
Numerical evaluation of the scatter of principal 
magnetic susceptibilities fiom the uncertainties in 

experimental measurements 

By H. C .  NOLTIMIER, Depurtment of Geology, University of Howton, 
Howton, Texaa 77004. 

(Manuscript received March 10, 1971; revised version September 13, 1971) 

ABSTRACT 

Explicit equations are derived which specify the total eigenvector uncertainties for 
a tensor of second rank in terms of the matrix of experimental measurements and the 
estimated measurement errors appropriate to the experiments. Only the minimum but 
sufficient number of measurements necessary to specify the representative ellipsoid 
are considered in this analysis. The specific application in mind is the meaaurement of 
magnetic anisotropy of rocks, and the calculation of the statistical scatter of the 
total susceptibility ellipsoids. The result of the calculations provide direct proof that 
the errors in the triad of principal axes calculated from a meaned set of measurements 
for a sample should be less than the errors in the triad of axes calculeted from a single 
measurement of the sample. This provides the investigator with the option of using a 
formal statistical approach to the analysis of anisotropy data based directly upon the 
raw measurements and estimates of instrumental accuracy, rather than upon the 
scatter of spatial orientations of the total susceptibility ellipsoids estimated from the 
measurements. The occasionally poor agreement of a set of individual specimen measure- 
ments with matrix theory is likely due to uncorrelated errors in the raw measurements 
and not necessarily to operational error, instrumental defects, or the specimen itself. 

1. Introduction 

The consideration of errors for the magnetic 
susceptibility tensor is more complicated than 
for the magnetic remanence vector problem, 
although the instrumental errors of measure- 
ment should be nearly the same in both cases. 
The values given in the Appendix of this paper 
to represent estimates of errors in magnetic 
anisotropy measurements are based upon the 
results obtained from the anisotropy ' and re- 
manence statistics of a spinner magnetometer 
(Noltimier, 1967u, b) which showed that if the 
positioning of the rock cylinders in the spinner 
specimen holder was accurate, the overall 
results were consistent with the known un- 
certainties in calibration and applied field. Any 
error of sample orientation angle is doubled in 
the anisotropy signal phase output of a spinner 
magnetometer, and errors in alignment of the 
reference signals with the specimen axes can 
introduce troublesome systsmatic error (Nol- 
timier, 1 9 7 1 ~ ) .  
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An estimate can be made of the errors in all 
of the measured quantities which determine the 
total susceptibility ellipsoid, represented by the 
[k,,] matrix. This includes the error in the 
measurement of the mean total susceptibility, 
(k), on an  a.0. total susceptibility bridge 
(Collinson, Stone & Molyneux, 1963), and its 
influence upon the values of k,,, k,,, and kaa. 
Knowing these errrors, they are transformed into 
the uncertainties in the magnitude and direc- 
tions of the principal magnetic susceptibilities. 
The principal susceptibilities must always be 
mutually orthogonal, regardless of errors. A 
spheroid of uncertainty of direction and magni- 
tude about one principal axis implies related 
uncertainties in the position and magnitude 
of the remaining two axes. 

The purpose of this analysis was to check 
the validity of using a meaned susceptibility 
tensor for a set of rock cylinders calculated from 
the mean of the corresponding tensor measure- 
ment,s, k,,, and not from the mean of the 



66 H. 0. NOLTIMIER 

calculated principal axes as done by Stone 
(1967). The error analysis discussed by Granar 
(1958), and referred to by King (1967), for 
magnetic susceptibility ellipsoids had torsion 
balance measurement in mind and involved a 
scheme of measurement which overdetermines 
the ellipsoid matrix components. Hext (1962) 
also discusses a statistical analysis which in- 
volves an abundance of measurements. In this 
analysis, only the minimum but sufficient 
number of measurements necessary to determine 
the ellipsoid are considered. 

2. Numerical solution to the eigen- 
vector scatter problem 

A few conventions will be stated here for 
future reference. They are: 

[k, ,]  =symmetric matrix of presumed true 

[K,,] =matrix of cofactors of the k,,; 
[6k,,] = uncertainties in k,,, assumed known, 

[6K, , ]  =uncertainties in the cofactors of the kf , ;  
[s,,] = [k , ,  + 6k,,] ,  matrix of measurements, 

( A )  =eigenvalues of k,,; 
(A’) 

We wish to solve the equation sl, X ,  = A‘X, for A‘ 
and X,, the three eigenvectors corresponding 
to the three roots for A’, Ah. This equation written 
out is (a,, -A’I) X ,  = 0, where I is the unitary 
matrix. The determinant of the coefficients 
vanishes, giving us the following cubic equation 
in A‘, with coefficients a,‘, 

total susceptibility values; 

small, and uncorrelated; 

the best estimate of kl,;  

= ( A  +6A), eigenvalues of sf,. 

