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ABSTRACT

Dynamic models are derived from pairs of time series of daily surface and 500 hPa height
observations in the Icelandic region in order to interpret these data. The models describe the
motion of data points in the phase plane spanned by a pair of variables. For each pair, a
regression model of first order (R-model) is derived, which assumes linear motion in the phase
plane. The coefficients of the corresponding Fokker–Planck equation (FP) are also derived
from the data. This equation describes changes of the probability density distribution of the
data pair and takes nonlinear aspects into account. The data are interpreted in the light of
both models. The R-model yields a mean rotation and convergence which characterize the basic
type of motion inherent in a data set. It is found in all cases that the timescale of contraction
is shorter than the ‘‘dynamic’’ timescale linked to the rotation. The FP equation yields a mean
motion which resembles quite often that in the R-model as well as a diffusive part. The R-model
is not satisfactory in some cases which involve the meridional surface winds. For example,
southerlies (northerlies) and temperature rotate clockwise (anticlockwise). Meridional and zonal
surface winds rotate anticlockwise in a southerly flow, but clockwise in a northerly one.
Therefore, new aspects of the Icelandic meteorology can be extracted form the data by use of
the FP equation.

1. Introduction one should analyse data from this region as inten-

sively as possible. A considerable number of met-
Iceland is located close to the center of the eorological observations have been collected over

Icelandic low, the semipermanent low-pressure cell the years in Iceland, the longest record being that
in the North Atlantic, typically located between initiated by Thorlacius in 1845 in Stykkisholmur.
Iceland and Southern Greenland (Serreze et al., These data form the basis of the comprehensive
1997). Individual cyclones are frequently found in climatologies of Iceland by Eythorsson and
this region, particularly in winter. Both cyclogen- Sigtryggson (1971) and Einarsson (1984).
esis and cyclolysis are commonly observed. In Einarsson (1991) discussed correlations between
short, cyclone activity dominates the climate of monthly mean temperatures at 32 stations. He
Iceland although high-pressure cells may be found found, for example, that variations of monthly
as well. As is well known, the dynamics of the temperatures from year to year are mostly in
Icelandic region are of global importance. The phase for the whole country except during
Icelandic low plays a key role in the North Atlantic summer. Hartmann (1974) analysed rawin sonde
oscillation (e.g. Barnston and Livezey, 1987), a data of weather ships located south-west of
phenomenon of global scale. All this suggests that Iceland. He found strong phase relationships in

the vertical for waves with periods between three

and seven days, i.e. for oscillations within the* Corresponding author.
e-mail: J.Egger@lrz.uni-muenchen.de range of cyclone activity. Jónsson (1997) extended
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the work of Einarsson (1991) by including pressure Thus the FP equation is to be preferred if one is
specifically interested in data interpretation, as isdata and deriving corresponding regression equa-

tions. He found, inter alia, that monthly mean the case here.

In principle, all these techniques can be appliedtemperatures in Stykkisholmur are positively cor-
related with southerly winds at 500 hPa over to any type of data set, provided the length N of

the available time series is such that results areIceland as well as with the 500 hPa height. They

are negatively correlated with the zonal wind statistically reliable. Correspondingly, the POP
analysis has been applied to fields based on acomponent. Jónsson (1994) presented a precipita-

tion climatology of Iceland. A comprehensive rather large number of stations (e.g. Schnur et al.,

1993). The number of data needed to determineoverview of research on Icelandic climate is found
in Gardarsson (1999). the coefficients of FP equations is, however, much

larger than that required by in the POP analysis.Despite all these efforts we are still far from an

exhaustive evaluation of all the Icelandic data It is for that reason that we restrict our investi-
gation to data pairs so that the resulting FPavailable. Here, we report on further, admittedly

small steps towards this goal. Basically we extend equation is just two-dimensional. Daily observa-

tions are, of course, more abundant than monthlythe approach of Jónsson (1997) by relating pres-
sure, geopotential height and temperature data of means. This suggests that we concentrate on

Icelandic time series of daily pressure and temper-various stations, including sea surface temper-

atures. However, the analysis of the data will be ature values. Both data from pairs of stations
separated horizontally as well as pairs at differentbased on an approach with novel features. First,

a conventional regression model of first order levels will be analysed.
(R-model ) will be adapted to time series of selected
pairs of stations. The eigenvalues of this model

