denoted as F 2;

where ‘fc’ stands for the forecast, the subscripts indicate the

starting day ‘d’ of the forecast and the superscripts indicate

the hour of model initialisation plus the forecast range.

The background errors are computed at each grid point i

as oi� F1
i � F2

i , for pairs of rainy points, when both F1
i and

F2
i are greater than 0.01 mm. The horizontal covariance at

distance r is estimated by employing the relation inMahfouf

et al. (2007):

covðrÞ ¼ 1

NðrÞ
Xn

i;j¼1

ðei � �eÞðej � �eÞ (5)

where N(r) corresponds to the number of independent

pairs of points i and j separated by distance r, and �e is the

mean error. The separation distance is binned in 10 km

intervals from 0 to 600 km.

The horizontal correlation lengths for precipitation, for

the whole month of December 2009 and June 2010, are

presented in Fig. 10. Using the least-square method and the

function defined in eq. (3), the best fit for December (blue

curve) and June (red curve) is estimated for L�32 km and

L�24 km respectively. We assume that these results

are generally valid for the cold and warm seasons. The

distances from which the correlations decrease by a factor

of e �1 are 69 km for December and 52 km for June. It

should be noticed the tendency towards larger correlation

lengths during the cold season when stratiform precipita-

tion prevail than in summer when convective precipitation

dominate. In addition, the curves show that the correlation

decreases below 0.1 for a separation distance greater than

150 km.

The standard deviation of background errors was

computed from the statistics of o leading to the value of

4.05 mm for December and 5.41 mm for June. Under the

hypothesis of uncorrelated background and observations

errors, the standard deviation of observation errors, so, can

be estimated from the variance of the innovations produ-

cing for December (June) a value of 1.97 mm (3.42 mm).
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2.5.2. A posteriori diagnostic of error statistics. Desroziers

et al. (2005) provide a diagnostic method to estimate error

statistics in observations space, under the hypothesis that

the observation and background errors are uncorrelated.

Based on innovations, one can check that E½ðO� FÞ
ðO� FÞT � ¼ r2

b þ r2
o assuming that so and sb are correctly

specified in the analysis. Here E[ ] is the statistical expecta-

tion operator, O stands for the vector of observations,

F is the vector of the background values interpolated to

the observation locations and T for the transpose of

the vector. The observation and the background variance

errors can be estimated from E½ðO� AÞðO� FÞT � ¼ r2
o and

E½ðA� FÞðO� FÞT � ¼ r2
b, where A is the vector of analysis

values at observation locations.

We have used the computed innovations and analysis

departures from the analyses performed at 5.5 km grid, with

observations from the operational network, for the month

of December 2009 and June 2010. From the a posteriori

diagnostics, the estimated values of standard deviation of

observation and background errors for December (June)

are so�2.35 mm (4.19 mm) and sb�4.49 mm (6.98 mm),

respectively. Since the initial values used in the Mescan

system are so�5 mm and sb�13 mm, it appears that both

of them are largely overestimated for December.

The same methodology was applied to estimate the

standard deviation of observation errors as a function of

classes of accumulated precipitation. The results are plotted

in Fig. 11. Both curves illustrate that the observation errors

exhibit a growth related to the amount of the daily

precipitation, and hence, they can be approximated by a

linear function of the form so (x) �ax�b, x being the

measured value, with a and b constants. The curves indicate

that the standard deviation of observation errors may reach

20 % of the measured value in December (blue line) and

around 30 % in June (red dashed line) for precipitation by

40 mm/day. These plots suggest that the usage of a variable

so in the analysis system can be more appropriate than

to assign it a constant value. The choice for a variable

so may also be justified, for example, by an increase of

the measurement errors during heavy precipitation episodes

associated with strong wind gusts. At the same time,

employing a variable so implicitly leads to a discussion

about specification of sb. Thus, a too high value of sb

such as to ensure so (x)Bsb for all precipitation classes

will rather neglect the background and draw the analyses

too much to the observations, particularly for light

precipitation which in turn are not very accurate either.