(r)3 - u;(Ae), + &(r) - a: = 0 (1) 

where a: = (a, +Sa,), a; = (a, +Sa,), and a; = 

(a ,  +6a,). The Sa, are the uncertainties in the 
cubic coefficients due to the estimated uncert- 
ainties in the tensor elements a,,, measured 
directly, or calculated directly from measure- 
ments. The s,, are the best estimate of the true 
k,,, and will be used as k l ,  in the numerical 
evaluations which result from the analysis, 
along with the estimated uncertainties, 6k,,. 
The coefficients, a,, and their uncertainties, 
6a,, are functions of k l ,  and Ski, as follows: 

3 

a, =Trace [k,,] = 2 ktt 
t = 1  

3 

6a, = Trace [6k,,] = 2 6ktt 
t=1 

3 

az =Trace [K,,] = 2 K,, 
t = 1  

3 

6a, =Trace [6Kl,] = 2 6K,, 
, = 1  

The Trace (German “Spur”) of the above 
square matrices is the sum of their diagonal 
elements, as indicated. While the meaning of 
the preceding equations in (2)  for a,, 6a,, a,, 
and a, should be clear, the expressions for 
6a, and 6aa are given below to prevent any 
confusion with notation. 

(3) 

The solution to Eq. (l), with the above expres- 
sions (Eq. (2), (3),  and (4) for the uncertainties 
in the coefficients, al,  a2, a,, produces three 
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roots with associated uncertainties, (A + 6A)k  = 

A;, k = 1,  2,  3. 

3. The problem without uncer- 
tainties in measurement 

We must solve the determinent (k,, - 1 l ) X ,  = 

0, and in doing so we get a cubic equation in 1 
(like Eq. ( 1 )  for A'), which has roots A,, k = 1,2,3. 
Because the determinent is homogeneous 
(equals zero), the components of the eigen- 
vectors corresponding to the kth eigenvalue, 
A,, are undetermined to an arbitrary constant, 
but their ratio may be obtained for each A, 
by the relation, 

x, - NR, ,  ( 5 )  

where R,, are the cofactors of the r,, which are 
given by the symmetric matrix, 

The value of N for each A is determined by 
the relationship X , X ,  = 1,  the Schmidt process, 
which orthogonalizes and normalizes the X , ,  
fixing the undetermined constant in Eq. (5 ) .  
This constant, N ,  might be labeled N ,  since 
a value of N corresponds to each of the eigen- 
values A, as determined by the solution to the 
cubic in A. Eq. ( 5 )  for the X ,  may be written 
out as follows, using Eq. (6) to indicate the 
cofactors R,,; 

X ,  = NR,, = ( - N )  

Since X , X ,  = 1, a convenient equation for N is 
( l / N * )  = (R;l + R;"a + R;3). Using Eqs. ( 7 ) ,  (S), 
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and ( 9 ) ,  this expression for ( l / N * )  becomes, 

4. The problem with uncertainties 
in measurement 

The uncertainties in k, ,  give rise to uncer- 
tainty in A, N ,  and X,. Thus, A becomes (A + SA), 
N becomes ( N  + dN), and X ,  becomes ( X ,  + SX,). 
For example, Eq. (5) may be used to express 
( X ,  + SX,) and to derive SX,. 

( X ,  +ax,) = ( N  +SN) (R,, +SR,,) 

=X,+NSR,,+SNR,,+SNSR,, ( 1 1 )  

Ignoring the products in SNSR,, which will all 
be of second order, 

SX, - (SN/N) X ,  + N SR,, (12) 

Eqs. ( 7 ) ,  (S) ,  and ( 9 )  are available for the 
calculation of SR,,, SR,,, and 6Rla. Before writ- 
ing out the complete expressions for SX,, (SNIN) 
and 61 must be known. 
61 may be obtained by differentiating Eq. 

( l ) ,  expressing 1' in terms of 1 and 61. Thus, from 
( I ) ,  

31'61 - AVa, - 2a,, 161 + a,61 + Ma, - Sa, - 0, 

61 = (al, AVa, -Ada, +Su,)/(3A2 -2a, A +a,) (13) 

(SNIN) may be obtained from the relation that 
( 1/N2) = R;, + R:z + R;,. 

