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ABSTRACT 
It is shown that if the kinetic energy follows a -3 power law in terms of the two-dimensional 
index n then it will follow the same power law in term of the zonal wave number 1 and the north- 
south wave number j .  The effects of truncation of representations on these power laws are 
documented to aid in the interpretation of data analyses and model results. 

1. Introduction 

In recent years the study of spectra and non- 
linear exchange in large-scale atmospheric flow has 
been cast in the framework of spherical geometry. 
Chen and Wiin-Nielsen (1978) have recently pre- 
sented such results and briefly summarized the 
literature and some of the theoretical ideas behind 
the representations. Of particular interest is the 
observation that the kinetic energy spectra follow a 
power law of the two-dimensional index n which is 
close to -3 for a range of wavenumbers n > 10 at 
levels away from the lower boundary. This law is 
thought to be indicative of the existence of an 
inertial range in two-dimensional flow on a sphere 
and has theoretical as well as practical signifi- 
cance for the parameterization of non-linear ex- 
change. However, the first observational evidence 
of the existence of a -3 power law came from one- 
dimensional spectra in terms of zonal wavenumber 
(Wiin-Nielsen, 1967). Results from general circu- 
lation model simulations also indicated -3 power 
laws of kinetic energy spectra in terms of zonal 
wavenumber (Wellck et al., 1971). For two-dimen- 
sional isotropic turbulence on a plane it is well 
known that if the kinetic energy spectrum follow a 
power law of the two-dimensional index then one- 
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dimensional spectra will follow the same power law 
(Leith, 1971). Thus it is not surprising, although 
not obvious, that a similar result should hold for 
spherical geometry since the law applies for large 
values of n where the effects of spherical geometry 
should be small. In what follows we shall show that 
the above is indeed to be expected for isotropic tur- 
bulence on a sphere. Further, we shall use the 
results to indicate what will be the effects on one- 
dimensional spectra should the representations be 
truncated (as they inevitably must). In this way we 
should be in a better position to interpret one- 
dimensional spectra both for observations and 
model results. 

We shall consider the spectrum of a single 
dynamical variable, the stream function, which we 
suppose is representative of the mid-troposphere. 
Both the kinetic energy of the rotational wind and 
the enstrophy spectra can readily be derived from 
this stream function. Further, the formalism is the 
same for such quantities as available potential 
energy and thus any conclusions can immediately 
be applied to the spectra of such other quantities. 

2. Formulation 

The stream function over the globe can be 
expressed as a series of spherical harmonics; 

a n  

~ / ( A P )  = 1 1 v/;P!,(~)e‘” (1) 
n = l  I=-n 
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where PI, is the associated Legendre function, A is 
longitude and is the sine of latitude. We have set 
the global average stream function (an arbitrary 
constant) to zero, i.e. iy: = 0. Defining a bar opera- 
tor as an areal average over a sphere we then find 
the variance of v, ( V ) ;  the kinetic energy, ( K ) ;  and 
the enstrophy, ( E ) ;  have the following forms, 
- - 

V =  v2, K = f Vv. Vy/, E = fc' (2) 

where c = V 2  v. Substituting the expansion of the 
streamfunction (1) into (2) it can be shown that 

m ca 
v = x  v n = z  z v ;  

n = l  n = l  [ /, ] 
I (3) 

m 

ca 

n= 1 

m m 

2 a 4 ~ =  1 E , =  1 1 E; 
n = l  n = l  

(4) 

( 5 )  

where do, = 1 if 1 = 0 and is zero otherwise and a is 
the radius of the earth. V,! is the variance of the 
streamfunction belonging to the spherical har- 
monic mode characterized by the zonal index I and 
the two-dimensional index n.  K!, is proportional to 
the kinetic energy and El, to the enstrophy belong- 
ing to the same mode. As well, we can see that 
values of the complete set of any of V;, K!, or E!, 
will permit the determination of the other two. 

From the above expression we now proceed to 
construct one dimensional spectra by summing 
over the distributions of V,', Kf, and E!,. The 
obvious one-dimensional spectra are obtained by 
summing over 1 to obtain a spectrum dependent on 
n and to sum over n to obtain a spectrum depen- 
dent on I .  In these cases we obtain spectra as a 
function of the two-dimensional index n and the 
zonal wave number 1 respectively. We can also 
form a spectrum by summing over components 
such t h a t j  = n - 1 is constant. Such a spectrum is 
considered to be a function of the north-south index 

j. We shall refer to these spectra as the n, 1 a n d j  
spectra respectively. These definitions are analo- 
gous to those considered in plane geometry where 
spectra are defined along orthogonal axes in wave 
number space, although the relationship between 
the indices is quite different. 

