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In Brief
Here we present CoastalDEM v3.0, the latest update to Climate Central’s global coastal digital elevation model
(DEM) powered by an artifical convolutional neural network. In this version, we have refined the neural network
architecture and incorporated a number of new input datasets. In particular, instead of a single base elevation
model as most past work has employed, we use a fusion of multiple global DEM sources, which helps to counter
spatially-autocorrelated vertical errors. As a result, CoastalDEM v3.0 not only extends its boundaries to all
latitudes, but also outperforms the vertical accuracy of all other publicly-available global scale elevation models,
including CoastalDEM v2.1, DiluviumDEM, FABDEM, and COPDEM, as measured by a global ground-truth
dataset.

Addendum (3/2024): In March 2024, a new global digital elevation model, DeltaDTM, was published
[1]. In light of this release, we have conducted a comprehensive validation of this dataset and compared it to our
own, finding that CoastalDEM v3.0 remains the most accurate global DEM available. An addendum has been
added to this report describing these results in detail.

1Climate Central, Princeton, NJ, USA
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1. Introduction

Digital elevation models (DEMs) represent the foundation
of coastal flood vulnerability assessments. In certain places,
such as the coastal United States [2], Australia [3], the UK [4],
and other select developed countries, high-accuracy DEMs
derived from airborne lidar exist and are publicly available.
In most other parts of the world, we rely on global-scale
elevation models derived from satellite-based measurements,
such as NASADEM [5], COPDEM [6], and AW3D30 [7].
However, all of these DEMs suffer from large vertical errors
with a positive bias, especially in areas with dense vegetation
or urban development [8, 9, 10].

Over the last ten years, improving satellite-derived global
elevation models has become a topic of increasing effort and
interest in the scientific community, especially as it relates to
flooding impacts analysis. Early attempts were limited to
very small areas of interest [11, 12] or only sought to reduce
errors caused by vegetation, and not urban development.
[13, 14, 15, 16]. CoastalDEM v1.1 [17] was the first DEM to
use an artificial multilayer perceptron neural network to
correct global-scale coastal elevations present in NASA’s
SRTM, but was trained on ground truth data in the US alone,
and so offered less certainty in areas with dissimilar
vegetation, architecture, and population density. CoastalDEM
v2.1 [8] resolved this limitation by employing data from

NASA’s ICESat 2, version 3 as ground truth. The ICESat 2
satellite uses lidar technology to collect a lattice of global
transects of elevation measurements[18]. CoastalDEM v2.1
also utilized a more sophisticated convolutional neural
network (CNN) architecture to further improve results.

Since then, the European Space Agency developed their
Copernicus digital elevation model (COPDEM) [6], based on
data collected from the TanDEM-X mission [19]. While still
a digital surface model and so positively biased in developed
or vegetated areas, recent work indicates that it offers higher
vertical precision and more consistent performance than
SRTM/NASADEM [20, 21]. Accordingly, the most recent
efforts in global DEM correction have used COPDEM as
their base elevation source, including FABDEM [9] and
DiluviumDEM [22]. These datasets, however, suffer many of
the same limitations as CoastalDEM v1.1. First, they employ
weaker prediction models: random forests and decision trees,
respectively. While much less computationally intensive than
convolutional neural networks to train and use, these models
are weaker and primarily optimized for tabular data, and
cannot take full advantage of the spatial gridded structure of
the input data employed in this task, as CNN’s were
specifically invented to do. Use of the more limited
approaches can lead to substantial noise, such as is clearly
visible in FABDEM’s and DiluviumDEM’s outputs (Figure 6,
below). Furthermore, these datasets were trained only on
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lidar-derived elevation models in a handful of countries
where they are available. While these DEMs therefore
perform well in those particular regions, their apparently high
accuracies do not necessarily extend to developing countries
where lidar data is not available - and it is in these exact
regions where high-accuracy global DEMs are most needed.

The main purpose of this white paper is to rigorously
assess the error in CoastalDEM v3.0 and other leading DEM’s
with global or near-global coverage of coastal areas. Most
published validations of coastal DEMs have relied on error
assessment in small and few areas [23, 24, 25, 26]. Here, we
take pains to make a thorough global assessment, and also to
compute and publish error rates in every coastal nation in the
world with enough ground truth data to achieve a sufficient
sample size.

2. Technological Advances in CoastalDEM
v3.0

• A fusion of base elevation sources. CoastalDEM v2.1
was based off of the NASADEM global elevation
model which, while more accurate than the older
SRTM dataset, still contained important errors
including extensive striping artifacts. CoastalDEM
v3.0 instead incorporates not one but several of the
most recent and advanced global elevation models.
Such a fusion helps reduce local errors unique to any
single base layer, while also combining the particular
strengths of all three datasets.

• New and updated input variables. CoastalDEM v3.0
incorporates updates from most of the input variables
used in CoastalDEM v2.1, and includes new ones.
These improved inputs further help produce more
accurate elevation estimates relative to ground truth.

• Complete global coastal coverage CoastalDEM v2.1
was limited to latitudes between S56 and N60, as these
were the extents of NASA’s SRTM mission.
CoastalDEM v3.0 now instead fully extends to the
poles.

• Deeper inland coverage While CoastalDEM v2.1
corrected land elevations up to 120m, it was still
limited to coastal tiles. CoastalDEM v3.0 offers
corrections everywhere in the world up to the 120m
limit, even in tiles that are deeper inland. This more
than doubles CoastalDEM’s extent.

• Trained on updated high-quality global elevation
data. CoastalDEM v2.1 was trained using version 3 of
NASA’s ICESat-2 mission, which collects space-based
lidar data along a global lattice of transects, too sparse
for direct generation of a high-resolution DEM, but
useful for the purposes employed here. CoastalDEM
v3.0 uses the newest update to these data, currently at
version 6. Our internal comparisons to more accurate
airborne-lidar-derived elevation models in the US
suggest that this newer version of ICESat-2 offers large
improvements to vertical accuracy compared to its

predecessor. Furthermore, we made additional
improvements to ICESat-2 in areas of very high
population density to improve performance in major
global cities, discussed in the Methods section, below.