S( l /N')  = -2SN/NS = 2R116R11 

+ 2R1,6R,, + 2RlSSR,, (14) 
Therefore, 

(SNIN) = - Nz(Rl1SRll + R1,6Rl, 

+ Ria6Ris) = - (RiiSRii + RidRi, 

+ R l s S R l s ) / ( R ~ ~  +RE + R?J (15) 

Referring to Eqs. ( 5 )  and (12 ) ,  SX, may be 
written down, remembering that N = l/R;l + 
R;2 + R;#/*, in this example. 

ax,= -(Rii6R,i +Riz~R,a+Ria6Ri,)X~I 

+ R;z + R;3) + aR,,/(R;i + R;z +R?3)' 
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and thus 

6x2 = [ - (Rii SRii + Ria SR,, + Ri, SRi.3) 

x R,, + SR,,I/(R~l + R:z + Rid* 

SX3 c [ - ( 4 1  6Rii +Ria SRia +Ria 6Ri.3) 

x R,, + 6R,,3/(R~1 + R ~ z  + R;z)* 

Knowing the three R,,, (R,,,  R,,, R,,) ,  and the 
corresponding SR,,, we may numerically eva- 
luate the SX, for each eigenvalue, A,. If SX, 
represents the total uncertainty in the X,th 
eigenvector. 

(17) 

the SX, being given by Eq. (16). The magni- 
tude of 6X, is given by 

ax, = SX, + ax, +ax,  

I ax, I a = SX, ax, +ax, 
x SX, +ax, ax, (18) 

The mean scatter of the three eigenvectors, 
X,, is ( ISX I '), and may be obtained directly 
from Eq. (18) if all of the SX,'s are known 
numerically for each A,. The general form for 
the mean scatter is 

( I dx I '> ' ' f j  k1 6kk l  = &a< I 6k,,k I '> (19) 

Where the Q,, are functions of k,,, and the Sk,,'s 
are assumed uncorrelated. Terms of the form 
Sk,,6kk, average to zero. While the Q,, can be 
written down, and they are complex, the Eq. 
(16) are sufficient to numerically evaluate the 
SX, and ( 16X I ,). 

5. Review of the formulae determining 
R,, and 6 R,, 

In  order to specify the mean scatter of the 
eigenvectors, X,, we must have the uncertain- 
ties, SX,, for each X,. These uncertainties are 
expressed by Eqs. (16), in terms of the cofactors 
and uncertainties in the cofactors of the r,, 
matrix as given by Eq. (6). The R ,  are apparent 
in Eqs. (7),  (8), and (9), andtheSR,,areobtained 
in a manner similar to SK,,, as seen in Eqs. (3)  

and (4). For sake of clarity, the R,, and dR,, 
are summarized as follows. The R,, are; 

-A(&,, + Sk,,) - dA(k,, + k,,) + 2ASA, 

Eqs. (20) involve the 8,,'k,, known from 
measurements, and A; zz A, obtained directly 
from the solution of I 8,, - 1'1 1 X ,  = 0. Eqs. (21) 
involve the k,, and Sk,,, known from measure- 
ment and the estimated measurement un- 
certainties, the A, as before, and SA,, which is 
given by Eq. (13).  The coefficients of Eq. (13), 
the a,, and their uncertainties, the Sa,, are 
given in terms of the k,,  and Sk,, in Eqs. (2), (3),  
and (4). Therefore, in order to numerically 
specify the SX,, we must have a solution for 
the eigenvalues of the 8,, matrix, the A,, as well 
as the coefficients and their uncertainties (a, 
and Sa,) for the cubic in A. The basis of all 
these calculations is knowledge of the experi- 
mentally determined k,,  and Ski,. 

A suitable computer program would seem the 
best way to handle the calculations, and the 
input data will be the [k,,] and [Sk,,] matrices. 
The output would presumably be the eigen- 
vectors (principal axes), their direction cosines, 
the SX,, and the scatter, < ISX I *>. 
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6 .  Conclusion 
The obvious conclusion is that the scatter of 

the eigenvectors of a second rank tensor proper- 
ty  may be expressed numerically as functions 
of the errors of the individual measurements. 
Given the results of a single set of measure- 
ments for a specimen, the scatter of each eigen- 
vector may be determined, and the mean scatter 
of all three eigenvectors may also be specified. 
If a set of repeat measurements is made on a 
single specimen and the results, a,, k,,, meaned, 
the magnitude of the uncertainties in the mean- 
ed measurements, (k,,), will be smaller than 
the uncertainties in the individual measure- 
ments. Hence, there will be a smaller scatter of 
the eigenvectors calculated from the meaned 
measurements. What has been attempted here 
is to justify using the set of meaned measure- 
ments for a set of similar rock specimens, and 
then to calculate the eigenvectors for the 
population of similar measurements directly 
from the meaned values, rather than averaging 
the eigenvectors calculated individually from 
each sample (Noltimier, 1966). 