A more straightforward approach is to consider so (x)

as a sort of step function and to assign it an upper limit:

so (x) �ax�b, for xBd and : so (x) �c, for x]d, where

c and d are defined constant values. In such a way, sb could

be given a value estimated by the a posteriori diagnostic.

Figure 12 shows that for both trial periods there is

an improvement of the skill, in terms of HSS against

persistence, of the analyses produced with a variable so.

In that case, we have chosen so�0.1 x�0.9. Except for

precipitation amounts lower than 2 mm/24 h, in both

panels the scores of Mescan with variable so (red dotted

line) are better than SAFRAN (blue dashed line) and

Mescan with the constant so�5 (red solid line).

3. Aspects related to the precipitation re-analyses

at the European scale

Among other things, the EURO4M project allowed close

cooperation between several National Meteorological

Services. This was the case between SMHI and Météo-

France. Intensive collaborative work was necessary to

create background fields and common observation data

sets. In this section, we briefly describe the input data used

to produce the 4-yr data set of 24-h accumulated preci-

pitation re-analyses at 5.5 km over Europe for the period

2007�2010. In addition, we emphasise some difficulties en-

countered with the precipitation observations. The European

gridded precipitation re-analyses have been produced using

the same error statistics as in the G1 and G2 experiments

(i.e. so�5 mm, sb�13 mm, and L�35 km).

3.1. Background fields

The background fields for 24-h precipitation analyses at

the European scale come from the HIRLAM forecasts
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initialised at 0000 and 1200 UTC from a 3D-Var re-analysis

performed by SMHI. The background field is downscaled

from 22 to 5.5 km and is created as the sum of 12-h

accumulated precipitation: (fc 00UTC�18-fc 00UTC�06)�
(fc 12UTC�18 -fc12UTC�06), where ‘fc’ denotes the forecast

and the superscripts indicate the hour of the model

initialisation plus the forecast range. A combination of

forecasts of different ranges has been successfully tested in

Mahfouf et al. (2007). To reduce themodel spin-up problem,

they selected the precipitation fields not too close from

the initial time, but not too far either such as to have a good

evolution of the large-scale fields.

3.2. Observations

A challenge for producing long-term precipitation re-

analyses at the European scale is the availability of

observations from a relatively dense gauge network. For

example, it has been found that the observation density

from the operational archive of ECMWF or Météo-France

received on the GTS is low. Particularly, the mountainous

areas are poorly sampled and large regions such as southern

and eastern Europe have sparse data (as illustrated in

Fig. 1). After investigations, it has been decided to use

observations from ECMWF and ECA&D (version 6)

databases. Prior to creating the input observation data set

for the Mescan system, a data pre-processing work has been

carried out, primarily to select only 24-h precipitation

reports that match the climatological day. First the

data have been merged and then the duplicated reports

discarded. Finally, additional observations from the Swedish

and French national networks were added. A particular

attention was given to the ECA&D database which has been

designed for climatological purposes (rather than for data

assimilation). This archive contains data from a number of

n stations (divided into the same number of individual files)

across Europe, not all of them received on the GTS, each

station having its own data available as a time series of daily

datum from the year X to the year Y (X BY). In order to

become compliant with the analysis system, datum from a

particular day from each of the n stations had to be gathered

into a daily product. Only the information from stations

reporting amounts from first day morning 06UTC�Dt
until next day morning 06UTC� Dt (DtB3 h) have been

used, although the database includes stations with reports

on different time intervals. Finally, the pre-processed

observation data set contains about 7100 daily precipitation

observations of which around 4300 over France.