3. Results
3.1 Validation against ICESat-2
Here we use land elevation measurements from NASA’s
ICESat-2 v6, with adjustments made in extremely
high-density areas described in Methods below, as ground
truth to assess the global accuracy of global DEMs. We
include five recent products – CoastalDEM v3.0,
CoastalDEM v2.1, DiluviumDEM, FABDEM, and
COP-DEM. We disregard all ICESat-2 points flagged as
being covered by clouds or snow. Additionally, all error
values exceeding 50 m are treated as outliers and removed
from the assessment (fewer than 0.005% of points have a
discrepancy this large).

We have empirically found that DEM performance varies
by elevation. Since CoastalDEM’s intended purpose is for
coastal flood modeling on land presently above sea level and
especially in populated areas, we develop error assessments
for different elevation and population density bands and their
combinations. We consider three low-lying elevation bands:
0-2 m, which covers most current high-frequency flood risks
today, and most sea-level-rise projections through 2100;
0-5 m, which covers most low-frequency flood risks today,
plus the combination of most sea-level-rise scenarios and
flood risks this century; and 0-10 m, which covers the most
extreme flood and sea level scenarios [27, 28]). More
specifically, when assessing vertical accuracy of a DEM, we
consider only grid cells where the “true” (ICESat-2) or the
“estimated” (DEM) elevations are greater than zero and lower
than the given maximum elevation. For brevity, for the rest of
this report we only list the upper elevation bounds assessed
(<2 m, <5 m, or <10 m), with the lower bound of 0 m left
implied. We also consider three population density bands:
>10,000 people per square kilometer (high-density urban),
>1,000 people per square kilometer (urban), and any
population density. All available data points present in
ICESat-2 that meet the above requirements and given filters
are used in the following assessments.

Note that while the <2 m threshold is highly relevant
to coastal flooding vulnerability assessments, the number of
such ICESat 2 points in very high-population areas is much
lower in most countries than the number below the <5 m
threshold. Accordingly, while our globally-aggregated results
prominently present numbers at the < 2 m threshold, which
is the immediate highest-risk threshold, the figures presenting
results by country or smaller units typically avoid that band
because of the low sample size.

In general, we find that in the global aggregate, all
corrected global DEMs (both versions of CoastalDEM,
DiluviumDEM, and FABDEM) offer low bias under most
point filtering parameters, though the uncorrected Digital
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Surface Model (DSM), COPDEM, contains high vertical bias
in populated areas. That is, there is not a clear and consistent
over- or under-performer among the corrected DEMs with
this metric. Accordingly, in this report, we use RMSE and
LE90 as the main distinguishing factors.

In each of the elevation and population bands assessed,
we find CoastalDEM v3.0 offers the lowest RMSE and LE90
across all other global DEMs by a considerable margin, with
DiluviumDEM being its consistently closest competitor
(Table 1). Across all land below 2 m, regardless of population
density, CoastalDEM v3.0 contains an RMSE of 1.35 m,
29-47% lower than its corrected competitors, and an LE90 of
1.25m, 34-51% lower than the others. Similar results are seen
at the 5 m and 10 m thresholds, with DiluviumDEM never
falling below 1.78 m in RMSE or LE90, and CoastalDEM
v3.0 never exceeding 1.53 m. CoastalDEM v3.0 thus shows
the highest global accuracy when evaluated with these
criteria.

Interestingly, each of the global DEMs (including
COPDEM) see somewhat improved RMSE performance but
higher LE90 in moderately-developed areas (greater than
1,000 people per square kilometer, where roughly half of the
world’s total population lives). This may be explained by
large outliers present in ICESat-2 itself in heavily vegetated
areas [29, 30, 31], skewing RMSE results (highly sensitive to
outliers) in very low density areas when using ICESat-2 as
ground truth. Regardless, relative performance between the
global DEMs are consistent with CoastalDEM v3.0 again
offering less than <1.3 m RMSE and < 1.6m LE90 in
low-elevation areas - over 10% and 21% lower than
DiluviumDEM, respectively. In segments of coastline with
very high population density (greater than 10,000 people per
square km, where errors caused by tall buildings and dense
development are most severe), CoastalDEM’s v3.0 improved
performance is even more notable, with 1.27 m RMSE and
1.81m LE90 at the 2 m elevation threshold - 32% lower than
DiluviumDEM under both metrics.

DEMs can contain spatially-autocorrelated errors even
when they exhibit strong global performance, so it is
important to also assess bias and RMSE at smaller spatial
scales. Here we employ the GADM 2.0 dataset [32], a
collection of global administrative unit spatial boundaries.
Vertical error distributions are computed at the
smallest-available administrative units for each area (such as
state- and county-equivalents), which are then aggregated to
wider spatial scales, including across countries. We then use
these error distributions to estimate all relevant error metrics,
including the median bias, RMSE, and LE90. Detailed error
statistics by nation are presented in Supplementary Dataset
S1.

In Figures 1 and 2, we present choropleth maps of
nations’ median biases and RMSE’s under CoastalDEM v3.0,
as well as DiluviumDEM and FABDEM, using the <5 m
elevation threshold and >1000 ppsk population density
threshold. We again find that across each of these DEMs,

median biases are consistently low, with none being clearly
superior to the others under this metric. Instead, we once
more find the DEMs are more clearly differentiated by their
error scatters. CoastalDEM v3.0 offers highly consistent
RMSE’s across nearly all coastal nations, improving upon
DiluviumDEM and FABDEM each in 50 of the 53 countries
with at least 1,000 ICESat-2 points within this domain.
Additionally, CoastalDEM v3.0’s LE90 outperforms the other
DEMs in 52 of these 53 nations (Egypt representing the
single exception).