A test of the accuracy of a discreet set of 
measurements for one specimen is how closely 
the sum of the diagonal terms (Trace) of the 
raw data matrix approaches zero. (This also 
applies to torsion balance measurements.) In  
most cases tested by the author (over 1000 
anisotropy calculations) the meaned spinner 
raw data matrices for related specimens gave a 
Trace much nearer the theoretical value (zero) 
than the raw results for an individual set of 
measurements. (See Appendix, Eq. (22).) 

The eigenvectors calculated from the meaning 
procedures described here are mutually perpen- 
dicular, and the spheroids of uncertainty about 
the terminii of each eigenvector, X,, defined by 
the ax,, do not imply that each eigenvector 
may wander a t  will throughout their volumes, 
independently of the other eigenvectors. The 
results also indicate that the occasional poor 
agreement of a set of individual specimen 
measurements with theoretical matrix behavior 
is likely due to uncorrelated scatter of the raw 
measurements and not necessarily due to opera- 
tional errors, or instrumental defects. 
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Appendix 

An example of the estimation of the measure- 
ment Uncertainties for magnetic susceptibility 
tensors determined with a spinner magneto- 
meter and an ax. total susceptibility bridge. 

The spinner magnetometer modified for 
anisotropy measurement gives an output data 
matrix of the following form, defined as Ak,,; 

The matrix elements, (k,, -k, ,)  and k,,, 
obtained from spinner anisotropy measure- 
ments are of the form, 

k , ,  -(lEI/vHsin24 

(Noltimier, 1967b). <k>, the mean specimen 
total susceptibility, is measured separately on 
an a.c. bridge, and using the Ak,, diagonal 
terms, (k , ,  -k, ,) ,  with ( k )  gives the total 
susceptibility matrix of measurements, 8,,, 

which may then be written down. IEl is the 
spinner signal magnitude, v thespecimenvolume, 
H the applied magnetic field in oersteds, and 
24 is the signal output phase angle. The uncer- 
tainties of measurement are the uncertainties 
in I E I ,  v, H ,  <k>,  and 24. 

(1) The basic amplitude calibration should 
be good to about 2 %, and this error is ignored 
in this analysis since it is systematic. The 
instrumental noise level is taken as kO.3  x 
gauss om3. 

(2) The error in volume, v, is determined by 
the errors in drilling and slicing the rock cy- 
linders if a constant volume is assumed for 
each specimen. If each cylinder is measured 
directly for height and diameter, this error is 
probably negligible.’ The cylinder height to 
diameter ratio, (h/a), may or may not introduce 
a systematic shape effect in the results, de- 
pending upon the rocks themselves, but if the 
(h/a) ratio of (3/4)”’ = 0.865 is used, this effect 
will be minimised (Noltimier, 1971b). The 
nominal value of v in this example is 5 cm*. 
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(3) If 1 E I is greater than three times the 
rms noise level, the error in the signal phase 
angle is estimated to be 5' in reading the 
meter, and 5' due to the noise fluctuations, or 
7' (0.122 radians) rms phase error in 24. 

(4) The error in H is determined mainly by 
the uncertainties in regulatine the Helmholtz 
coil current, and should be known to within 
kO.5 oersteds. 

( 5 )  The error in (k) is k0.5 x lo-' gauss cm3, 
using a total susceptibility bridge as described 
by Collinson, Stone & Molyneux (1963) .  

The total error in each term, Ak,,, may be 
expressed as, 

(6Ak,,)P = (aAk,,/aE)a AEa + (aAkil/aH)BAHe 

+ (aAk,,/a4)z A(24)* (24) 

Using Eqs. (22),  noting that Ak,, is symmetric, 
using (k) to determine k,, from Ak,,, and using 
the effective range of 2 4  as n radians, the rms 
uncertainties in the k,, are k0.6 x lo-' gauss 
cm*. The rms uncertainties in the non-diagonal 
k, are k 0 . 4  x lo-' gauss cma. These values com- 
pare favorably with the basic instrumental noise 
level of k 0 . 3  x lo-' gauss cm3, and indicate 
that the error in measuring the mean total sus- 
ceptibility is very significant in determining the 
total rms uncertainties in the diagonal terms of 
the total susceptibility matrix, [k,,]. I n  general, 
i t  would appear that  the uncertainties will be 
greatest for the diagonal terms, and the uncer- 
tainties in all of the k,, will be somewhat greater 
than the nosie level of the spinner magneto- 
meter itself. The uncertainties in the principal 
axes, X,, will be greater still. 
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