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ABSTRACT

Explicit equations are derived which specify the total eigenvector uncertainties for
a tensor of second rank in terms of the matrix of experimental measurements and the
estimated measurement errors appropriate to the experiments. Only the minimum but
sufficient number of measurements necessary to specify the representative ellipsoid
are considered in this analysis. The specific application in mind is the measurement of
magnetic anisotropy of rocks, and the calculation of the statistical scatter of the
total susceptibility ellipsoids. The result of the calculations provide direct proof that
the errors in the triad of principal axes calculated from a meaned set of measurements
for a sample should be less than the errors in the triad of axes calculated from a single
measurement of the sample. This provides the investigator with the option of using a
formal statistical approach to the analysis of anisotropy data based directly upon the
raw measurements and estimates of instrumental accuracy, rather than upon the
scatter of spatial orientations of the total susceptibility ellipsoids estimated from the
measurements. The occasionally poor agreement of a set of individual specimen measure-
ments with matrix theory is likely due to uncorrelated errors in the raw measurements
and not necessarily to operational error, instrumental defects, or the specimen itself.

1. Introduction

The consideration of errors for the magnetic
susceptibility tensor is more complicated than
for the magnetic remanence vector problem,
although the instrumental errors of measure-
ment should be nearly the same in both cases.
The values given in the Appendix of this paper
to represent estimates of errors in magnetic
anisotropy measurements are based upon the
results obtained from the anisotropy'and re-
manence statistics of a spinner magnetometer
(Noltimier, 1967a, b) which showed that if the
positioning of the rock cylinders in the spinner
specimen holder was accurate, the overall
results were consistent with the known un-
certainties in calibration and applied field. Any
error of sample orientation angle is doubled in
the anisotropy signal phase output of a spinner
magnetometer, and errors in alignment of the
reference signals with the specimen axes can
introduce troublesome systematic error (Nol-
timier, 1971a).
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An estimate can be made of the errors in all
of the measured quantities which determine the
total susceptibility ellipsoid, represented by the
[ky] matrix. This includes the error in the
measurement of the mean total susceptibility,
<{k», on an a.c. total susceptibility bridge
(Collinson, Stone & Molyneux, 1963), and its
influence upon the values of ky,, k;, and k,,.
Knowing these errrors, they are transformed into
the uncertainties in the magnitude and direc-
tions of the principal magnetic susceptibilities.
The principal susceptibilities must always be
mutually orthogonal, regardless of errors. A
spheroid of uncertainty of direction and magni-
tude about one principal axis implies related
uncertainties in the position and magnitude
of the remaining two axes.

The purpose of this analysis was to check
the validity of using a meaned susceptibility
tensor for a set of rock cylinders calculated from
the mean of the corresponding tensor measure-
ments, ky, and not from the mean of the
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calculated principal axes as done by Stone
(1967). The error analysis discussed by Granar
(1958), and referred to by King (1967), for
magnetic susceptibility ellipsoids had torsion
balance measurement in mind and involved a
scheme of measurement which overdetermines
the ellipsoid matrix components. Hext (1962)
also discusses a statistical analysis which in-
volves an abundance of measurements. In this
analysis, only the minimum but sufficient
number of measurements necessary to determine
the ellipsoid are considered.

2. Numerical solution to the eigen-
vector scatter problem

A few conventions will be stated here for
future reference. They are:

{k;;] =symmetric matrix of presumed true
total susceptibility values;
[K;;] =matrix of cofactors of the k;
[0k;;] =uncertainties in k, assumed known,
small, and uncorrelated;

[0K ;] =uncertainties in the cofactors of the k;;

{8;;] =[ky +0ky], matrix of measurements,
the best estimate of k;;

(4) =eigenvalues of k,;

() =(A +041), eigenvalues of s;;.

We wish to solve the equation s;; X; =4'X for
and X,, the three eigenvectors corresponding
to the three roots for A, A;.. This equation written
out is (s;;,—A'I) X;=0, where I is the unitary
matrix. The determinant of the coefficients
vanishes, giving us the following cubic equation
in 4’, with coefficients a/’,

@) - @) + @) - a;=0 1)

where a, = (a, +da,), a3 = (a, +da,), and ay =
(a; +da,). The da; are the uncertainties in the
cubic coefficients due to the estimated uncert-
ainties in the tensor elements s;, measured
directly, or calculated directly from measure-
ments. The s,;; are the best estimate of the true
k;, and will be used as k; in the numerical
evaluations which result from the analysis,
along with the estimated uncertainties, dk,;.
The coefficients, a,, and their uncertainties,
da,, are functions of Icu and ok, as follows:

3
al =Trace [kU] = iz: k“
=1

3
da, = Trace [6k;] = > Oky
i=1

3

a, =Trace[K,]= > K,
=1

3

a, = Trace [0K ;] = >, 6K,
i1
3
a; = Ikh’l = g ky Ky

3
8a, =8| ky,| = ‘Z 8(key K ) 2)
=1

The Trace (German “Spur”) of the above
square matrices is the sum of their diagonal
elements, as indicated. While the meaning of
the preceding equations in (2) for ay, da,, a,,
and a; should be clear, the expressions for
da, and da, are given below to prevent any
confusion with notation.

oa, = [
kll kl.

Okyy Okgy

Okyy Okyy
kg, ks

|
|

Oay = (ks Ky + gy Ky + Foyg K

+ k22 kza
Sy, Oy

Ok,, Ok,,
L ™

]
] @

= (ku 8K, + 6k, K+ (kyy 0K, + Ok, K,)

Sy, Oy,
k21 kﬂ

ku k 12
Okyy Oy

+ (kg 0K 3+ 0kyy K3)
-k Okyy Okyy by Ky
B | oky, Ok
32 33 32 33

k21 kza

6k,, Ok
-k n Ol ]
. H ks Ko Okyy Okyy

Okyy Olsy

+ 6k, K, + 0k, K, + 0k K,y (4)

Oy, Oty
kSI k 32

The solution to Eq. (1), with the above expres-
sions (Eq. (2), (3), and (4) for the uncertainties
in the coefficients, a{, aé, a;, produces three
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roots with associated uncertainties, (4 +0d4), =
e, k=1, 2, 3.

3. The problem without uncer-
tainties in measurement

We must solve the determinent (k;; —1I)X, =
0, and in doing so we get a cubic equation in 4
(like Eq. (1) for 1’), which hasroots 4, k =1, 2, 3.
Because the determinent is homogeneous
(equals zero), the components of the eigen-
vectors corresponding to the kth eigenvalue,
Ay, are undetermined to an arbitrary constant,
but their ratio may be obtained for each 4,
by the relation,

X,=NR, (5)

where R, are the cofactors of the r,; which are
given by the symmetric matrix,

(ku - 1) kn kla
(fgg—A) Fpq (6)
kxa kza (ksa - l)

=t kg

The value of N for each A is determined by
the relationship X, X, =1, the Schmidt process,
which orthogonalizes and normalizes the X,
fixing the undetermined constant in Eq. (5).
This constant, N, might be labeled N, since
a value of N corresponds to each of the eigen-
values 1, as determined by the solution to the
cubic in 4. Eq. (5) for the X, may be written
out as follows, using Eq. (6) to indicate the
cofactors R,;

(kn - 1) kza
kza (ku - }')
= N[K,, — A,y + kyg) + 2] (7

X,=NR,~N

Fy
X2=.NR1’=(—N)| 12 28 l

kn (kas - 1)
=N[Ku+ ku 1] (8)

X,=NR1,=N|]G“ (kn"l)|

kll kil

=N{K,,+ k4] (9)
Since X X, =1, a convenient equation for NV is
(1/N*) =(Ri, + Ry, + R},). Using Egs. (7), (8),
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and (9), this expression for (1/N?) becomes,
(I/Ng) = [K 1 — My +Fegg) +4%]°
+[K g +Fy0d]® + [Kyp +Fp54]0 (10)

4. The problem with uncertainties
in measurement

The uncertainties in k;; give rise to uncer-
tainty in 2, N, and X ,. Thus, 1 becomes (A +64),
N becomes (N +6N), and X becomes (X; +6X).

For example, Eq. (5) may be used to express

(X, +0X,) and to derive 6X .

(X;+6X;) = (N +0N) (R, +3Ry,)
=X;+NOR;;+ONR,; +ONORy; (11)

Ignoring the products in SNSR;; which will all
be of second order,
0X,=(N/N)X,+NJRy, (12)

Eqgs. (7), (8), and (9) are available for the
calculation of 6 R,;, 0 R,,, and R, ;. Before writ-
ing out the complete expressions for 6X, (0N/N)
and 64 must be known.

64 may be obtained by differentiating Eq.
(1), expressing 4’ in terms of 1 and 8. Thus, from
(1),

34234 ~ A%0a, — 2a,, A0A +a.dA + Ada, —da; =0,

04 = (a,, A%a, — Ada, +8a,)/(3A% —2a, 4 +a,) (13)
(6N/N) may be obtained from the relation that
(1/N?) = R, + B}, + Rj;.