Figure 3 provides further evidence of consistent
performance across small spatial scales. Here we assess error
across smaller (“level 1”) administrative units, roughly
equivalent to US counties. We applied the same domain
filtering as the preceding figures (>1,000 people per square
kilometer, <5 m elevation). This figure presents median bias
and RMSE density plots based on all qualifying small regions
with at least 100 such points (roughly 1,000 administrative
units in count). Results for each of the global DEMs are
represented by the colored curves, with steeper curves closer
to 0 m corresponding to more consistent and accurate results.
Again we find CoastalDEM v3.0 outperforms each of the
competing DEMs, especially in terms of RMSE.

Elevation profiles in select cities comparing ICESat-2 (or
NOAA Coastal Lidar, where available in the US),
CoastalDEM v3.0, DiluviumDEM, and FABDEM are
presented in Figures 4 and 5. We can see more clearly here
that ICESat-2, even after applying the improvements as
previously described, is still an imperfect truth set - there are
substantial noise and “spikes” in these measurements that can
exceed multiple meters. Regardless, we see that CoastalDEM
v3.0 generally appears to generate a smoother and more
well-fitting curve that the other DEMs. In Houston and
Charleston, where NOAA Coastal Lidar is available,
CoastalDEM v3.0 and DiluviumDEM produce more or less
matching curves. Severe noise becomes clearly visible within
DiluviumDEM and FABDEM in global cities, especially
Amsterdam, Dhaka, Jakarta, and Shanghai.

We also explore a qualitative assessment of the DEM
rasters themselves in Figure 6. While we do not have a lidar-
derived DEM to directly assess accuracy in these locations,
patterns and clear artifacts are visible within these rasters.
For instance, we see that DiluviumDEM appears to contain
very high-frequency noise, likely a direct result of using a
decision tree as the computational model. FABDEM uses a
random forest instead and so appears more robust to such high
frequency random errors, but lacks sharp features and appears
to contain distinct regions of land that are anomalously too
high (i.e., low-frequency spatially autocorrelated noise), a
reflection of what we have already seen in the elevation beam
profiles in Figures 4 and 5. Meanwhile, with CoastalDEM
v3.0 employing a powerful convolutional neural network and
utilizing multiple input base DEMs, the resultant rasters are
overall smooth, contain minimal high- or low-frequency noise,
and are even able to clearly resolve fine details such as some
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streets.
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Table 1. Global error statistics across each DEM, three elevation thresholds (2 m, 5 m, and 10 m), and three population density
bands (any density (Any), more than 1,000 people per km2 (>1K), and more than 10,000 people per km2 (>10K)). ICESat-2 is
used as ground truth. For each row, only pixels are included whose elevation falls below the elevation threshold (according to
ground truth or the DEM), and whose population density falls within the given band. Rows presenting CoastalDEM v3.0
statistics are in bold. All units are in meters except for population density, which is people per km2.

DEM Max Elev Pop Density Mean Bias Median Bias RMSE LE90
CoastalDEM v3.0 2 Any 0.15 0.07 1.35 1.25
CoastalDEM v2.1 2 Any 0.21 0.16 1.91 2.62

DiluviumDEM 2 Any 0.33 0.07 2.26 1.89
FABDEM 2 Any 0.65 0.08 2.61 2.53
COPDEM 2 Any 1.10 0.09 4.58 4.81

CoastalDEM v3.0 5 Any -0.02 -0.03 1.34 1.26
CoastalDEM v2.1 5 Any -0.04 -0.01 2.01 2.77

DiluviumDEM 5 Any 0.27 0.07 1.88 1.80
FABDEM 5 Any 0.50 0.05 2.22 2.17
COPDEM 5 Any 1.05 0.09 3.90 3.99

CoastalDEM v3.0 10 Any -0.13 -0.10 1.53 1.34
CoastalDEM v2.1 10 Any -0.22 -0.12 2.20 3.03

DiluviumDEM 10 Any 0.25 0.09 1.78 1.84
FABDEM 10 Any 0.41 0.04 2.06 2.02
COPDEM 10 Any 0.99 0.09 3.61 3.64

CoastalDEM v3.0 2 >1K 0.26 0.23 1.25 1.54
CoastalDEM v2.1 2 >1K 0.30 0.32 1.88 2.83

DiluviumDEM 2 >1K 0.23 0.12 1.42 1.97
FABDEM 2 >1K 0.52 0.26 1.73 2.29
COPDEM 2 >1K 1.57 0.86 3.00 4.52

CoastalDEM v3.0 5 >1K -0.07 -0.02 1.25 1.49
CoastalDEM v2.1 5 >1K 0.00 0.08 1.89 2.75

DiluviumDEM 5 >1K 0.13 0.05 1.41 1.89
FABDEM 5 >1K 0.36 0.17 1.60 2.12
COPDEM 5 >1K 1.60 0.88 3.01 4.71

CoastalDEM v3.0 10 >1K -0.18 -0.08 1.36 1.62
CoastalDEM v2.1 10 >1K -0.27 -0.13 2.16 3.07

DiluviumDEM 10 >1K 0.11 0.04 1.50 2.00
FABDEM 10 >1K 0.34 0.16 1.67 2.20
COPDEM 10 >1K 1.64 0.90 3.09 4.83

CoastalDEM v3.0 2 >10K 0.38 0.40 1.27 1.81
CoastalDEM v2.1 2 >10K 0.93 1.09 2.33 3.44

DiluviumDEM 2 >10K 0.11 0.15 1.85 2.73
FABDEM 2 >10K 0.55 0.29 2.06 2.85
COPDEM 2 >10K 3.02 2.35 4.43 6.95

CoastalDEM v3.0 5 >10K -0.21 -0.07 1.51 1.84
CoastalDEM v2.1 5 >10K 0.46 0.67 2.37 3.20

DiluviumDEM 5 >10K 0.23 0.16 1.98 2.71
FABDEM 5 >10K 0.56 0.31 2.14 2.79
COPDEM 5 >10K 3.10 2.39 4.56 7.08

CoastalDEM v3.0 10 >10K -0.42 -0.18 1.93 2.29
CoastalDEM v2.1 10 >10K -0.11 0.17 2.84 3.86