2. Datawill be evaluated in order to capture the dynamics
of the R-model. This technique is exploited exten-

The following data sets have been used.sively in the so-called POP method (von Storch

and Zwiers, 1999; POP, Principal Oscillation
2.1. Set RDPattern). We extend this analysis by the derivation

and interpretation of Fokker–Planck (FP) equa- Time series of daily surface pressure values pstions in the phase space of the station data. While (0.1 hPa; 12 h) and air temperature T (0.1 °C) are
the POP analysis assumes that the underlying available for the stations Reykjavik at the south-
process is linear, the FP equations do not rely on eastern tip of Iceland and Dalatangi situated at
this assumption. It will be demonstrated that a promontory at the east coast (Fig. 1). The
additional features of the time series can be derived data cover the interval 1 January 1949 to 7 April
this way. Even this part of our approach is not 2000. The first variable x of the pair is the
completely novel. For example, FP equations have pressure difference Dalatangi–Reykjavik while
been derived from turbulence and traffic flow data y=T (Reykjavik) + T (Dalatangi). Although
(Friedrich and Peinke, 1997; Friedrich, 1999, per- Dalatangi is situated farther north (65°8∞N) than
sonal communication) and from ice core data Reykjavik (64°8∞N), the variable x nevertheless
(Ditlevsen, 1999). Demaree and Nicolis (1990) represents the meridional component of the geo-
fitted an FP equation to Sahelian precipitation strophic surface wind to a good approximation.
data assuming a drift term of third order. However, Dalatangi must be seen as a somewhat extreme
we are not aware that this technique has been station, strongly reflecting the oceanic conditions
used to analyse time series of standard meteorolo- due to its exposed position on a peninsula. The
gical data such as temperature or pressure. As length of the record is N=18 813.
pointed out by Egger (2001) it is more straightfor-

ward to derive a Master equation form the data
2.2. Set MZRT

instead of an FP equation. The Master equation
can also be used to predict probability density This set is part of the data set used by Jónsson

(1997). The data are derived from grid pointdistributions. However, the interpretation of the
terms of the Master equation is more difficult. values of the NMC-reanalysis data covering the
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of M and Z. All the parameter pairs to be subjected
to the analysis procedure are listed in Table 1.

3. Analysis methods

Let X
n
, Y
n
denote the time series of the variables

x, y where n is the time index and X
n
, Y
n

are the

observations of the first and second station. Mean
values are removed, as is the annual cycle. All
data to be analysed are normalized with their

standard deviation so that we investigate time
series of dimensionless variables of unit standard
deviation. We use also a dimensionless time scaled

by the interval Dt=1 day.
It is convenient to discuss the results in the

phase plane of the variables x, y where the obser-

vation at time nDt is represented by a pointFig. 1. Location of the grid points on which the data
set MZRT is based. The positions of the stations (X

n
, Y
n
). This point jumps from one observation

Reykjavik (R) and Dalatangi (D) are also given. to the next, so that the total data set is represented

by a complicated ‘‘trajectory’’. We introduce a
probability density function f (x, y, t) (pdf ), which

interval 1 January 1958 to 30 June 1998 with N= describes the probability of making an observation
14 791. Fig. 1 shows the position of the grid points in a specified region G of the phase space at time
where daily values of the 500 hPa and 1000 hPa t. Thus
heights (P) are available. The relative topography
RT 500/1000 hPa is defined at the central point.

L= P
G
f (x, y, t) dx dyOut of these data we form the parameters

M= (P3+P6+P9 )− (P1+P4+P7 ) (2.1)
is this probability. In general, it is difficult if not
impossible to estimate f from atmospheric data(B in Jónsson, 1993) and

as a function of time. One would need ensembles
Z= (P7+P8+P9 )− (P1+P2+P3 ) (2.2)

of data sets for this purpose. However the time
mean distribution f: (where the bar denotes a(A in Jónsson, 1997) where M characterizes the

meridional component of the geostrophic wind time mean) can be approximated by the two-
dimensional histogram of relative frequenciesand Z the zonal component. Indices s and 5 will

denote surface and 500 hPa values, respectively, in the (x, y)-plane (see, for example, Fig. 2).

Table 1. Parameter combinations analysed. Also given are the corresponding coeYcients of the R-model

Dataset x y a1 a2 b1 b2

RD p(Reyk)−p(Dala) T (Reyk)+T (Dala) −0.70 −0.34 0.04 0.13
MZRT1 Ms RT −0.47 −0.32 0.07 0.02
MZRT2 Zs RT −0.32 −0.32 0.15 0.07
MZRT3 Ms Zs −0.46 −0.32 0.15 0.06
MZRT4 M5 RT −0.40 −0.26 0.14 −0.14
MZRT5 M5 Z5 −0.34 −0.24 0.09 0.00
MZRT6 Z5 RT −0.24 −0.31 0.01 0.06
MZRT7 M5 Ms −0.56 −0.29 0.29 −0.19
MZRT8 Z5 Zs −0.39 −0.31 0.20 −0.00
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obtained from

s21=[1− (1+a1 )2]X2n
−2(1+a1 )b1XnYn−b21Y 2n , etc. (3.5)