6(1/N?) = —26N/N* = 2R,,6R,

+2R,0R,, +2R,0R,, (14)

Therefore,

(8N/N) = —N*R,0R,, + R;;0R,,
+Ry0R,,) = — (R OR, + R,,0R,,
+ R,0R)/(RY + Ria + RY) (15)

Referring to Eqs. (5) and (12), 6X, may be
written down, remembering that N =1/R}, +
R}, + R};)V2, in this example.

8X,= —(R,,0R,, + R, 0R,, + R, 0B ,) X,/

(B3 +Rh+ R+ 5R11/(R§1 + B3, + BRY)Y
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=[- (Ru OB, + Ru‘SRu + Rm OB, Ry, + 6Ru]/

(Ri,+ R+ Rip) (16)

and thus
6X,=[- (R, 6R,, + R,,6R,; + R, 6R,,)

x R, +0R,]/(R% + R}y + RY;)Y
0X,=[— (R, 0R,, + R, 6R,,+ R,y 0R,,)

x Ry + 0R,) /(RS + R + Rl)}

Knowing the three R, (Ry,, Ry3, R,,), and the
corresponding JR,;, we may numerically eva-
luate the 6X, for each eigenvalue, 4,. If 4X,
represents the total uncertainty in the X,th
eigenvector.

0X, =6X,+6X,+0X, (17)

the 6X; being given by Eq. (16). The magni-
tude of X, is given by

0X,|? =6X,0X, +6X,
k

x 86X, +6X,6X, (18)
The mean scatter of the three eigenvectors,
X, is {|6X]?), and may be obtained directly
from Eq. (18) if all of the dX,’s are known
numerically for each 2,. The general form for
the mean scatter is

|6X |2 =C 4y Okyy OFyy = Q| Ok |2

Where the @, are functions of k,;, and the 6k,,’s
are assumed uncorrelated. Terms of the form
0k, Ok, average to zero. While the @ can be
written down, and they are complex, the Eq.
(16) are sufficient to numerically evaluate the
6X; and ([6X 2.

(19)

5. Review of the formulae determining
R, and 6R;

In order to specify the mean scatter of the
eigenvectors, X,, we must have the uncertain-
ties, 6X;, for each X;. These uncertainties are
expressed by Eqgs. (16), in terms of the cofactors
and uncertainties in the cofactors of the r;
matrix as given by Eq. (6). The E,; are apparent
in Egs. (7), (8), and (9), and the 6 R;are obtained
in & manner similar to K, as seen in Eqgs. (3)

and (4). For sake of clarity, the R;; and R
are summarized as follows. The R, are;

(kn -4) k:s ' 2
R, = =K, — A,y +ky5) + 4
1 Koy (yy — 2) 11— Alegy + Ky
ky, k
R,=-| 1™ =K ,+kyA
12 ki (kg —A) 12T Kyg
by, (kgy—A)
R,= k“ i = 1 =K, +k;A (20)
13 Fag
The 6R;; are;
OB, = [ K,y — Alkeyy + Kg) + Aa]
- Okyy Okyy by Ky
k32 k33 6";32 6":33
— MOk + Okcyy) — 02 (Jegq + Fogg) + 2402,
OR,,=0[K,,+k,, 4]
Oky, Okyy by Ky
- - - + Adk,, + 0k,
ky Ky 0ky, Oksy " “
OR ;= 0K,y + k15 1]
Okyy Okyy ky Ky ‘
= - + Adk,, + k., (21
ky Ky Oky, Olcyy ” w (1)

Eqgs. (20) involve the s;,xk;; known from
measurements, and A, A, obtained directly
from the solution of |s;;—4'I|X;=0. Egs. (21)
involve the k;; and ok, known from measure-
ment and the estimated measurement un-
certainties, the 1, as before, and 64,, which is
given by Eq. (13). The coefficients of Eq. (13),
the a;, and their uncertainties, the da,; are
given in terms of the k,; and ok, in Eqgs. (2), (3),
and (4). Therefore, in order to numerically
specify the 6X,, we must have a solution for
the eigenvalues of the s;; matrix, the 4, as well
as the coefficients and their uncertainties (a;
and da,) for the cubic in A. The basis of all
these calculations is knowledge of the experi-
mentally determined k;; and dk,,.