DiluviumDEM 10 >10K 0.15 0.12 2.24 3.15
FABDEM 10 >10K 0.54 0.30 2.37 3.26
COPDEM 10 >10K 3.21 2.44 4.78 7.52
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Figure 1. Choropleths presenting median bias under CoastalDEM v3.0, DiluviumDEM, and FABDEM in low-elevation
regions across coastal nations, using ICESat-2 as ground truth. Only grid cells with elevation <5 m and population density
>1000 people per km2 are considered, and only nations with n ≥ 1000 of these grid cells are evaluated.
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Figure 2. Choropleths presenting RMSE under CoastalDEM v3.0, DiluviumDEM, and FABDEMin low-elevation regions
across coastal nations, using ICESat-2 as ground truth. Only grid cells with elevation <5 m and population density >1000
people per km2 are considered, and only nations with n ≥ 1000 of these grid cells are evaluated.
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Figure 3. Density plots of median bias (left) and RMSE (right) for each of the global DEMs across level-1 administrative units
(GADM 2.0), using ICESat-2 as ground truth. CoastalDEM v3.0 is highlighted in blue. Only grid cells whose elevations are
lower than 5 m and contain >1000 people per square km are considered. Taller, sharper peaks closer to zero on on the x-axis
represent higher, more consistent global accuracy.
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Figure 4. Elevation profiles under CoastalDEM v3.0, DeluviumDEM, and FABDEM in Amsterdam, Charleston, and Dhaka
along an ICESat-2 beam path. For each city, the left panel presents estimated elevation along the path according to each dataset,
with ground truth (NOAA lidar in the US, and ICESat-2 elsewhere) and CoastalDEM v2.1 highlighted in black and red,
respectively. The right panel shows a map view where the path lies on the city in red, with water bodies highlighted in purple.
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Figure 5. Elevation profiles under CoastalDEM v3.0, DeluviumDEM, and FABDEM in Houston, Jakarta, and Shanghai along
an ICESat-2 beam path. For each city, the left panel presents estimated elevation along the path according to each dataset, with
ground truth (NOAA lidar in the US, and ICESat-2 elsewhere) and CoastalDEM v2.1 highlighted in black and red, respectively.
The right panel shows a map view where the path lies on the city in red, with water bodies highlighted in purple.
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Figure 6. Maps of select international cities presenting zoomed image samples of the different global DEMs (CoastalDEM
v3.0, CoastalDEM v2.1, DiluviumDEM, and FABDEM). Black areas represent existing water bodies. Note the color scale
starts at a negative value to reflect the full distribution of elevation measurements across the DEMs.
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3.2 Validation against airborne lidar-derived DEMs
While ICESat-2 v6 is the best elevation data source with
global coverage presently available, the fact that we train the
CNN using it as ground truth means we risk misstating
accuracy if ICESat-2 is our only validation. For instance,
systematic errors present in ICESat-2 measurements could
potentially have been learned by the neural network and
propagated across the output dataset. Further, while we use
all available and applicable ICESat 2 measurements to assess
the DEMs, a small fraction (under 20%) of them was also
used to train the CNN model, potentially skewing the results.
To resolve these concerns, we additionally use two
high-accuracy elevation DEMs derived from airborne lidar as
ground truth in separate error assessments.

As previously discussed, in the United States, NOAA
makes publicly available high-quality DEMs across the entire
US coastline, which are classified to bare earth elevation, with
vertical errors <20 cm RMSE [33]. These data are released
at about 5 m horizontal resolution, which we downsample to
1 arc-second (about 30 m) using median filtering. Meanwhile,
in Australia, Geospace Australia [3] collected and publicly
released bare-earth lidar-derived elevation data along much
of their coastlines. These data offer <16 cm vertical RMSE
[34] at roughly 25 m horizontal resolution, which we also
downsample to 1-arcsecond to match CoastalDEM v3.0.

National results for both the US and Australia are
presented in Table 2. We focus on grid cells with population
densities exceeding 1,000 per square kilometer. In general we
see that CoastalDEM v3.0 performs consistently well when
assessed against these lidar-derived models. In the US,
CoastalDEM v3.0 shows a large improvement when
compared to CoastalDEM v2.1, FABDEM, and COPDEM,
with RMSE/LE95 at 1.15 m/1.25 m at the 5 m elevation
threshold, and 1.36 m/1.44 m at the 2 m threshold. These
numbers are also lower than DiluviumDEM by 5-20cm,
though CoastalDEM v3.0 contains a somewhat elevated bias
here at the 2 m threshold at about 20 cm. That said,
DiluviumDEM was specifically trained using this same
lidar-derived elevation data in the US, so its strong
performance here is to be expected. That CoastalDEM v3.0 is
at parity with DiluviumDEM in the US, even though it was
trained with noisier global data, is notable and is promising
evidence that CoastalDEM is not overfitting on the ICESat-2
data.

Similar results are seen when comparing against the
Australian lidar-derived data, though we caution that the
domain size is considerably smaller here, given the
substantially smaller high-density and low-elevation area.
Again we see CoastalDEM v3.0 and DiluviumDEM are the
two best performers, with CoastalDEM v3.0 offering lower
LE90 by 20-40 cm across all elevation bands, though with
worse RMSE below the 2 m elevation threshold, and roughly
equivalent RMSE at the other thresholds.

Directly comparing these results in Table 2 against those
presented in Supplementary Dataset 1 (the country-level

vertical assessment using ICESat-2 as ground truth), we find
overall good agreement with the same conclusions reached.
In the US across each of the DEMs, the lidar-derived
validations tend to reveal lower bias though higher RMSE
than the ICESat-based analysis. Both tables show
CoastalDEM v3.0 contains a positive bias roughly 10-20 cm
higher than DiluviumDEM depending on elevation threshold.
However, both also show that CoastalDEM offers a slightly
(1-15%) lower RMSE and LE90 than DiliviumDEM. Across
the board, deviations between ICESat-2 and lidar-derived
error assessments do not exceed 30 cm, and in most cases do
not exceed 20 cm.

