SOME ALMOST PARTITION THEORETIC IDENTITIES

GEOFFREY B CAMPBELL AND ALEKSANDER ZUJEV

ABSTRACT. We give some new q series identities that resemble the traditional q series partition generating functions.

1. INTRODUCTION

The literature on q series goes way back to the nineteenth century, starting with Heine [4] and [5], in 1847 and 1878. This generalized the classical hypergeometric series work introduced by in 1813 by Gauss [3]. We give some new identities that are similar to traditional q series.

Euler transform of an integer sequence $\{a_k\}$ is given by [6]

(1.1)
$$\sum_{k=0}^{\infty} b_k q^k = \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{a_k}}, \quad b_0 = 1.$$

We are considering constant sequence $\{a_k\} = \{1/n\}$, for which Euler transform is

(1.2)
$$\sum_{k=0}^{\infty} b_k q^k = \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{1/n}}.$$

We give identities for q series

(1.3)
$$\sum_{k=0}^{\infty} g_k q^k = \prod_{k=1}^{\infty} \frac{1}{(1 - (nq)^k)^{1/n}}$$

and connection of them to Euler transform (1.2).

Our first identity is related to Euler transform of $\{1/2\}$

$$(1.4) \sum_{k=1}^{\infty} b_k q^k = \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{1/2}} = 1 + \frac{1}{2}q + \frac{7}{8}q^2 + \frac{17}{16}q^3 + \frac{203}{128}q^4 + \frac{455}{256}q^5 + \frac{2723}{1024}q^6 + \dots$$

The identity is given by

Theorem 1.1.

$$(1.5) \quad \prod_{k=1}^{\infty} \sqrt{\frac{1}{1 - (2q)^k}} = \sum_{k=0}^{\infty} g_k q^k = 1 + q + \frac{7}{2}q^2 + \frac{17}{2}q^3 + \frac{203}{8}q^4 + \frac{455}{8}q^5 + \frac{2723}{16}q^6 + \dots,$$

where the numerators of g_k 1, 1, 7, 17, 203, 455, 2723, ... are identical to numerators of b_k of Euler transform of $\{1/2\}$ (1.4), and the denominators of g_k are the greatest power of 2 in k!.

First we'll prove

Lemma 1.1. The greatest power of prime p in k(k+1)...(pk) is k.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11M41; Secondary: 33D15, 30B50.

Key words and phrases. Dirichlet series and zeta functions, Basic hypergeometric functions in one variable, Dirichlet series and other series expansions, exponential series.

PROOF. The greatest power of prime p in k(k + 1)...(pk) is (1.6)

$$\sum_{i=1}^{\infty} \left(\left[\frac{pk}{p^i} \right] - \left[\frac{k}{p^i} \right] \right) = \left[\frac{pk}{p} \right] - \left[\frac{k}{p} \right] + \left[\frac{k}{p} \right] - \left[\frac{k}{p^2} \right] + \left[\frac{k}{p^2} \right] - \left[\frac{k}{p^3} \right] + \dots = \left[\frac{pk}{p} \right] = k.$$

END OF PROOF.

PROOF of the theorem (1.1). The q series (1.5) differ from the Euler transform (1.4) by having (2q) instead of q, so $g_k q^k = b_k (2q)^k$, and hence $g_k = 2^k b_k$. Denominators of b_k are 2^{d_k} , where $2^{d_k} =$ power of 2 in (2k)! [7]. According to the lemma (1.1, $2^k =$ the greatest power of 2 in $(k+1)(k+2)\dots(2k)$. Therefore, multiplying b_k

(1.1, 2^k = the greatest power of 2 in (k+1)(k+2)...(2k). Therefore, multiplying b_k by 2^k to obtain g_k reduces denominator of b_k from being the greatest power of 2 in (2k)! to the greatest power of 2 in k! Since $2^k \leq$ denominator of b_k , the numerator of g_k stays the same as in b_k . END OF PROOF.

Similarly, our second identity is related to Euler transform of $\{1/3\}$

$$(1.7) \sum_{k=1}^{\infty} b_k q^k = \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^{1/3}} = 1 + \frac{1}{3}q + \frac{5}{9}q^2 + \frac{50}{81}q^3 + \frac{215}{243}q^4 + \frac{646}{729}q^5 + \frac{8711}{6561}q^6 + \dots$$

The identity is given by

Theorem 1.2.

$$(1.8) \prod_{k=1}^{\infty} \sqrt[3]{\frac{1}{1-(3q)^k}} = \sum_{k=0}^{\infty} g_k q^k = 1 + q + 5q^2 + \frac{50}{3}q^3 + \frac{215}{3}q^4 + \frac{646}{3}q^5 + \frac{8711}{9}q^6 + \dots,$$

where the numerators of g_k 1, 1, 5, 50, 215, 646, 8711, ... are identical to numerators of b_k of Euler transform of $\{1/3\}$ (1.7), and the denominators of g_k are the greatest power of 3 in k!.