A suitable computer program would seem the
best way to handle the calculations, and the
input data will be the [k;] and [ék,,;] matrices.
The output would presumably be the eigen-
vectors (principal axes), their direction cosines,
the X, and the seatter, (|6X|*).
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6. Conclusion

The obvious conclusion is that the scatter of
the eigenvectors of a second rank tensor proper-
ty may be expressed numerically as functions
of the errors of the individual measurements.
Given the results of a single set of measure-
ments for a specimen, the scatter of each eigen-
vector may be determined, and the mean scatter
of all three eigenvectors may also be specified.
If a set of repeat measurements is made on a
single specimen and the results, s,;= k,;, meaned,
the magnitude of the uncertainties in the mean-
ed measurements, <{k;;», will be smaller than
the uncertainties in the individual measure-
ments. Hence, there will be a smaller scatter of
the eigenvectors calculated from the meaned
measurements. What has been attempted here
is to justify using the set of meaned measure-
ments for a set of similar rock specimens, and
then to calculate the eigenvectors for the
population of similar measurements directly
from the meaned values, rather than averaging
the eigenvectors calculated individually from
each sample (Noltimier, 1965).

A test of the accuracy of a discreet set of
measurements for one specimen is how closely
the sum of the diagonal terms (Trace) of the
raw data matrix approaches zero. (This also
applies to torsion balance measurements.) In
most cases tested by the author (over 1 000
anisotropy calculations) the meaned spinner
raw data matrices for related specimens gave a
Trace much nearer the theoretical value (zero)
than the raw results for an individual set of
measurements. (See Appendix, Eq. (22).)

The eigenvectors calculated from the meaning
procedures described here are mutually perpen-
dicular, and the spheroids of uncertainty about
the terminii of each eigenvector, X,, defined by
the 6X;, do not imply that each eigenvector
may wander at will throughout their volumes,
independently of the other eigenvectors. The
results also indicate that the occasional poor
agreement of a set of individual specimen
measurements with theoretical matrix behavior
is likely due to uncorrelated scatter of the raw
measurements and not necessarily due to opera-
tional errors, or instrumental defects.
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Appendix

An example of the estimation of the measure-
ment uncertainties for magnetic susceptibility
tensors determined with a spinner magneto-
meter and an a.c. total susceptibility bridge.

The spinner magnetometer modified for
anisotropy measurement gives an output data
matrix of the following form, defined as Ak,

(ku - kn) ku kxs
ku (Foqy — ky) Ky = Akb (22)
kla kla (kss - ku)

The matrix elements, (ky;—k;) and ky,
obtained from spinner anisotropy measure-
ments are of the form,

(ky; —ky) = (2| E|/vH) cos 24

ki = (| E|/vH sin 24 (23)

(Noltimier, 1967b). <k)>, the mean specimen

total susceptibility, is measured separately on
an a.c. bridge, and using the Ak diagonal
terms, (k;;—k;), with (k) gives the total
susceptibility matrix of measurements, s,
which may then be written down. |E| is the
spinner signal magnitude, vthespecimen volume,
H the applied magnetic field in oersteds, and
2¢ is the signal output phase angle. The uncer-
tainties of measurement are the uncertainties
in |E|, v, H, <k}, and 24.

(1) The basic amplitude calibration should
be good to about 2 %, and this error is ignored
in this analysis since it is systematic. The
instrumental noise level is taken as +0.3 x 10-¢
gauss cm?.

(2) The error in volume, », is determined by
the errors in drilling and slicing the rock cy-
linders if a constant volume is assumed for
each specimen. If each cylinder is measured
directly for height and diameter, this error is
probably negligible. The cylinder height to
diameter ratio, (h/a), may or rhay not introduce
a systematic shape effect in the results, de-
pending upon the rocks themselves, but if the
(h/a) ratio of (3/4)1/2 =0.865 is used, this effect
will be minimised (Noltimier, 1971b). The
nominal value of v in this example is § cm?.
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(3) If |E| is greater than three times the
rms noise level, the error in the signal phase
angle is estimated to be 5° in reading the
meter, and 5° due to the noise fluctuations, or
7° (0.122 radians) rms phase error in 24.

(4) The error in H is determined mainly by
the uncertainties in regulatine the Helmbholtz
coil current, and should be known to within
4 0.5 oersteds.

(8) The error in <k} is +0.5 x 10-¢ gauss cm?,
using a total susceptibility bridge as described
by Collinson, Stone & Molyneux (1963).

The total error in each term, Aku, may be
expressed as,

(0Ak,,)t = (0Ak,,/0E)* AE* +(8Ak,,JoH)*AH?