In Australia, the deviations between the ICESat-2 and
lidar-based validations are more pronounced but again
present the same conclusions. There are not enough ICESat-2
points within the <2 elevation threshold for a valid
comparison, but below 5 m and 10 m, ICESat-derived
RMSE’s for CoastalDEM and DiluviumDEM are about
13-25 cm higher than the lidar-derived values, and
ICESat-derived LE90’s are 26-55 cm higher. Regardless, the
conclusions drawn in Australia are alone are essentially the
same whether using ICESat or lidar: RMSE’s for both
CoastalDEM and DiluviumDEM are very close, while
CoastalDEM offers a consistently though moderately
improved LE90.

Figure 7 presents error maps in select cities in the US and
Australia. Colors represent the difference between elevation
according to the designated global DEM and the
corresponding lidar-derived DEM. We can see how
CoastalDEM v3.0 performs strongly relative to the other
DEMs overall, with it clearly outperforming CoastalDEM
v2.1 and FABDEM. In the US locations, we see that the
results are excellent, and overall very similar to
DiluviumDEM. In Brisbane, the differences between
CoastalDEM v3.0 and DiluviumDEM show a clearer
difference, with CoastalDEM offering lower errors in the
great majority of the city, but a distinct sharp positive error
region directly adjacent to the river’s border. This may be an
explanation for CoastalDEM’s elevated Australian RMSE in
the <2 m domain previously seen in Table 2.

Finally, US state-level choropleths of median bias and
RMSE for each global DEM can be found in Figures 8 and 9.
Again considering points below 5 m and with >1,000 people
per square kilometer, we find that CoastalDEM v3.0 offers
consistent performance across smaller administrative areas.

These error statistics derived from DEMs based on
airborne lidar are overall similar to the global results using
data based on ICESat-2 satellite lidar. The airborne lidar
ground-truth values were not used in computing CoastalDEM
v3.0. The consistency in error assessment across testing
approaches mitigates concerns about potential overfitting of
our neural network model, and suggests that we can
reasonably accept that results based from our computed
global error statistics should hold.
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Table 2. Error statistics in the USA and Australia across each DEM and three elevation thresholds (2 m, 5 m, and 20 m).
Airborne lidar-derived elevation data are used as ground truth. For each row, only pixels are included whose elevation falls
below the elevation threshold (according to ground truth or the DEM), and whose population density exceeds 1K per square
kilometer. Rows presenting CoastalDEM v3.0 statistics are in bold. All units are in meters

Nation DEM Max Elev Mean Median RMSE LE90
USA CoastalDEM v3.0 2 0.18 0.23 1.36 1.44
USA CoastalDEM v2.1 2 0.23 0.36 1.98 2.72
USA DiluviumDEM 2 0.03 0.02 1.38 1.59
USA FABDEM 2 0.61 0.46 1.93 2.41
USA COPDEM 2 2.14 1.59 3.55 5.06
USA CoastalDEM v3.0 5 0.04 0.10 1.15 1.25
USA CoastalDEM v2.1 5 -0.14 -0.07 1.93 2.83
USA DiluviumDEM 5 0.00 0.00 1.20 1.48
USA FABDEM 5 0.66 0.49 1.69 2.29
USA COPDEM 5 2.32 1.72 3.61 5.25
USA CoastalDEM v3.0 10 -0.02 0.04 1.15 1.32
USA CoastalDEM v2.1 10 -0.29 -0.21 2.11 3.09
USA DiluviumDEM 10 -0.01 -0.02 1.20 1.55
USA FABDEM 10 0.69 0.52 1.70 2.31
USA COPDEM 10 2.45 1.79 3.77 5.51

Australia CoastalDEM v3.0 2 0.08 0.38 2.16 1.87
Australia CoastalDEM v2.1 2 -0.12 0.44 3.05 4.08
Australia DiluviumDEM 2 -0.34 -0.38 1.75 2.27
Australia FABDEM 2 0.72 0.40 1.88 2.45
Australia COPDEM 2 1.85 1.29 3.28 4.85
Australia CoastalDEM v3.0 5 0.10 0.20 1.50 1.57
Australia CoastalDEM v2.1 5 -0.28 0.06 2.49 3.64
Australia DiluviumDEM 5 -0.08 -0.18 1.43 1.81
Australia FABDEM 5 0.59 0.33 1.51 2.04
Australia COPDEM 5 1.79 1.30 2.86 4.09
Australia CoastalDEM v3.0 10 0.00 0.11 1.52 1.69
Australia CoastalDEM v2.1 10 -0.78 -0.38 3.01 4.55
Australia DiluviumDEM 10 -0.06 -0.16 1.55 1.97
Australia FABDEM 10 0.52 0.26 1.57 2.07
Australia COPDEM 10 1.81 1.31 2.92 4.08
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Figure 7. Maps of select US and Australian cities presenting the difference between global DEMs (CoastalDEM v3.0,
CoastalDEM v2.1, DiluviumDEM, and FABDEM) and a lidar-derived DEM. Black areas represent existing water bodies, and
gray areas represent pixels whose elevation exceeds 20m.
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Figure 8. Choropleths presenting median bias under CoastalDEM v3.0, DiluviumDEM, and FABDEM in low-elevation
regions across US states, using elevation data from NOAA’s coastal lidar as ground truth. Only pixels whose elevations are
lower than 5 m are considered. Only areas with population densities above 1,000 people per square kilometer are included.
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Figure 9. Choropleths presenting median RMSE under CoastalDEM v3.0, DiluviumDEM, and FABDEM in low-elevation
regions across US states, using elevation data from NOAA’s coastal lidar as ground truth. Only pixels whose elevations are
lower than 5 m are considered. Only areas with population densities above 1,000 people per square kilometer are included.



CoastalDEM v3.0: Improving fully global coastal elevation predictions through a convolutional neural network and
multi-source DEM fusion — 17/30

4. Discussion
Climate Central has invested and will continue to invest
significant resources and energy into improving CoastalDEM.
As more and improved additional data sets become available,
we intend to add them in improving the neural network.