The model equations (3.1) and (3.2) specify a
‘‘velocity’’

vr= (a1x+b1y, b2x+a2y) (3.6)

which describes the motion of the state vector
(x, y) per time step in the absence of white noise

forcing. In other words, eq. (3.6) describes a mean
motion of vorticity

f=b2−b1 (3.7)

and divergence

d=a1+a2 . (3.8)

Of course, f(d ) is a vorticity (divergence) in phase
Fig. 2. Probability density distributions in the (k, m)-grid

space and not in physical space. The variable xof the phase plane of the variables x, y defined for the
leads y in an anticlockwise flow with f>0,whereasdata set RD (x is the pressure difference Dalatangi–
it is the opposite for a clockwise flow. Here andReykjavik; y is the sum of temperatures at both stations).

The grid size Dx=0.5 corresponds to half the standard in the remainder the terms clockwise and anti-
deviation here and in all following figures. Contour inter- clockwise will be reserved for flows in the phase
val 0.01. The symbols S(N) and W(C) denote southerly plane, while the terms cyclonic and anticyclonic
(x>0) and northerly (x<0) surface winds and positive

characterize physical flows. The R-model assumes
(negative) temperature deviations, respectively. Dashed:

that vorticity and divergence of the mean flow docoordinate axes; x=kDx; y=mDx.
not depend on x, y.

Further information on the motion in the phase
plane can be obtained by computing the eigen-

3.1. Regression model values l1,2 of eqs. (3.1) and (3.2) following from
the assumptionThe model equations to be used are

(X
n+1
, Y
n+1
)=l(X

n
, Y
n
). (3.9)

X
n+1
=X
n
+a1Xn+b1Yn+Z1n , (3.1) Inserting eq. (3.9) in eqs. (3.1) and (3.2) one

obtains
Y
n+1
=Y
n
+b2Xn+a2Yn+Z2n , (3.2)

l1,2=1+ (a1+a2±d1/2)/2 (3.10)

damped oscillatory modes or purely dampedwhere a
i
, b
i
are constants and z

i
are white noise

modes depending on the sign of the discriminantprocesses with standard deviations s
i
. It is

straightforward to determine the model param- d= (a1−a2 )2−4b1b2 .eters from the observations. For example, a1 and
Thusb1 follow from

4b1b2> (a1−a2 )2 (3.11)
X
n
X
n+1= (1+a1 )X2n+b1XnYn , (3.3)

is required for oscillatory modes to exist. One may

also introduce an eigenfrequency v such that
Y
n
X
n+1= (1+a1 )XnYn+b1Y 2n , (3.4) x

n+1
−x
n
=vx

n
and v=l−1. The related eigen-

vectors are the Principal Oscillation Patterns
where the bar stands now for an average over all (POPs). Note that the motion is spiralling around

the origin only if oscillatory modes exits.observation times. The standard deviations are
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3.2. Fokker–Planck equation with corresponding expressions for D
xy

, D
yy

. The
brackets in eq. (3.16) denote an average over all

The FP equation is based on the assumption
cases where the data point (X

n
, Y
n
) is found in grid

that the data to be analyzed can be modeled by
box (k, m). In principle, a limiting process should be

two Langevin equations
performed in order to obtain these coefficients (e.g.
Siegert et al., 1998). Given, however, only data of
finite resolution in time with unit time step, eq. (3.16)
is the best approximation possible. It is clear from

dx

dt
=A
x
+B
xx

dW
x

dt
+B
xy

dW
y

dt

dy

dt
=A
y
+B
yx

dW
x

dt
+B
yy

dW
y

dt

(3.12)
eq. (3.16) that the drift terms are simply estimates of
the mean tendency in a grid box, while the diffusion
coefficients are proportional to the variances of these

where A
x
, A
y
, B
xx

, B
xy

, B
yx

and B
yy

are functions
tendencies. There is, however, the technical problem

of x and y and where dW is a Wiener process (e.g.
that the drift velocities (3.16) may be too large given

Gardiner, 1983). Obviously, eq. (3.12) are general-
a grid size Dx. A numerical integration of the EP

izations of eqs. (3.1) and (3.2) where the drift
equation (3.14) is possible only if the stability cri-

velocity vd= (Ax , Ay ) is related to vr via
terion (A

x,y
) Dt<Dx is satisfied at all grid points. If

not, the time step has to be reduced.(a1x+b1y)~Ax Dt,

(b2x+a2y)~Ay Dt,
(3.13) Note that both the R-model and the FP equation

rely only on covariances with lags zero and one.
Correspondingly we may capture reasonably welland where Z1 and Z2 correspond with the white
dynamical processes with timescales of a few days,noise terms in eqs. (3.12). Note, however, that
i.e. cyclone dynamics. One would have to use autore-eq. (3.12) are stochastic differential equations
gressive models of higher order to detect oscillationswhile eqs. (3.1) and (3.2) are discrete in time.
with longer periods with reasonable confidence.The FP equation corresponding to eqs. (3.12)
That would also require the introduction of FPis
equations of higher dimension than two. At the
mooment we prefer to deal with the simplest case.∂ f

