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ABSTRACT 

Nonlinear interactions between a wave and a zonal current in a two-layer quasi-geo- 
strophic model on a p-plane are considered. Initially there is no horizontal shear in the 
basic flow. Subsequently, the non-linear effects will introduce horizontal shears in the 
bwic flow, thus introducing a barotropic energy exchange. Modification produced in 
the purely baroclinic solution by barotropic effects is presented. 

1. Introduction 

According to linear theory a uni-directional 
two-layer-flow is unstable with respect to 
disturbances of the scale of atmospheric cy- 
clones if the vertical shear between the two 
layers exceeds a certain value. Since such an 
unstable eddy will grow exponentially, it will 
soon become so large that the linear theory 
breaks down and the basic current will be modi- 
fied by the nonlinear self-interaction of the 
wave. This in turn will alter the stability char- 
acter of the basic flow and consequently the 
rate of growth of the wave. Phillips (1954) 
computed the second-order changes in the basic 
current resulting from an unstable wave super- 
imposed on this current in a two-layer model. 
Baer (1970, 1971) included the feed-back of the 
wave to the basic flow and presented an exact 
solution for the nonlinear interaction between 
the zonal flow and a finite-amplitude wave in 
a two-layer purely baroclinic system. This 
solution is periodic for all values of the basic 
state parameters and for all wavelengths. Thus 
the growth of the wave will be reduced and 
subsequently halted when the perturbation 
amplitude becomes sufficiently large, and 
finally the amplitude will become a t  least as 
small as its initial value. Precisely the same 
conclusions were recently reached by Pedlosky 
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(1970) who adopted the same physical 
but a different mathematical approach. 

model 

Since it might be anticipeted that the 
character of Baer’s (loc. cit.) solution would be 
altered if the constraint of purely baroclinic 
flow was relaxed, we have in the past carried 
out a number of computations to study this 
effect. In these experiments the basic flow 
had vertical but no horizontal shear at the 
initial time such that the perturbation could 
grow only as a result of baroclinic energy 
conversions. From then on the flow was 
allowed to develop without the purely baro- 
clinic restriction. Thus the nonlinear effects 
will result in horizontal shears in the basic 
current and consequently barotropic energy 
exchange processes will come into play. The 
computations showed indeed a considerable 
modification of the baroclinic solution due to 
the barotropic effects. The modifying effects 
were found to be very consistent, both in 
spherical models (Baer’s solution) and in so- 
called beta-plane models (Phillips, 1954; Ped- 
losky, 1970). It is considered of interest to 
present here a typical example of these solu- 
tions. To facilitate comparison with Phillips’ 
(loc. cit.) and Pedlosky’s (loc. sit.) solutions 
we have chosen the more familiar beta-plane 
model. 

2. Basic equations and solution 
Consider an adiabatic, inviscid, quasi-static, 

and quasi-geostrophic flow on a beta-plane. 
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A flow of this type is completely described by aq 
the quasi-geostrophic form of the vorticity at 
equation and the thermodynamic equation. 
For the present two-layer model the latter and for the zonal flow 
may be combined into ,the so-called potential- 
vorticity equations for the upper and lower aQ a 
layer respectively (see, e.g., Phillips, 1954) 

- = &  (:: - q - - y  :: ) J  % - &  at a ("," - p -  5 4 )  ( 6 )  

aP a 
-=  i k -  (v*q-vq*),  - = 4 - ( 4 * p - # p * )  
at ay at &Y 

where the asterisk denotes the complex conju- 
gate. It should be noted here that the nonlinear 

(0) 