At the same time, we acknowledge that neither
CoastalDEM nor any global product is likely to ever
outperform DEMs based on high-quality airborne lidar
elevation data. Probably the main reason that airborne lidar
data have not been collected over most areas, and DEMs have
not been generated, is the high cost. Coastal jurisdictions able
to develop lidar-based DEMs will improve their sea level rise
and coastal flooding risk assessments, and we strongly
encourage this development.

We also acknowledge that the original DEM data from
which CoastalDEM is derived was collected before year 2015.
The surface of the earth is changing with time, especially in
areas prone to subsidence due to high rates of groundwater
or fossil fuel extraction, or river-delta-sediment compaction.
In addition, artificial earth works have the potential to alter
the coastal risk profiles represented by all currently-available
global DEMs. This temporal quality calls for more up-to-date
and regular refreshes of coastal DEMs with airborne lidar and
new remote sensing capabilities that may become available.

5. Conclusion
CoastalDEM was developed to provide an improved, widely
available, near-global digital elevation model for the primary
purpose of evaluating coastal flood risk considering storms
and sea level rise. With this use case in mind, elevations below
5 m are of particular interest as they span the range of most
tides, storms, and projected sea-level-rise scenarios through
the year 2100.

In addition, coastal areas with high population density are
both areas where accurate vulnerability assessments are
especially important and areas where the urbanized, built
environment has challenged remote sensing technologies
intended to measure ground elevations, resulting in material
vertical bias that negatively impacts coastal flood risk
assessments.

Performance data indicate error scatter is consistently and
substantially reduced with CoastalDEM v3.0. CoastalDEM
v3.0 is particularly strong in the elevation range below 2 m and
5 m where coastal flood risk is acute and in densely populated
regions where buildings and the built environment adversely
affect other global DEMs. Near-zero bias and low noise and
error scatter means smaller elevation errors propagating into
coastal flood analysis so critical to understanding the threat
posed by sea level rise.

6. Availability
CoastalDEM v3.0, referenced to EGM96 or EGM2008, is
available at 30 m and 90-m horizontal resolution by license
from Climate Central via https:

//go.climatecentral.org/coastaldem/.
No-cost, non-commercial licenses at 90 m horizontal
resolution are available to qualified academic and research
organizations. Rasterized ICESat-2 data processed to reduce
the effects of buildings in high-density areas are also
available upon request. With no-cost licenses available and
superior RMSE’s, CoastalDEM v3.0 is the lowest-error
global DEM available for sea level rise and coastal flood risk
research and assessments.

https://go.climatecentral.org/coastaldem/
https://go.climatecentral.org/coastaldem/
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7. Methods
7.1 ICESat-2 v6
NASA distributes ICESat-2 v6 measurements as a large collection of HDF5 files. Here, we download the entirety of the L3A
Land and Vegetation Height Version 6 (ATL08) dataset [35], which contains a number of elevation metrics at points 12 m apart
along six beam tracks. For each point, we extract the fields h_te_best_ f it, latitude, longitude, and layer_ f lag. The variable
h_te_best_ f it refers to the best fit height returned by photons at the midpoint within the point’s footprint, and layer_ f lag is a
binary variable that is 1 if the point is likely covered by snow or clouds (points flagged as such are removed). All points in the
entire ICESat-2 dataset meeting the given requirements and filters described in this report were used in the assessments.

7.2 Building Removal
For each segment in the ATL08 data set, we first classify each segment on whether their midpoints are on land using COPDEM’s
water body mask, as well as whether their midpoints are on a building using data from the 2019 World Settlement Footprint
dataset [36]. Here, we skip any segments that do not cover a building, or whose population density is below 10,000 people per
square kilometer, and leave them unaltered in the final product.

If a segment in a population-dense area does contain a building, then its terrain height measurements are unreliable. For
such cases, we propose a straightforward operation to improve its accuracy. Given a segment s, we construct an adjusted
elevation function, E∗:

E∗(s,n, i) = percentile(E(neighbors(s,n)), i), (1)

where E(neighbors(s,n)) is the set of the n closest neighboring measurements to s (including s itself) along its track,
and i is the desired percentile of that set of measurements. For instance, if n = 7, and i = 50, E∗(s,7,50) represents the 50th
percentile of the terrain height measurements of s and the three segments on both of its sides. We use linear interpolation to
estimate intermediate percentiles. In effect, this approach represents a “sliding percentile” function along a given beam track.
Note that this function is calculable where a point’s nearest 6 neighbors are valid (i.e., not flagged nor removed).

We then must determine an optimal value of n and i that minimizes adjusted elevation error. We have found that in cases
where buildings are fairly sparse, simply using the 7-point median (n = 7, i = 50) performs well. However, in dense urban
environments, it is often the case that more than half of the 7 points cover buildings, making even this median value biased too
high. In these situations, we have empirically found that setting i = 45 produces more accurate results. In both cases, we tuned
these parameters based on accuracy assessments within the US, detailed below.

In summary, terrain height measurements for any given segment at locations whose population density exceed 10,000 per
square kilometer are set to:

E( f inal)(s) =


E(s), if s does not contain a building or any of its 6 neighboring points are invalid
E∗(s,7,50), if s and fewer than half of its neighbors contain a building
E∗(s,7,45), if s and at least half of its neighbors contain a building

Results of these adjustments compared to US and Australia lidar are presented in Table 3. Since the land area exceeding
10,000 ppsk is small compared to other coastal areas (generally less than 2% of all populated land), the overall error statistics
for land >0 or >1000 ppsk do not meaningfully change. However, there is a clear and important difference in extremely high
density but low elevation areas, cutting vertical bias by at least 75% and reducing RMSE by 10-23%.
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Location ICESat Max Min Pop Num Original Adjusted Linear Bias Original Adjusted RMSE
Metric Elev Dens (ppsk) Pts Bias Bias Change RMSE RMSE % Change