∂t
=−

∂
∂x
(A
x
f )−

∂
∂y
(A
y
f )

Correspondingly we select variables where we can
expect to find signals with timescales of a few days.
The results of Hartmann (1974) suggest that both+

1

2 A ∂2∂x1 Dxx f+2 ∂2∂x ∂y Dxy f+ ∂2∂y2 Dyy fB meridional wind and temperature are good candid-
(3.14) ates. The variations of the zonal wind tend to be

concentrated at motions with longer timescales and(Gardiner, 1983). In eq. (3.14)
may be more difficult to analyse with our models.

Given eq. (3.16) we can easily find out if the
velocities predicted by the R-model are satisfac-

D
xx
=B2
xx
+B2
xy
,

D
xy
=B
xy
B
yx
+B
xx
B
yy
,

D
yy
=B2
yy
+B2
yx
.

(3.15)
tory, at least in principle. We just have to compare
vr with vd . This intercomparison is facilitated
by introducing streamfunction y and velocityThe drift velocity vd in eqs. (3.12) and (3.14) and
potential x, so thatthe diffusion terms (3.15) can be estimated from

data. However, that can be done at discrete points
only, i.e. the FP equation (3.14) must be replaced
by a finite difference equation. We introduce J×J

f:u=−
∂y
∂y
+
∂x
∂x
,

f:v=
∂y
∂x
+
∂x
∂y

(3.17)
grid boxes of grid size Dx and define correspond-
ing grid points (k, m) such that k=xDx, m=yDx
are the locations of the grid points. An estimate is the related pdf transport. It follows that
of the drift velocities and D

xx
is obtained by

V2y=−
∂
∂y
( f:u)+

∂
∂x
( f:v),

V2x=
∂
∂x
( f:u)+

∂
∂y
( f:v).

(3.18)

(A
x
)
km
=�X

n+1
−X
n
�/Dt,

(A
y
)
km
=�Y

n+1
−Y
n
�/Dt,

(D
xx
)
km
=�(X

n+1
−X
n
)2�/Dt− (A

x
)2
km

Dt,

(3.16)
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With eqs. (3.17) and (3.18) we are able to investi- ables are x=p(Dalatangi)−p(Reykjavik) and y=
T (Dalatangi)+T (Reykjavik). Given the locationsgate both the rotational and the divergent flow of

states in the phase plane. Boundary conditions of these stations, x is closely related to the meridi-

onal component of the geostrophic surface wind.pose no problem when solving eqs. (3.18) for y
and x because y and x are constant outside the Of course, the pressure at Dalatangi is highly

correlated with that in Reykjavik (correlationdomain where f:≠0. We are free to choose

y=x=0 there. coefficient 0.92). Deviations in Reykjavik are lead-
ing those in Dalatangi. It is the same with theThe rotational part of the transport does not

contribute to changes of f in eq. (3.14), as follows temperatures.

The time mean pdf of x, y is displayed in Fig. 2.from inserting eq. (3.17) in eq. (3.14). Moreover,
eq. (3.14) yields in steady state with D

xx
~D
yy
~D, There is only one maximum and the distribution

tends to lie on the line x=y. That part of theconstant, D
xy
~0 the relation, V2x=DV2D f:, so

that domain where f:<0.01 is relatively large when
compared to that more frequently visited with

D f:~2x. (3.19)
f:>0.01. There is also an disconnected area of

Diffusion has to balance convergence. events with rather strong southwesterlies. Such
events must be discarded, of course, in a data
based derivation of the coefficients of the FP3.3. Statistical significance
equation.