The validation of the first analysis data set revealed two

distinct problems with the observations. On one hand, we

identified gross errors very likely related to mistakes in the

report transmission. For example, one station has sent for

several consecutive days reports with amounts greater than

400 mm/day, or another even 900 mm/day. Certainly, these

errors are readily managed by the analysis system when the

automatic quality controls are activated. On the other hand,

a more difficult problem to solve is shown in Fig. 13. Indeed,

it was found that one or more stations (which are nearby

each another) geographically located in a moist region

as those in Latvia (Baltic area) send reports of 0 mm/day

Fig. 12. Monthly Heidke Skill Score against persistence computed as a function of classes of precipitation for (a) December 2009�
January 2010, and (b) June 2010. SAFRAN (blue dashed line), Mescan (red solid line) with constant so, and Mescan with variable so (red

dotted line), respectively.
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for several days or months, sometimes the reports having

small gaps with reliable data. Under such circumstances, the

analysis system will not be able to deal with such errors,

particularly when the background also provides small

precipitation amounts, unless some specific or additional

criteria in the quality control and the data selection are used,

or an elaborated external pre-processing treatment of the

observations is performed. Figure 13 illustrates that inLatvia,

systematic errors in the observations may produce analyses

which do not reflect at all the climate of the region.While the

surrounding countries exhibit precipitation amounts around

750mm/year (for the year 2010), in the eastern Latvia values

are less than 100 mm/year, as little as in the North-east

Africa. Furthermore, in the data sparse regions or when the

observations are not available as in the western Balkans

(Albania, Montenegro and southern Croatia), patterns of

large precipitation amounts (greater than 3000 mm/year)

may occur. Consequently, the analyses are either identical or

very close to the background field. As the precipitation field is

discontinuous by its nature and includes interactions across

multiple spatial and temporal scales, the absence ofmeasure-

ments in some areas will have a greater negative impact on

the accuracy of the precipitation analysis than, for example,

on the 2-m temperature which is a continuous field. In

addition, the spatially inhomogeneous distribution of the

gauge network has an influence on the quality of the precipi-

tation analysis which in data sparse areas will reflect the one

of the background and will be higher in data dense regions.

Figure 14 shows a comparison of the monthly 24-h

accumulated precipitation fields for June 2010, for Mescan

at 5.5 km, ERA-Interim at 25 km and GPCC3 at 50 km grid

spacing, respectively, with the purpose of qualitatively

assessing the added value of the Mescan analyses. Whereas

gauge data are used to produce both GPCC (right panel)

and Mescan products, the ERA-Interim (middle panel) is a

forecast model field that is produced without assimilation of

precipitation data. However, to produce Mescan analyses,

additional gauge data from the French climatic network

(non-GTS data) have been used, whereas for the GPCC

products the data have come only from the GTS. Thus, a

comparison of the precipitation fields over France shows

that the patterns in the left panel exhibit higher, realistic

amplitudes in the south-eastern and central regions than in

the other panels. Furthermore, the background fields used

in Mescan analyses provide a valuable information in data

sparse areas such as the northern Spain where a narrow

precipitation band of higher magnitude than in the middle

panel can be noticed. In the right panel, there is a pattern of

similar shape but of lower magnitude. At the same time, the

high-resolution gridded analyses provide small-scale struc-

tures not only over mountainous regions and along the sea

coasts but over flat regions as well (e.g. The Netherlands,

Germany, south of the Great Britain).

Fig. 13. Map of annual precipitation amount from 24-h precipitation analyses for the year 2010. Units mm/year.

3See www.gpcc.dwd.de
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Fig. 14. Maps of the monthly 24-h accumulated precipitation for June 2010 for Mescan (left panel) at 5.5 km, ERA-Interim at 25 km

(middle panel) and GPCC (right panel) at 50 km grid spacing, respectively. Units mm/month.
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4. Summary and conclusions

The purpose of this article was to describe and assess the

performance of the Mescan precipitation system. While

theMescan system may be considered validated through the

results shown in this article, the studies performed during

the EURO4M project enable to tackle the issues related

to the high-resolution precipitation analyses. To this aim,

precipitation analyses have been performed, respectively, at

5.5 and 2.5 km grid spacing using as background fields

the downscaled and native forecasts. The validation of

Mescan analyses at 5.5 km grid-mesh has been done over

France through the direct and indirect approaches, and the

accuracy has been evaluated employing different metrics.