USA best_fit 5m >0 51774 0.03 0.02 -0.01 1.51 1.49 -1%
USA best_fit 5m >1000 25936 -0.05 -0.07 0.02 1.55 1.52 -2%
USA best_fit 5m >10000 691 0.40 0.10 -0.30 2.34 1.81 -23%
USA best_fit 20m >0 120697 0.11 0.11 0.00 1.44 1.43 -1%
USA best_fit 20m >1000 61212 0.04 0.03 -0.01 1.36 1.35 -1%
USA best_fit 20m >10000 2367 0.50 0.41 -0.09 2.27 2.12 -7%
Australia best_fit 5m >0 4705 0.22 0.21 -0.01 2.18 2.18 0%
Australia best_fit 5m >1000 2468 0.11 0.10 -0.01 2.08 2.08 0%
Australia best_fit 5m >10000 9 1.30 0.21 -1.09 2.30 2.08 -10%
Australia best_fit 20m >0 17786 0.36 0.36 0.00 1.84 1.84 0%
Australia best_fit 20m >1000 10790 0.24 0.24 0.00 1.65 1.64 -1%
Australia best_fit 20m >10000 70 2.02 1.88 -0.14 4.81 4.79 0%

Table 3. ICESat 2 terrain height vertical error before and after adjustment, assessed by population density. Negative change
values represent improvement in the adjusted terrain height data.
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7.3 CoastalDEM v3.0
Like CoastalDEM v2.1, CoastalDEM v3.0 uses a large convolutional neural network architecture [37] to predict errors present
in other global DEM(s), using a number of global datasets as inputs. CNNs are specifically designed for and are widely used in
tasks involving imagery, making them a good fit for the raster datasets used here. These inputs include elevation, population
density, and vegetation density and height metrics. In total, CoastalDEM v3.0 ingests 10 independent input datasets to feed the
model, compared to CoastalDEM v2.1’s seven datasets.

Both CoastalDEM v3.0 and v2.1 were trained on global ICESat-2 elevation models, though ICESat-2 has been upgraded
from v3 to v6, which from our assessments offers considerably better accuracy. The building removal adjustments described
above further enhance this truth set to optimize CoastalDEM v3’s final performance.
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DeltaDTM Validation and Comparison
(March 2024 Addendum)

Recently, a new global digital elevation model, DeltaDTM, was published and made available for download [1]. Instead of
using a machine learning or regression approach to correcting the base elevation model, DeltaDTM elects for a heuristic
approach. Specifically, DeltaDTM first uses ICESat-2 to assess and remove spatially autocorrelated bias contained within
COPDEM. This is followed by a filtering step to remove non-terrain pixels within COPDEM, replacing them with elevation
measurements from the ICESat-2 and GEDI missions where available, and filling remaining voids with interpolated values.
Results were assessed against a handful of lidar-derived DEM samples across the world, with apparently high accuracy.

There are important limitations with this approach. Most importantly, the validations are limited in scope, failing to
provide a comprehensive representation of diverse land topography, urban architecture, vegetation, and other relevant factors.
Additionally, as previously seen in Table 3, Icesat-2 itself contains significant noise, especially in populated areas, and so
directly interpolating these values risks propagating these errors. Finally, errors in the land cover filtering step may cause
under-correction in developed areas misclassified as open land.

In Table A1, we assess DeltaDTM against ICESat-2 and compare it to each of the other DEMs. Here we do see that
DeltaDTM’s vertical bias is apparently quite low - a consequence of the spatial autocorrelation step summarized above.
Essentially, DeltaDTM aligns closely with ICESat-2 data at the sparse locations where both datasets coincide. These sparse
locations correspond to the same data points used as ground truth in Table A1. At these specific points, DeltaDTM derives
almost directly from ICESat-2, without the need for interpolation. However, we find that DeltaDTM RMSE’s are generally
higher than DiluviumDEM, much less CoastalDEM v3.0. Since DeltaDTM directly interpolates between ICESat-2 points, this
performance is surprising, but could be explained by some amount of mis-classification of terrain pixels, which would leave
lower-quality COPDEM measurements in place in developed areas. Deeper investigation would be required to confirm the
reason for these unexpected errors, which is outside the scope of this report.

In Figures A1 and A2 we assess and compare bias and RMSE by country. Again we find minimal median vertical bias
across most locations, yet RMSE exhibits high variability between nations. This latter image echoes Figure 11 of [1], an
assessment of DeltaDTM error using ICESat-2 points that were unused when generating the model. This figure also suggested
the prevalence of uneven, multi-meter errors across the world.

We also repeat the comprehensive error assessments using lidar-derived elevation data in the US and Australia. While
[1] only validated in small regions in these countries (Florida, USA and Darwin, Australia), here our evaluations utilize the
complete lidar DEMs available across both nations. Table A2 presents the results of these assessments in locations with high
population density (>1000 per sq km). In both countries, we find that DeltaDTM performs worse than what was suggested from
the global ICESat-2 validation. In the US, we find that while DeltaDTM’s vertical bias is again minimal, RMSE is measured
at 1.83-2.36m, significantly higher than CoastalDEM v3.0. DeltaDTM appears to struggle more in Australia, where bias can
exceed +/- 50cm depending on the elevation threshold, and RMSE is even higher than COPDEM at the 5 m and 10 m thresholds,
much less CoastalDEM v3.0.

Figures A3 and A4 present choropleths of bias and RMSE by US state below the 5 m threshold in high population density
areas. DeltaDTM exhibits an acceptable vertical bias overall, but it lacks a meaningful improvement in consistency across
states compared to other DEMs. However, the RMSE choropleths again reveal DeltaDTM’s most important weakness. We see
that while DeltaDTM performs well in the largest Gulf states (Florida, Texas, and Louisiana), its accuracy rapidly declines in
more northern Atlantic and Pacific states. This image is also highly consistent with Figure 11 of [1], which also shows large
errors in those same states.

Finally, in Figure A5, we render error maps in select cities in the US and Australia. While it’s again clear that DeltaDTM
performs well in Miami, Florida, it’s also apparent how it struggles in other cities. Brisbane is the best of the remaining
three, though a close inspection reveals noticeable regions of negative error not present in CoastalDEM v3.0. In Norfolk and
Charleston, however, significant noise and many areas of land containing large error are plainly visible.