An application of the more advanced FP equa- The auto- and crosscorrelations of both vari-
tion makes sense only if the results differ signifi- ables are shown in Table 2 for lags up to ten days.
cantly from those obtained with the R-model. For It is seen that the pressure difference deviations
example, the difference of the velocity potential as decay more rapidly than those of temperature.
derived from eq. (3.18) and that given by the The correlation coefficient is 0.28. The crosscorrel-
R-model is displayed in Fig. 4c for the dataset ation is antisymmetric with respect to lag t=0.
RD. There is a relatively large domain of negative Southerlies (i.e. x>0) bring higher temperatures
deviations and a small positive one. A priori, it is the next day while there is no increase in the
not clear if these patches of positive and negative strength of the southerlies after a warm day.
deviations are significant. They may be random The model parameters resulting from the
deviations caused by the finite length of the avail- R-analysis are given in Table 1. With a1~2a2 , the
able time series. The related significance test is memory of the pressure deviations is much shorter
described briefly in the Appendix. It is based on than that of the temperature anomalies, in
Monte Carlo runs with the R-model. We will
perform such significance tests for streamfunction

Table 2. Autocorrelations AC and crosscorrela-
and velocity potential.

tions CC of the data in set RD, where x=surface
pressure diVerence Dalatangi–Reykjavik, y=sum of
air temperatures at both stations. In CC

ab
the4. Results

variable b lags a

4.1. Surface data
Lag (days) AC

xx
AC
yy

CC
xy

CC
yx

The RD data set provides a pressure difference
0 1·00 1·00 0·28 0·28and a temperature T at the surface. The setMZRT
1 0·31 0·69 0·32 0·12

allows us to calculate also u at the surface. Strictly
2 0·16 0·48 0·19 0·08

speaking, the relative topography available in 3 0·14 0·37 0·16 0·06
MZRT is not a surface variable. We include it, 4 0·09 0·29 0·13 0·02

5 0·05 0·22 0·11 0·01nevertheless, as a variable in this section on surface
6 0·04 0·18 0·09 0·01data when it comes to relating surface winds to
7 0·03 0·15 0·07 0·01this type of temperature.
8 0·04 0·12 0·06 0·01
9 0·03 0·15 0·06 0·01

4.1.1. Pressure and temperature at Reykjavik and
10 0·01 0·12 0·04 0·00

Dalatangi; RD. As has been mentioned, the vari-
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agreement with Table 2. Moreover, |a
i
|Ib
i
, so damped more strongly than northerlies. The vel-

ocity potential exhibits just one center (Fig. 4b)that decay dominates. Nevertheless, there is posit-
ive vorticity with f=0.1. The eigenvalues are real and the distribution of x is rather similar to the

pdf in Fig. 2, as predicted by eq. (3.19). The vel-with l1=0.29, l2=0.67, so that l
i
~1+a

i
because

of the dominance of the damping. ocity potential is stronger for southerlies than for
northerlies, but the amplitude of these deviationsThe whiteness of the forcing as assumed in

eqs. (3.1) and (3.2) has been checked by calculating is less than 10% of the total amplitude (Fig. 4c).
The statistical significance tests reveal that highZ

i
in eqs. (3.1) and (3.2) as a residual and evalu-

ating the corresponding autocorrelations. It is significance can be attributed to the negative

deviations from the streamfunction of thefound that the forcing is indeed rather white.
Autocorrelations of lag one are smaller than 0.02. R-model. On the other hand, the positive

deviations do not pass the significance test. TheThese results of the R-analysis must be com-

pared to those obtained from the FP equation. deviations in the velocity potential are significant.
The diffusion coefficients D

xx
and D

yy
as evalu-The asymptotic pdf of eq. (3.14) resulting from an

initial distribution where f=1 at the central grid ated according to eq. (3.16) are far from being

uniform (Fig. 5). By and large the stochastic for-box comes rather close to that observed in Fig. 2
(not shown). The drift velocities (3.16) are shown cing is stronger near the boundaries, where devi-

ations are larger, than in the center. Obviouslyin Fig. 3. The flow is strongly convergent as

suggested by the R-model. Moreover, the D
xx

in Fig. 5 contains features of grid scale. These
are hardly reliable. Given a cloud of states centeredx-component is attracted more strongly to the

center than the y-component. in one grid cell it takes about three days with
D
xx
∏0.1 to smear it out over the adjacent boxes.With f>0, the R-model predicts that yr is

negative. However, Fig. 4 demonstrates that y is The term D
xx

represents mainly the impact of

weather systems on the Icelandic surface pressurepositive for positive x, y and negative only in the
rest of the domain. The temperature decreases field. Anomalous heat fluxes in the boundary layer

contribute to D
yy

, as do stochastic variations ofthe next day for strong northerlies, at least as far

the rotational part is concerned. It tends to cloudiness and of other components in the
radiation budget. Stochastic variations fromincrease for southerlies except for rather warm

days. There are clear deviations from the pattern dynamical processes are also important.

All in all, we find that the R-model portrays thepredicted by the R-model. Southerlies tend to be
basic features of the flow reasonably well. Decay
by damping is clearly dominating. Deviations from

the R-model point towards an asymmetry in the
sense that situations with positive temperatures
and southerlies are not just the reverse of those

with negative temperatures and northerlies.