PROOF. The q series (1.8) differ from the Euler transform (1.7) by having (3q) instead of q, so $g_k q^k = b_k (3q)^k$, and hence $g_k = 3^k b_k$. Denominators of b_k are 3^{d_k} , where $3^{d_k} =$ power of 3 in (3k)! [8]. According to the lemma (1.1, $3^k =$ the greatest power of 3 in (k+1)(k+2)...(3k). Therefore, multiplying b_k by 3^k to obtain g_k reduces denominator of b_k from being the greatest power of 3 in (3k)! to the greatest power of 3 in k! Since $3^k \leq$ denominator of b_k , the numerator of g_k stays the same as in b_k . END OF PROOF.

The OEIS references (see Sloane [7] and [8]) indicate that the above two identities are not known in the form presented here.

The results (1.5) and (1.8) may be generalized in

Conjecture 1.3. If canonical representation of positive integer n is $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$, then

(1.9)
$$\prod_{k=1}^{\infty} \sqrt[n]{\frac{1}{1-(nq)^k}} = \sum_{k=0}^{\infty} g_k q^k = 1 + q + \frac{a_2}{c_2} q^2 + \frac{a_3}{c_3} q^3 + \frac{a_4}{c_4} q^4 + \dots,$$

where the numerators of g_k 1, 1, a_2 , a_3 , a_4 , ... are identical to numerators of b_k of Euler transform of $\{1/n\}$ (1.2), and the denominators of g_k 1, 1, c_2 , c_3 , c_4 , ... are the products of the greatest powers of p_i in k!.

PARTIAL PROOF. We'll prove the conjecture for $n = p_1 p_2 \dots p_m$, or n being square-free. The q series (1.9) differ from the Euler transform (1.2) by having (nq)instead of q, so $g_k q^k = b_k (nq)^k$, and hence $g_k = n^k b_k = p_1^k p_2^k \dots p_m^k b_k$. Denominators of b_k are $(p_1^{d_{1k}} p_2^{d_{2k}} \dots p_m^{d_{mk}})$, where $p_i^{d_{ik}} =$ the greatest power of p_i in $(p_i k)$!. According to the lemma (1.1), for prime $p, p_i^k = power of p_i$ in $(k+1)(k+2)...(p_ik)$. Therefore, multiplying b_k by $(p_1^k p_2^k ... p_m^k)$ to obtain g_k reduces denominator of b_k from being the product of the greatest powers of p_i in (p_ik) ! to the product of the greatest powers of p_i in k!. END OF PARTIAL PROOF.

An example with non-prime n:

$$\prod_{k=1}^{\infty} \sqrt[6]{\frac{1}{1-(6q)^k}} = 1 + q + \frac{19}{2}q^2 + \frac{343}{6}q^3 + \frac{11305}{24}q^4 + \frac{58349}{24}q^5 + \frac{3230255}{144}q^6 + \frac{15652637}{144}q^7 + \dots,$$

References

- [1] APOSTOL, T. Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- [2] GASPER, G. and RAHMAN, M. Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol 35, Cambridge University Press, (Cambridge - New York - Port Chester - Melbourne - Sydney), 1990.
- [3] GAUSS, C.F. Disquisitiones generales circa seriem infinitam ..., Comm. soc. reg. sci. Gött. rec., Vol II; reprinted in Werke 3 (1876), pp. 123–162.
- [4] HEINE, E. Untersuchungen uber die Reihe ..., J. Reine angew. Math. 34, 1847, 285-328.
- [5] HEINE, E. Handbuch der Kugelfunctionen, Theorie und Andwendungen, Vol. 1, Reimer, Berlin, 1878.
- [6] SLOANE, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS) Euler transform. https://oeis.org/wiki/Euler_transform.
- SLOANE, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS) sequence A061159 Numerators in expansion of Euler transform of b(n)=1/2 https://oeis.org/A061159.
- [8] SLOANE, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS) sequence A061160 Numerators in expansion of Euler transform of b(n)=1/3 https://oeis.org/A061160.

MATHEMATICAL SCIENCES INSTITUTE, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT, 0200, AUSTRALIA

E-mail address: Geoffrey.Campbell@anu.edu.au

DEPARTMENT OF PHYSICS, UNIVERSITY OF CALIFORNIA, DAVIS, CA, USA *E-mail address*: azujev@ucdavis.edu