Thus the one-dimensional spectra for variance 
are defined as 

n 

vn= 1 v;, 
/=O 

a, 

v/ = x v;, 
n = /  

(7) 

with similar expressions for the one-dimensional 
spectra of kinetic energy and enstrophy. 

In order to make further progress in this simple 
treatment we shall suppose that the distribution of 
variance is isotropic. This means that V,' depends 
only on n. From the studies of Baer (1972, 1974) 
we know that there are serious discrepancies from 
such an ideal case. However, these are mainly con- 
centrated on the lower values of n,  1 a n d j  and we 
will be most interested in the higher values of n, 1 
a n d j  where we expect power laws to be valid. 

3. Isotropic spectra 

For an isotropic spectrum V i  depends only on 
the index n. In that case both the distributions of 
kinetic energy and enstrophy will also be isotropic. 
For if 

v; = C(n),  (9) 

K!, = n(n + 1) G(n) (10) 

El, = n2(n + 1)' G(n) 

then 

and 

( 1  1) 

are functions of n alone. Further, the n spectra will 
be simply related to G(n) because 

n 

vn = 1 v; = (n + 1) C(n),  
I = O  

(12) 

Tellus 3 1 (1979). 6 



ON THE KINEMATIC PROPERTIES OF THE -3 LAW FOR KINETIC ENERGY 

n m m 
Kn = 1 n(n + 1) V,! = n(n + 1)2G(n), (13) V I =  1 V,!= 1 G(n), 

I = O  n = l  n=/ 

489 

n* -1  A Bn-' +z- , I <  n*, En = n2(n + 1)2 Vlf = n2(n + 1)3 G(n). (14) = 1 ~ 

n = l  n(n + 1)' ,,=,,* n + 1 
(19) 

I=O 

m 
, 1>n*. = 

,,=I n + 1 
Now, the observational studies of Wiin-Nielsen 
(1972), Chen and Wiin-Nielsen (1978) as well as 
those of Baer (1972, 1974) indicate that the n 
spectrum of kinetic energy is well approximated by 

shall assume the following mathematical model for 
the n spectrum of kinetic energy, 

K n = A ,  n <n*, = 1 B K ~ ,  I>,n*, 

Similarly, 

+ 1 B r 4 ,  I < n*, K ,  = 1 - 
a power law for n greater than about 10. Thus we n* -1  A m 

n = /  n +  1 n=n* 

W 

(15) n = l  
= B(n + 1) n-4, n 2 n*. 

and 

Using Chen and Wiin-Nielsen's expression for n * - 1  m 

joules, A = 8.8 x lo1* joules and n* = 10. 

kinetic energy in the -3 range we find that a El = z nA + 1 ( n  + 1)  B K ~ ,  I < n*, 
reasonable fit is obtained with B = 8.0 x lo2' n = /  n=P 

(21) 
m 

The model given by (15) then permits the evalu- = (n + 1) B n - 3 ,  I n*, 
ation of G(n) and subsequently the n spectra of n=/ 

variance and enstrophy, i.e. 
Interestingly, the infinite series can be evaluated in 
terms of polygamma functions. The polygamma 
function of order m is defined as (Abramowitz and 

A 
n < n*, Kn - G(n) = ~ - ____ 

n(n + 1 1 2  n(n + 112' Stegun, 1965, p. 260) 
(16) 

Bn-' 
n +  1 

-- - , n>n*;  

so that, Therefore we can write that 

A 
n(n + 1 )  

Vn = ___ , n < n*, 

= Bn-', n >  n*, 

and 

En = n(n + 1) A ,  n < n*, 

= B(n + n+, n 2 n*. 

n * - l  A B 

n = l  n + 1 3! 
K,=  1 - + - P ( n * ) ,  I < n*, 

( 1 7 )  B 
= - P ( l ) ,  I > n*. 

3! 

For large arguments P ( x )  - 2xP3 + 3 ~ - ~ ,  so that 
for large I ,  K ,  - fBI-'; that is the 1 spectrum also 

In a similar way it can be shown that the j 
(18) follows a -3 law. 

spectrum of kinetic energy is given by 

Therefore, for large n we have (asymptotically) a n * - j - l  A B 

strophy. (24) 

-5 law for the variance of the stream function, a K,i = 1 ~ + - P ( n * ) ,  j < n*, 
-3 law for kinetic energy and a - 1  law for en- 

Using the definition of the form of (7)  we may 

l + j + l  3! 

B 

3! = - f3(j), j > n*, now formulate the 1 spectra. We have, 
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so that the j-spectrum of kinetic energy follows a 
-3 law. 

The 1 spectrum of variance in the power law 
range is given as 

If we expand the above summation into partial 
fractions we find that 

(25) 
and noting that the last summation has a value 1-', 
we have 

The above expression is asymptotic to (B/5)IF5 as 
we might expect. The j spectrum has exactly the 
same form as the 1 spectrum so that both V,  and V j  
are asymptotic to -5 power laws. 