4.1.2. Grid-point meridional surface wind and rela-
tive topography; MZRT 1. The east–west surface
pressure differenceMs is the first variable x in this
case, and y is the relative topography RT as given

in the grid-point dataMZRT . This example differs
from the forgoing insofar as the pressure difference
is evaluated over about double the distance and

that the relative topography is a temperature
variable of the free atmosphere.

Both variables are strongly lag-correlated
(Table 3), somewhat in contrast to the foregoing
case. The decay of pressure differences with

increasing lag is not as rapid as in the set RD.Fig. 3. Drift velocity vd= (Ax , Ay ) according to
eq. (3.16). Maximum flow velocity 7.1. Grid as in Fig. 2. This indicates that the Dalatangi–Reykjavik
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Fig. 4. Streamfunction (a) and velocity (b) potential of the pdf-weighed flow in RD as determined directly from
eq. (3.18). Contour interval 0.002 for y and 0.08 for x. Grid as in Fig. 2. Also given (c) is the difference between (b)
and the velocity potential of the R-model; contour interval 0.008. Flow components f:u, f:v etc. can be calculated
from the figures by measuring distances in terms of the grid indices. Resulting units are in Dx/(6 h).

pressure difference is affected by local circulations clockwise with f=−0.04, and the eigenvalues are
real. However, Fig. 6 reveals that the R-model iswhich do not extend sufficiently far out from

Iceland to have an influence on Ms . It comes, not really appropriate in this case. The rotational
motion in the phase plane is clockwise for positivethen, as a surprise that the relative topography

anomalies decay slightly faster than do those of temperatures and southerlies and anticlockwise
for negative temperature and northerlies. Thethe mean temperature of Dalatangi and Reykjavik.

This may reflect the stronger impact of the Atlantic R-model captures only a residual of both motions.

Both strong southerlies and northerlies go with aocean on the surface temperatures than on the
relative topography. The circulation is weak and tendency towards a cooling of the atmosphere

Tellus 54A (2002), 1
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Fig. 5. Diffusion coefficients D
xx

. The coefficients have
Fig. 6. Streamfunction y for the data setMZRT1; isolinebeen obtained by applying eq. (3.16) to the data of RD.
interval 0.004.Contour interval 0.02. Diffusion coefficients are com-

puted only for grid boxes with at least two neighbour
boxes.

keep the relative topography as second variable.
The decay of anomalies of the zonal wind compon-

above Iceland. The tests attach significance to ent is slightly slower than of those of the meridi-
both patches. The split of the streamfunction in onal component. The correlation coefficient of
an anticyclonic part for southerlies and a cyclonic both variables is just 0.096. The vorticity is nega-
part for northerlies has been found, albeit less tive but small. The eigenvalues are real. Again
pronounced, also in the foregoing case RD. The there are deviations from the R-model. Warm
velocity potential (not shown) indicates that the situations decay faster than cold ones (not shown).
damping of northerlies is weaker than that of

southerlies. 4.1.4. Grid-point meridional and zonal surface
winds; MZRT 3. With x=Ms and y=Zs we have

4.1.3. Grid-point zonal surface wind and relative a data pair with correlation coefficient 0.17, weak
topography; MZRT 2. We replace Ms by Zs but anticyclonic vorticity f=−0.13 and real eigen-

values. The R-model is not fully satisfactory. Fig. 7
Table 3. Autocorrelations AC and crosscorrela- shows the streamfunction with negative values for
tions CC for the variables x=Ms and y=relative southerlies and positive ones for northerlies. Thus
topography; MZRT 1. there is a tendency towards a strengthening of the

westerly component both for strong northerlies
Lag (days) AC

xx
AC
yy

AC
xy

AC
yx and southerlies. Again we find this difference of

flow regimes with southerly winds and those with0 1·00 1·00 0·57 0·57
northerlies seen so clearly in MZRT1.1 0·57 0·69 0·41 0·37

2 0·33 0·45 0·27 0·26
3 0·24 0·33 0·22 0·18

4.2. Upper level data4 0·17 0·25 0·18 0·13
4.2.1. Meridional 500 hPa wind and relative topo-5 0·11 0·18 0·15 0·09

6 0·01 0·14 0·12 0·06 graphy; MZRT 4. The combination x=M5 , y=7 0·07 0·10 0·09 0·04 RT is obviously similar to the cases RD and
8 0·06 0·07 0·08 0·03 MZTR1 considered above. The decay of the
9 0·06 0·05 0·07 0·02

autocorrelation of the pressure difference at
10 0·03 0·04 0·04 0·01

500 hPa is slightly slower than at the surface and
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Fig. 8. Drift velocity in MZRT4; maximum velocityFig. 7. Streamfunction inMZRT3; isoline interval 0.004.
7.2 Dx.