It’s important to note that DeltaDTM’s settings, parameters, and overall approach were specifically tailored to minimize
errors within the limited test zones listed in Table 5 of [1], which within the US only included the state of Florida, and within
Australia the area surrounding Darwin. However, Figures A4 and A5 suggest that the model overfits within those test zones and
fails to provide consistent results elsewhere. This again underscores the importance of comprehensively validating global DEMs
across extensive areas where lidar-derived elevation data is available, and not confining such assessments to a limited selection
of small land patches. Global DEMs often contain errors exhibiting strong spatial autocorrelation, which can significantly
impact their total accuracy, and so relying solely on highly localized vertical error assessments may inadvertently distort the
true global performance of these models.
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Table A1. Global error statistics across each DEM, three elevation thresholds (2 m, 5 m, and 10 m), and three population
density bands (any density (Any), more than 1,000 people per km2 (>1K), and more than 10,000 people per km2 (>10K)).
ICESat-2 is used as ground truth. For each row, only pixels are included whose elevation falls below the elevation threshold
(according to ground truth or the DEM), and whose population density falls within the given band. Rows presenting
CoastalDEM v3.0 statistics are in bold. All units are in meters except for population density, which is people per km2.

DEM Max Elev Pop Density Mean Bias Median Bias RMSE LE90
CoastalDEM v3.0 2 Any 0.15 0.07 1.35 1.25

DeltaDTM 2 Any -0.01 -0.04 2.87 1.29
CoastalDEM v3.0 5 Any -0.02 -0.03 1.34 1.26

DeltaDTM 5 Any 0.01 -0.04 2.16 1.22
CoastalDEM v3.0 10 Any -0.13 -0.10 1.53 1.34

DeltaDTM 10 Any 0.02 -0.04 2.05 1.28
CoastalDEM v3.0 2 >1K 0.26 0.23 1.25 1.54

DeltaDTM 2 >1K 0.16 0.04 1.58 1.81
CoastalDEM v3.0 5 >1K -0.07 -0.02 1.25 1.48

DeltaDTM 5 >1K -0.01 -0.01 1.54 1.68
CoastalDEM v3.0 10 >1K -0.18 -0.08 1.36 1.62

DeltaDTM 10 >1K -0.05 -0.02 1.87 1.92
CoastalDEM v3.0 2 >10K 0.38 0.40 1.27 1.81

DeltaDTM 2 >10K -0.07 -0.15 1.90 2.24
CoastalDEM v3.0 5 >10K -0.21 -0.07 1.51 1.84

DeltaDTM 5 >10K -0.16 -0.12 2.08 2.22
CoastalDEM v3.0 10 >10K -0.42 -0.18 1.93 2.29

DeltaDTM 10 >10K -0.26 -0.12 2.86 3.32



CoastalDEM v3.0: Improving fully global coastal elevation predictions through a convolutional neural network and
multi-source DEM fusion — 25/30

Figure A1. Choropleths presenting median bias under CoastalDEM v3.0 and DeltaDTM in low-elevation regions across coastal
nations, using ICESat-2 as ground truth. Only grid cells with elevation <5 m and population density >1000 people per km2 are
considered, and only nations with n ≥ 1000 of these grid cells are evaluated.
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Figure A2. Choropleths presenting RMSE under CoastalDEM v3.0 and DeltaDTM in low-elevation regions across coastal
nations, using ICESat-2 as ground truth. Only grid cells with elevation <5 m and population density >1000 people per km2 are
considered, and only nations with n ≥ 1000 of these grid cells are evaluated.
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Table A2. Error statistics in the USA and Australia across each DEM and three elevation thresholds (2 m, 5 m, and 20 m).
Airborne lidar-derived elevation data are used as ground truth. For each row, only pixels are included whose elevation falls
below the elevation threshold (according to ground truth or the DEM), and whose population density exceeds 1K per square
kilometer. Rows presenting CoastalDEM v3.0 statistics are in bold. All units are in meters

Nation DEM Max Elev Mean Median RMSE LE90
USA CoastalDEM v3.0 2 0.18 0.23 1.36 1.44
USA DeltaDTM 2 -0.02 0.02 1.83 1.93
USA CoastalDEM v3.0 5 0.04 0.10 1.15 1.26
USA DeltaDTM 5 -0.06 0.03 1.83 1.77
USA CoastalDEM v3.0 10 -0.03 0.04 1.15 1.32
USA DeltaDTM 10 -0.04 0.02 2.36 2.10

Australia CoastalDEM v3.0 2 0.08 0.38 2.15 1.87
Australia DeltaDTM 2 0.56 0.42 2.58 2.90
Australia CoastalDEM v3.0 5 0.10 0.20 1.50 1.57
Australia DeltaDTM 5 -0.07 0.18 2.98 3.19
Australia CoastalDEM v3.0 10 0.00 0.11 1.52 1.70
Australia DeltaDTM 10 -0.58 0.08 4.06 4.87
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Figure A3. Choropleths presenting median bias under CoastalDEM v3.0 and DeltaDTM in low-elevation regions across US
states, using elevation data from NOAA’s coastal lidar as ground truth. Only pixels whose elevations are lower than 5 m are
considered. Only areas with population densities above 1,000 people per square kilometer are included.



CoastalDEM v3.0: Improving fully global coastal elevation predictions through a convolutional neural network and
multi-source DEM fusion — 29/30

Figure A4. Choropleths presenting median RMSE under CoastalDEM v3.0 and DeltaDTM in low-elevation regions across US
states, using elevation data from NOAA’s coastal lidar as ground truth. Only pixels whose elevations are lower than 5 m are
considered. Only areas with population densities above 1,000 people per square kilometer are included.
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Figure A5. Maps of select US and Australian cities presenting the difference between global DEMs (CoastalDEM v3.0,
CoastalDEM v2.1, DeltaDTM, DiluviumDEM, and FABDEM) and a lidar-derived DEM. Black areas represent existing water
bodies, and gray areas represent pixels whose elevation exceeds 20m.
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