+(0Ak;,/a4) A(24)? (24)

Using Eqs. (22), noting that Ak, is symmetric,
using <{k) to determine k;, from Ak;;, and using
the effective range of 24 as n radians, the rms
uncertainties in the k,, are +0.6 x10™* gauss
cm3. The rms uncertainties in the non-diagonal
k,, are +0.4 x 10~° gauss cm?. These values com-
pare favorably with the basic instrumental noise
level of +0.3 x 10°° gauss cm?, and indicate
that the error in measuring the mean total sus-
ceptibility is very significant in determining the
total rms uncertainties in the diagonal terms of
the total susceptibility matrix, [k;;]. In general,
it would appear that the uncertainties will be
greatest for the diagonal terms, and the uncer-
tainties in all of the k, will be somewhat greater
than the nosie level of the spinner magneto-
meter itself. The uncertainties in the principal
axes, X, will be greater still.
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YNCJIEHHAA OJEHKA PASEPOCA JAHHBIX ONIPEAEJEHNA INIABHBIX
KOMIIOHEHT MATHUTHON MMTPOHUHAEMOCTH 110 HEONIPENEJEHHOCTAM
X DKCIIEPUMEHTAJIBHBIX U3MEPEHUN

BuiBofATCA ypaBHeHUA, ONpeefAIlNe HOIHYI0
BeJIMYHMHY OIMOOK cOOCTBEHHOT0 BeKTOpa AJA
TEH30Pa BTOPOr0 PaHra C IOMONILI0 MATPHUIE
HAHHBIX 3KCIEPMMEHTAJIbHEIX U3MepeHHuii U co-
OTBETCTBYIOUIMX WM OLEHOK oummubox oTUX
uamepenuit. Ilpn sToM paccMarpmMBaeTCA JNINb
MHHHMAaJIbHOE YHCJIO0 H3MepeHUH, KoTopoe, Of-
HAKO, ABJIAETCA AOCTATOYHHM JJISL ONpejeeHus
xapakrepHoro aiauncoupa. CrenmaibHoi 06-
JaCTbl0 IpPUMEHEHUN FABJAITCA W3MEpPeHUA

MAarHUTHO# aHM3O0TPONMHM CKAaJbHHIX NOPOA K
BHYMCJIEHUA CTATUCTHYECKOrO pPacCeaHUsA pe-
3YyJNbLTATOB H3MepeHU{l NOJHHX 3JIUICOUAOB
MArHUTHOU MpPOHHIaeMOCTH. PesyabpTaTel BHI-
YKCJEeHM Jal0T NpAMOe MOKA3aTeJNBCTBO TOMY,
4Yro OMIMOGKH B onpefesieHUN MOJI0KeHNA TPOHKH
rIaBHHX oOcelf AJA Hekoroporo o6pasua, Haft-
JeHHblE M3 OCpeAHEHHOro Habopa HnaMepeHnii,
ROMKHN OHTL MeHbINle OMMGOK oNpeneJeHMn
NOJTOKEHHNH TraaBHHIX ocelt JMIIE HPH OJHOM

Tellus XXIV (1972), 1



SOATTER OF PRINCIPAL MAGNETIO SUSCEPTIBILITIES 71

HN3MepeHun. 9T0 naer HCCIefoBaTejll0 BOBMOK-
HOCTh HCIOJIB30BAHMA (I)OpMaJIBHOI‘O CTaTHCTH-
YECKOr'0 IIOAXoJla K aHAJNU3Y AAHHHX IO Mar-
HUTHOI aHH30TPONHM, OCHOBAHHOIQ Henocpex-
CTBEHHO HA MaTepHaJie NePBUYHHX Ha6aogeHunit
M OIEHKAX HHCTPYMEHTAJLHON TOYHOCTH, 4TO
NpeanouYTHTEINbHEEe aHAAM3a pacCceAHUA MPpPO-
CTPAHCTBEHHHIX OpHMEHTAUHili MNOJAHHX OJIHI-
COH0B MNPOHUIAEMOCTH, IIOJAYYEHHHIX M3 MH3-
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MepeHuii. Bcerpevaomeecs WHOTAA IIJIOX0e CO-
BHAJicHHEe PANA MHAUBUAYAJIbHHX HM3MEepeHMH ¢
pesyibTaTaMM MaTpUYHON Teopmm, HaubGoJee
BEPOATHO, IpoucxoguT 6JarogapA HeKoppeiu-
POBAaHHHIM ouIM6KaM B HepBHYHHIX M3MepeHUAX,
a He ofasareapHo Onarogaps omubKaM BH-
yucaeHuit, npubopHEM AedeKTaM uanm ocobeH-
HOCTSIM camoro ofpasrna.