equals almost that of the relative topography.
curvature is less distinct for negative x, y.According to Table 4, southerlies tend to stay if
Correspondingly, the difference between the vel-there is a warm day with a positive deviation of
ocity potential and that given by the R-model isthe relative topography. The correlation coefficient
positive in the first quadrant and negative in theis 0.4. The convergence is smaller than in RD
third one. This result is statistically significant.(Table 1) and the vorticity is negative with f=
Altogether we find here again clear indication that−0.28. The eigenvalues of the POP analysis are
southerly flow regimes are not the linear counter-complex so that we obtain rotating eigenvectors.
parts of northerly ones.The period of their rotation is 51 days. This period

The asymmetry of the flow field depicted inis rather long. The drift velocity field as displayed
Fig. 8 must have an impact on the evolution ofin Fig. 8 shows distinct deviations from the sym-
pdfs. As an example, we compare in Fig. 9 themetries assumed by the R-model. The flow pattern
pdfs obtained in two integrations of the FP equa-for x, y>0 is strongly anticyclonic with rapid flow
tion (3.14) where all states were centered in theback to the center. Velocities are smaller and the
grid box (4, 4) in the first run and in (−4,−4) in
the second. If the R-model were completely satis-

Table 4. Autocorrelations AC and crosscorrela- factory the evolution of both ‘‘clouds’’ of states
tions CC for the dataset MZRT 4 where x=M5 would be the same except for a change of sign of
and y=RT the coordinates. Obviously this is not the case.

The cloud starting at (4, 4) moves more rapidlyLag (days) AC
xx

AC
yy

CC
xy

CC
yx towards the center than the other one and is

elongated towards large x, while the other cloud0 1·00 1·00 0·39 0·39
1 0·66 0·69 0·15 0·38 is more elliptic, with the larger axis being parallel
2 0·42 0·45 0·12 0·24 to the y-axis. Table 5 documents these differences
3 0·30 0·33 0·14 0·14 in a more quantitative way. It gives the mean
4 0·22 0·25 0·13 0·08

position
5 0·15 0·18 0·11 0·05
6 0·12 0·14 0·09 0·03
7 0·09 0·10 0·07 0·01 (x: , y:)= P f (x, y) dx dy
8 0·07 0·07 0·06 0·00
9 0·06 0·05 0·04 0·00

as well as the mean deviations therefrom as a
10 0·04 0·04 0·02 0·00

function of time for both clouds. The differences

Tellus 54A (2002), 1
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4.2.2. Meridional and zonal 500 hPa winds;
MZRT 5. The relative topography is replaced by
the meridional pressure differences across Iceland

in MZRT5, so that x (y) corresponds with the
meridional (zonal) geostrophic wind. These vari-
ables are uncorrelated and the observed pdf is

almost circular. The R-model indicates that the
flow in the phase plane is weakly anticyclonic but
the eigenvalues are real. The R-model appears to

capture the overall situation quite well, but again
northerlies decay slower than southerlies.

4.2.3. Zonal 500 hPa winds and relative topo-
graphy; MZRT 6. This case fits the general impres-

sion that real eigenvalues must be expected
whenever a zonal wind component is part of the
pair. The R-model is satisfactory.

Fig. 9. Probability density distribution after three days
4.3. Combination of upper-air and surface dataas obtained in integrations of the FP equation (3.14)
4.3.1. Meridional winds at 500 and 1000 hPa;with initial states centered in box (4, 4) (solid) and in

box (−4,−4) (dashed). Flow data fromMZRT4; isoline MZRT 7. In MZRT7 we look at the pair x=M5 ,interval 0.02. The crosses give the position of the center y=Ms . This way we relate the meridional geo-
of the initial distribution. strophic wind components at the upper level and

at the surface. As revealed by Tables 2 and 4 the
surface winds decay only slightly faster than the

of the mean position are largest on the second 500 hPa meridional wind deviations. There is a
day. The second cloud has a larger spread in the strong and positive correlation with wind vari-
y-direction, as can be seen directly from Fig. 9. ations at 500 hPa lagging those at the surface (see
This example documents clearly that states with also Hartmann, 1974).
strong southerlies and high temperature have less The coefficients of the R-model (Table 1) reveal
persistence than those with opposite sign. a strong clockwise rotation with f=−0.48. The
Moreover, they approach the origin along a mean eigenvalues are complex with a rotation period of
trajectory with pronounced anticyclonic curva- 33 days, which is still relatively long compared to
ture, while the ‘‘cold’’ cloud moves almost along cyclone timescales.
a straight line towards the center. The pdf is elliptic (not shown) with a strong tilt.