(I) a@ + J(Y,ij)=O, -+  J(&@)=O 3 
at at 

Here 4 and 5 are the stream functions for the 
upper and lower layer, respectively, ij and @ 
are the potential vorticities of the upper and 
lower layer, and 8 is a measure of the static 
stability of the flow which compares with the 
constant ,I4 defined in Phillips' paper (loc. cit). 
The remaining symbols have their customary 
meaning, thus, t is time, y is the northward 
coordinate, B = df/dy is the latitudinal variation 
of the Coriolis parameter (assumed constant), 
V a  is the horizontal Laplacian and J is the 
Jacobian operator 

aa ab aa ab J (a  b ) =  - -- - -- 
ax ay ay ax 

Our purpose is to study the nonlinear dy- 
namics of baroclinic waves superimposed on a 
zonal current. In  particular we consider a flow 
consisting initially of the zonal flow (denoted by 
a capital letter) plus a wave of one particular 
zonal wave number k. If x denotes the zonal 
coordinate, the total stream functions may be 
written 

Q = Y ( t ,  y )  + 2 Re y ( t ,  y )  eik2 

5 = @(t ,  y )  + 2 Re +(t, y)eikZ (3) 

where i= Fl and Re denotes the real part of 
a complex quantity. Similarly then we will have 

ij = Q(t ,  y )  + 2 Re q(t ,  y)eik2 

@ = P(t ,  y )  + 2 Re p ( t ,  y)eikZ (4) 

where Q ,  q,  P ,  and p are obtained immediately 
in terms of Y, y ,  CP, and 4, by substituting (3) 
and (4) into ( 2 ) .  Furthermore, by substituting 
(3) and (4) into (1) we obtain the following 
equations for the wave 

number 2k. This paper is concerned with the 
former process only. The latter effect has been 
incorporated in a more general study where it 
was found to be small (within the span of the 
time scale considered) to the extent that it did 
not alter the typical character of the solution to 
be presented here. 

Let the flow be constrained in lateral direc- 
tion by two vertical walls at y = O  and y = W 
where W is the width of the channel. Since the 
normal component of the velocity should vanish 
a t  these walls, i.e., a$/ax = aq/ax = 0, it follows 
from (3) that v = + = O  at y=O,  W .  We may 
then write the general solution for the wave as 
follows 

The quasi-geostrophic boundary conditions do 
not impose any restrictions on the zonal flow. 
As shown by Phillips (loc. cit.) we may derive 
from the zonal momentum equation the 
condition 

- a r) - = _  a ("-") = 0 at y=O, W (8) ay at ay at 

The effect of the wave on the zonal flow may 
then be evaluated by substituting ( 7 )  into the 
right-hand sides of (0) and solving the resulting 
non-homogeneous differential equations for aY/a t  
and a @/at such that the boundary conditions 
(8) are satisfied. 

The present study is concerned with a zonal 
flow which is purely baroclinic at the initial 
time, i.e., a basic flow with vertical shear only. 
Let U and V be the constant zonal velocitities 
of the basic current in the upper and lower 
layer, respectively, then Y = - U y  and CP = - Vy 
at the initial time. Upon substituting (7 )  into 
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the right-hand sides of (6) the resulting non- 
homogeneous corrections to the zonal stream 
functions are clearly of a form similar to (7). 
I n  order to satisfy (8) we must therefore add 
the homogeneous solutions of (6), thus arriving 
at the following general expressions for the zonal 
stream-functions. 

nny  Y = - Uy + H(t ,  y) + 2 Yn(t) sin - 
n W 

nnY @ = - V y  + G(t ,  y) + 2 @,(t) sin - (9) 
n W 

where H ( t ,  y) and G(t ,  y) are the homogeneous 
solutions. The latter can be found most easily 
by adding and subtracting the zonal equations 
(6). The sum-equation appears to allow for a 
homogeneous solution linear in y. However, an 
evaluation of its right-hand side and comparison 
with the zonal momentum equation-which 
was also referred to in order to  establish the 
conditions (8)-show that the homogeneous 
solution must be discarded, which simply 
reflects the fact that the present flow conserves 
its total zonal momentum. As a result then 
the homogeneous solution for @ is equal but 
of opposite sign to the homogeneous solution 
for Y. By subtracting the zonal equations (6) 
we find then 