The I spectrum of enstrophy in the power law 
range can also be expressed in terms of poly- 
gamma functions, namely, 

with the same form for the j spectrum. Thus the I 
and j spectra of enstrophy follow the -1 law in the 
limit of large wavenumbers. 

Thus we have shown that both the 1 and j spectra 
of variance, kinetic energy and enstrophy exhibit 
the same power laws obtained for the n spectra, in 
agreement with a similar property in plane geo- 
metry. In the next section we shall evaluate the 
form of these spectra when the representation is 
truncated in some way. 

4. Effects on truncation on isotropic 
spectra 

There are generally two types of truncation of 
spectral representation which are used for data 

analysis and model integrations, the triangular and 
rhomboidal. The terms arise because of the geo- 
metric shape outlined by the permitted degrees of 
freedom when they are mapped in the coordinates 
( I ,  n). The triangular truncation is defined by a 
number N such that no consideration is given to 
components tyf, when n > N. The rhomboidal trun- 
cation permits each zonal wavenumber 1 within the 
truncation 1 < L to have the same number of 
degrees of freedom for its latitudinal structure, i.e. 
n - 1 = j < L. We now consider the effects of these 
truncations on the various spectra. 

4.1. Triangular truncation 
For triangular truncation there will be no effect 

on the n spectrum, but the I and j spectra will be 
modified by the terms which are ignored. In the 
power law regime the truncated spectra of kinetic 
energy have the form, 

so that both the 1 a n d j  spectra will exhibit a fall off 
with wavenumber which is faster than -3. In Fig. 1 
we give examples of the spectra described by (28) 
for a few values of N.  In the case of the spectra of 
variance the effect of truncation is less because of 
the more rapid decrease with wavenumber as 
shown in Fig. 2, while the effect is much more for 
the case of enstrophy spectra (Fig. 3). 

4.2. Rhomboidal truncation 
Under rhomboidal truncation the n spectra 

are affected by the truncation. In the case of 
kinetic energy we find that 

K,T = B(n + 1) n-4, n* < n < L,  
(29) 

= B ( 2 L +  l - n ) r 4 ,  L < n < 2 L .  

The shape of this spectrum is quite different from 
the -3 law as shown in Fig. 4. 

The I and j spectra of kinetic energy in 
the power law range ( l ,  j > n*) are also affected 
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Fig. 3. The i and j spectra of enstrophy under triangular 
truncations N = 20, 30, 40, 50; in the power law range. 
The solid curve corresponds to infinite resolution. The en- 
strophy is expressed in joules m-'. 

r 12 

m 15 20 25 30 35 40 45 50 

Fig. 2. The I and j spectra of variance under triangular 
truncations N = 20, 30, 40, 50; in the power law range. 
The solid curve corresponds to infinite resolution. The 
variance is expressed in joules. 
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Fig. 4 .  The n spectra of kinetic energy under rhom- 
boidal truncations L = 15, 20, 25, 30; in the power law 
range. The solid curve corresponds to infinite resolution. 
The kinetic energy is,in units ofjoules nr2.  
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by the truncation but to  a negligible degree. We 
find that 

so that for any reasonable value of L 2 20, the 
second terms in the parentheses in (30) are 
negligible. As one would expect there is even less 
distortion in the 1 a n d j  spectra of the variance and 
slightly more in the case of enstrophy spectra. 

5. Discussion 

The above results show that if the variance, 
kinetic energy and enstrophy spectra are described 
by power laws in terms of the two-dimensional 
index 1 2 ,  then similar power laws in terms of the 
zonal index 1 and north-south i n d e x j  are obtained. 
To the extent that a representation is truncated, the 

spectra obtained will fall off more rapidly than 
these power laws. The I a n d j  spectra are affected 
by triangular truncation whereas the n spectra are 
affected by rhomboidal truncation. Indeed the 
results of Baer (1972) in which he calculated 1 
spectra from a truncated representation are quite 
similar to the Fig. 1. It is noteworthy that the 1 and 
j spectra are not strongly affected by rhomboidal 
truncation. This implies that 1 spectra which are 
computed by carrying out Fourier analyses at  lati- 
tude circles and then averaging over latitude circles 
should exhibit a -3 power law since such a pro- 
cedure is equivalent to computing the 1 spectrum 
using rhomboidal truncation in a spherical har- 
monic representation. As such they are direct evi- 
dence of a -3 law for kinetic energy in terms of the 
index n. 

It is clear that spectra obtained from spectral 
models should be interpreted in the light of their 
particular truncation procedure. Indeed it would 
appear that the important property to  simulate and 
to  use for verification is the extent that the averages 
of individual kinetic energy components K!, are 
described by a -4 law of the two dimensional index 
n. 
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