This reflects the high correlation of both variables.
The velocities in the phase plane reveal clearly

that there is clockwise circulation (Fig. 10)Table 5. Intercomparison of two integrations of the
reflecting the tilt of the axis. The related stream-FP equation (3.14) for the data set MZRT 4. In the
function (Fig. 11) shows a pronounced maximum,first integration (first entry) all initial states are
but there is a small lobe of negative values to theconcentrated in the grid box (4, 4), in the second
right. This indicates that the 500 hPa winds do(second entry) the starting box is (−4,−4). T he
not lag the surface winds if both components aremean position (x, y) of both clouds are given, as
positive and relatively strong.well as the related variances for the first three days

of the runs
4.3.2. Zonal winds at 500 hPa and at 1000 hPa;

Day −x: −y: (x−x: )2 (y−y:)2 MZRT 8. The pair to be analyzed here are x=
Z5 , y=Zs . These variables are strongly correlated

1 3.26/−2.89 2.15/−2.51 0.95/0.91 1.55/1.44 with CC
xy

(0)=0.73 and there is anticyclonic rota-
2 1.22/−2.23 1.20/−1.78 1.23/1.38 1.67/2.22

tion, i.e. upper level zonal winds lag the surface
3 1.73/−1.68 0.77/−1.26 1.31/1.56 1.58/2.51

winds. As can be seen from Table 3, b2=0, i.e. the
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5. Conclusions and discussion

The following conclusions can be drawn:

(1) The regressive model provides a good esti-

mate of the drift velocity in many cases. Exceptions
are the data combinations Ms/RT (MZRT1) and
Ms/Zs (MZRT3), where the R-model yields even

qualitatively incorrect flow patterns. Moreover,
there are many cases with pronounced deviations
from the linearity assumed by the R-model. These

deviations have been found using the FP equation.
(2) The decay times are always shorter than

the times linked to the rotation. The return to

normal is always faster than internal oscillations.
(3) Eigenvalues are invariably real if zonal

winds are part of the data pair. Complex eigen-

values are found in many other cases. However,
the related oscillation periods are rather long

Fig. 10. Drift velocity in MZRT 7; maximum velocity 6. when compared to cyclone timescales.
(4) Temperatures and meridional wind com-

ponents are always positively correlated as ex-

pected. However, the related drift velocity is hardly
linear as assumed by the R-model. There is a clear
separation of southerly and northerly flow regimes.

The streamfunction tends to be positive for south-
erlies but negative for northerlies. This separation
extends to the combination of meridional and

zonal winds at the surface but not at 500 hPa.
(5) There is strong coupling of the respective

wind components at the ground and at 500 hPa,

with the upperlevel winds lagging those at the
ground.

It has been demonstrated in the foregoing that
the evaluation of velocities and related diffusion

coefficients in the phase plane of the parameters
yields additional insight beyond what follows from
the correlations and from the autoregressive POP

model. However, the demands on record length
are clearly larger for the more advanced methodsFig. 11. Stream function in MZRT7; contour interval
to yield significant results. Correspondingly, some0.04.
of the deviations of FP results form the R-model
turned out not to be significant.

Although the annual cycle has been removed it
actual value of Z1000 has little impact on the should be stressed that one would have to stratify
tendency of Z500 . It is, therefore, not surprising the data at least by seasons in order to remove
that the eigenvalues are real in this case. additional aspects of the annual cycle. For

The velocity pattern shows a distinct asymmetry example, the variability in winter is larger than in
with westerlies decaying more rapidly than easter- summer. This effect is, of course, not removed here.
lies, so the R-model is not really satisfactory in Given the length of the data record one might

expect to see some signatures of climatic change inthis case.
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the Icelandic region. However, the analysis proced- b
i

from the R-model a large number of runs of
length N is performed with the R-model. Theures used here assume statistical stationarity and

are, therefore, not suited to detect such changes. forcing is white in each run and has the standard

deviation known from the data. Each run produces
fields yr , xr so that the related test variables S+

y
r

,
6. Appendix S−

y
r

, S+
x
r

, S−
x
r

can be determined. This way obtain

for each run four numbers which characterize the
The first step in the design of a significance test basic structure of the velocity fields. Next we

is to reduce the number of variables (e.g. von compute the mean and standard deviation of all
Storch and Zwiers, 1999). It would be hopeless to four series of numbers. The S+

y
r

have a normal
test the significance of all details of Fig. 4c, for distribution. Given all this information the statist-
example. It appears sufficient to attribute signifi- ical significance of the difference map d=yd−yrcance to the gross feature of this figure. To that is tested by comparing, for example, the mean of
end we introduce as test variables the sums S+

d
to the standard deviation of the S+

y
r

.

S+
Q
=
1

2
∑
km
(Q+|Q | ),

S−
Q
=
1

2
∑
km
(Q−|Q | )
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