H = - G = Y,(t) cosh 1/28(y - W )  
- 

+ ~ , ( t )  sinh E ( y - 4 ~ )  (10) 

After substituting the general solutions (7) 
and (9) into (5) and (6) and applying the 
familiar orthogonality relationships we arrive 
a t  a set of “spectral prediction equations” for 
the variables y,,, +,,, Y,, @,,, n = 1 ,  2, 3, ... 
The derivation of the spectral equations is 
straight-forward and will be dispensed with. 
Given the spectral prediction equations, the 
time-dependent expansion coefficients may be 
extrapolated in time by an appropriate finite- 
difference scheme. Finally, the variables Yo and 
a0 are obtained at each time step by sub- 
tracting the two equations (9), substituting 
( l o ) ,  and requiring that the conditions (8) be 
satisfied . 

3. Results 

Solutions to the above equations have been 
obtained for various initial conditions and 
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flow parameters. As mentioned before, similar 
computations were also performed for a spheri- 
cal model. No attempt will be made to list the 
results but rather we will discuss one solution 
the character of which is typical for all solu- 
tions of the present system. The results are 
most easily presented in terms of energy 
conversions. It is well known that the present 
model conserves the sum of kinetic and “avail- 
able potential energy” (e.g., Phillips, loc. cit.). 
Thus the wave kinetic energy can change 
only as a result of two processes (i) the conver- 
sion of zonal kinetic energy into wave kinetic 
energy which we will denote by C(z, K) and (ii) 
the conversion of potential energy into kinetic 
energy C(P,  K). The first process may be 
associated with barotropic instability, the second 
with baroclinic instability. The appropriate 
expressions for the energy conversions are 
easily obtained and will be left out here. All 
energy quantities are averaged over the width 
of the channel, over the length of the wave, 
and over the two layers. 

For comparison with Phillips’ paper we adopt 
the parameters W = 60” of latitude, S = 1 .1  x 
lo-’* m-*. Specifically we present the solution 
for U = 35 m/sec, V = 10 m/sec, a wavelength 
L = 6 000 km, and an initial lateral wave strhc- 
ture given by y =yl sin (ny/W),  4 = 41 sin 
(ny/W).  For these values of the parameters the 
linear theory (Phillips, loc. cit.) shows that the 
wave is baroclinically unstable with a “growth 
rate” IJ, =0.447 per day [wave amplitude is 
proportional to exp. (a, t ) ] .  Furthermore we 
take the initial wave structure corresponding to 
the unstable mode which is found to be yl/+l = 

1.17852 + 1.24274i, and the initial wave kine- 
tic energy equal to 10 % of the zonal kinetic 
energy, the latter being 331 m*/secp. Fig. 1 
shows the results of the time integration of our 
system of equations for this case. Presented are 
only the baroclinic conversion C(P,  K), the 
barotropic conversion C(g, K), and the “growth 
rate” of the wave. The latter is defined as the 
rate of change of wave kinetic energy divided 
by twice the wave kinetic energy, which 
becomes equal to the above defined growth 
rate for the unstable wave in the linear model. 

Various truncations of the series ( 7 )  and (9) 
are denoted by N, i.e., the number of terms 
retained. It may be verified easily that the 
present initial perturbation can only generate 
wave corrections of odd lateral wave numbers 
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Fig. 1. Energyconversionsandgrowth rate of wave superimposed on a baroclinic zonal flow in a two- 
layer model. Upper figure: baroclinic conversion of potential energy into kinetic energy of the wave; 
second figure: barotropic conversion of zonal kinetic energy to wave kinetic energy; lower figure: rate 
of growth of t,he wave defined as the time rate of change of wave kinetic energy divided by the 
actual wave kinetic energy. N denotes the lateral resolution of the spectral solution such that N = 2 
corresponds to the purely baroclinic solution. 