The results have shown that in terms of categorical scores

(HSS, FBI), the quality of the analyses is improved

compared to the quality of the background which is a desired

feature of an analysis system. In addition, the Mescan

system can produce analyses that over French territory have

almost the same quality as the well-validated SAFRAN

analysis system (Quintana-Seguı́ et al., 2008).

An indirect validation has demonstrated that the 24-h

precipitation analyses produced by Mescan could be used

for hydrological applications. Nevertheless, further work is

needed to improve the precipitation analysis, particularly in

the mountainous area, and to mitigate the errors affecting

the snowpack evolution. To better understand the origin of

the underestimation of the river discharges for the Rhône

River forced by Mescan compared to SAFRAN, further

studies may concentrate on the evolution of snowpack

characteristics as a function of weather conditions at the

observation location.

The evaluation performed at 2.5 km grid spacing have

shown that the downscaling procedure decreases the spatial

variability of the forecast precipitation field. Ingesting

the available observations from the SYNOP and climatic

networks, the analysis system neither tends to modify the

spatial variability of the native forecasts nor increases the

variance of the downscaled ones. Further work should

demonstrate that, by using appropriate metrics, there is

an added value when using background from a very high-

resolution forecast model. Such studies have not been

undertaken in the current project. The spectral analysis

has shown, however, the positive impact on the analyses

when using high-resolution native forecasts as background

fields, whereas the categorical scores have indicated a

degradation of the quality of the analyses in term of HSS.

Potential improvements to the analysis scheme could also

be identified by performing the analysis in the log space,

testing anisotropic background error correlation functions

dependent on orography or from a more appropriate

selection of the observations used in the linear system

such as to account for the difference of altitude between the

model orography and the gauge height. The results also

indicate that a bias correction procedure to improve the

quality of the analyses (carried out with or without down-

scaled backgrounds) is needed.

5. Acknowledgements

The research leading to these results has received funding

from the European Union, Seventh Framework Programme

(FP7/2007-2013) under grant agreement no 242093. We

gratefully acknowledge Jean-François Mahfouf for fruitful

discussions, for carefully reading the early version of the

manuscript and for his relevant suggestions. Also, we are

grateful to Françoise Taillefer for useful discussions. We

thank Per Dahlgren (SMHI) for providing HIRLAM

analyses at 22 km grid, Per Undén and Ulf Andrae for

assistance and constant support. We thank Albert Klein

Tank (KNMI) and ECA&D team for providing readily

access to the European precipitation observation data set.

We also acknowledge Eric Martin and Yves Durand for

fruitful discussions regarding SAFRANsystem. The authors

acknowledge the constructive and helpful comments of the

two anonymous reviewers which helped to improve the

quality of the revised version of the article.

6. Appendix A. Acronyms.

4D-Var Four-dimensional variational data assimilation

ALADIN Aire Limitée Adaptation Dynamique

Développement International

ANTILOPE ANalyse par spaTIaLisation hOraire des

PrEcipitations

AROME Application of Research to Operations at

Mesoscale

ARPEGE Action de Recherche Petite Echelle Grande

Echellele

ECA&D European Climate Assessment and Dataset

ECMWF The European Centre for Medium-Range Weather

Forecasts

EUMETNET A group of European National Meteorological

Services

EURO4M European Reanalysis and Observations for

Monitoring

FG5.5 First Guess at 5.5 km grid

FBI Frequency Bias Index

GPCC Global Precipitation Climatology Centre

GTS Global Telecommunication System

HIRLAM High Resolution Local Area Modelling

HSS Heidke Skill Score

ISBA Interaction Sol�Biosphère�Atmosphére

JMA Japan Meteorological Agency

MODCOU MODélisation COUplée

NCEP National Centers for Environmental Prediction

NCAR National Center for Atmospheric Research

NMC National Meteorological Center now called NCEP
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Häggmark, L., Ivarsson, K.-I., Gollvik, S. and Olofsson, P.-O. 2000.

Mesan,anoperationalmesoscaleanalysis system. TellusA. 52, 2�20.
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