and zonal corrections of even lateral wave 
numbers, thus n =odd in (7)  and n =even in (9). 
The purely baroclinic solution is then obtained 
for N = 2 which is shown by the thin solid line. 
Obviously the barotropic conversion is identi- 
cally equal to zero for this case. The remaining 
energy quantities are periodic for the baro- 
clinic case as shown by Baer (loc. cit.) and 
Pedlosky (loc. cit.). The present period is about 
18 days but only the first 10 days are shown 
here since that part of the solution is sufficient 
to demonstrate the barotropic modification of 
this solution. The latter effect is shown by the 
dashed line, the dash-dot curve, and the heavy 
solid curve of Fig. 1, for increasing lateral 
resolution, i.e., for increasing barotropic degrees 
of freedom. The convergence of the solutions as 
a function of series truncation is found to be 
satisfactory. Time extrapolations have been 
performed with explicit and implicit finite 

difference schemes without noticeable differ- 
ences. 

The heavy solid curve of Fig. 1 shows the 
typical energy conversions which take place if 
a wave is superimposed on a zonal flow which 
initially is purely baroclinic, i f  barotropic 
processes are allowed to operate. Since our 
initial perturbation is baroclinically unstable 
the wave will grow due to baroclinic conver- 
sions C(P,  K). The initial rate of growth is 
equal to the growth rate of the unstable mode 
since the initial configuration was chosen 
accordingly. Due to the nonlinear effects the 
growth rate will decrease quite similarly to the 
purely baroclinic solutions discussed earlier 
(N = 2). However, just before the rate of growth 
becomes zero (maximum wave kinetic energy) 
the wave starts feeding large quantities of 
kinetic energy into the zonal flow [negative 
C(K, K ) ] .  Immediately thereafter this energy is 
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returned to the wave which may cause the 
growth rate to become positive again but at 
least to increase. Linear analysis shows that 
the zonal flow at that moment is barotropically 
unstable. Subsequently, the development of the 
flow tends to become again baroclinic. This 
character of the nonlinear solution described 
above is typical for all solutions obtained so far. 

The magnitude of the barotropic energy 
exchange is found to be proportional to the 
shear of the zonal flow and the initial wave 
amplitude, both of which tend to increase the 
maximum amplitude attained by the wave. In 
all cases the maximum of the barotropic con- 
version is of the same order of magnitude as 
the maximum of the baroclinic conversion. 
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HEJIMHEmHOE B3AkiMOaEBCTBME BOJIH M 30HAJIbHOI'O nOTOKA B 
ABYXYPOBEHHOm EAPOKJIkiHHOm MOAEJIM 

P a C C M a T p H B a B T C K  H e J I U H e f i H b I e  B 8 a H M O A e i C T B U R  K B O a H H K H O B e H H B  I'OPUaOHTaJIbHOrO C A B H r a  B 
BOJIHbI U a O H a J I b H O r 0  IIOTOKa B A B Y X Y P O B e H H O f i  OCHOBHOM IIOTOKe, n p U B O A R ~ e M y  K 6apo~pon- 

B H a Y a J I b H b I f i  MOMeHT OCHOBHOfi nOTOH H e  YMCTO 6apOKJIHHHOM P e I I I e H U U ,  0 6 y C J I O B J I e H H H e  
0 6 ~ I a A a e T  rOPA8OHTaJIbHbIM CABIIrOM CKOPOCTII. 
3 a T e M  HeJIMHefiHbIe  BaaHMOAefiCTBIIR IIPHBOART 

m a a m e o c T p o Q I . w i e c K o i  M o A e n H  H a  B - n n o c K o c T H .  HOMY 0 6 ~ e ~ y  a a e p r H e i .  H a f i A e H b I  n a M e H e H m  B 

6 a p O T p O n H b l M H  a@@KTaMU. 
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