
TREX-Q: A query language based on XML Schema

Brad Penoff
Sun Microsystems Ireland

Hamilton House
East Point Business Park

Dublin 3 ,Ireland

Chris Brew
Department of Linguistics
The Ohio State University

1712 Neil Avenue
Columbus, Ohio, USA

Abstract

James Clark’s TREX is a clean, simple and pow-
erful schema language for XML. On this founda-
tion implemented a query language (called TREX-
Q). The purpose of the present paper is to report our
experiences in doing this, and to contribute to under-
standing of the issues that arise when a validator is
extended into a query language. Aside from TREX,
the strongest influences on our work are McKelvie’s
XMLQUERY and a similar algorithm described by
Mark Hopkins in UseNet postings.

1 Introduction

1.1 Query languages and XML

Much of the work presented at this workshop fo-
cuses on the design and use of query systems for
accessing large scale text and speech corpora. The
promise of XML is that it will facilitate the creation
of standard tools and techniques for the corpus-
related tasks that arises in linguistics and language
technology.

One of the strengths of XML is that it encour-
ages us to make explicit our assumptions about the
structure of data. We do this by preparing a DTD
or a schema that encodes these assumptions. The
most important tool in this enterprise is a validator:
a program that checks whether the structure of a par-
ticular piece of data matches the assertions made in
its schema. If so, we say that the data is valid ac-
cording to the schema.

Whether the data in question is linguistic or not
downstream processing is much easier if schema va-
lidity can be assumed, so good validation tools exist,
are widely used and tend to be well-maintained by
the community.

This is all good news for the developer of cor-
pus tools, who can pull standard components off
the shelf and use them as the front end to processes
of linguistic or technological interest. But for cor-

pus exploration mere validation is obviously insuf-
ficient: we need results. In other words, we require
a query language. If the query language is well-
designed many corpus-related tasks may be accom-
plished by means of the query language alone, with-
out recourse to custom tool building. Thw sggrep
tool described below is a prime example.

What then are the desiderata for corpus explo-
ration? We certainly need to search large corpora
and examine the results. It is unlikely that the for-
mat in which the data is delivered to us will be
convenient or appropriate for every search that we
will need to carry out. We may therefore need to
conduct a systematic transformation of a large cor-
pus, with or without substantial human interven-
tion. We should expect that data will be delivered to
us with irregular, inconsistent, poorly documented
or peculiar structures. A powerful query language
will make all these processes easier. But we can-
not ignore efficiency, because our corpora are very
likely to be big. In particular, we cannot assume
that we will be able to afford to read our corpus into
main memory. We therefore need a query language
implementation that handles memory efficiently, at
least for the common case where the corpus is large
but the search result is of manageable size.

Given these considerations, the starting point of
this paper is the observation that validation technol-
ogy is currently better understood than query lan-
guage technology (at least for the kind of messy and
irregular documents that arise in language technol-
ogy) The leading idea of this paper is to present a
methodology for turning an XML validator into a
query engine. We work up to this by easy stages.
The plan of the paper is as follows.

� We will describe the query language used in
the LT XML toolkit. This provides an efficient
implementation of a useful set of baseline ca-
pabilities, and is presented primarily as back-

ground.
� We then introduce an unconventional and very

concise regular expression matching algorithm
due to Mark Hopkins. This algorithm the
nice property that it is highly incremental, pro-
cessing its input in a single pass. We call
this algorithm REGEX. A key property of this
algorithm is that it explicitly represents the
non-determinism that is inherent in the query
matching process.

� We then argue, following a suggestion by En-
glish (English) that the key ideas of REGEX
are a viable approach to the validation of XML
documents. We’ll dignify this approach with a
name and call it XMLX.

� We further explain how to convert REGEX into
a query engine, by threading context through
the operations of the matcher. This introduces
extra non-determinism, but preserves the out-
line of the original. We call the result REGEX-
Q.

� We next show how McKelvie’s XMLQUERY
(a non-deterministic extension of the LT XML
query language) can be seen as an implemen-
tation of what we could call XMLX-Q. This
system combines the two previous extensions
of REGEX, producing a clean query language
for XML.

� We next introduce TREX, the schema language
on which our own system is based. This is
one of several languages that have been de-
signed with the ultimate intention of replacing
DTDs. Part of the purpose of TREX seems to
have been to clarify a few well-chosen issues
in schema language design, without attempt-
ing the breadth of coverage that is present in
the official W3C proposal.

� Finally we introduce our own TREX-Q, which
is intended to stand in the same relation to
TREX as the REGEX-Q does to REGEX.

2 LT XML
We argued above that we need a query language
that can process large corpora with decent effi-
ciency. One such is built in to LT XML(LTXML).
Here “A query is a sequence of terms separated by
/, where each term describes an [XML] element.
It is no accident that they resemble Posix path-
names.”(LTXML). Abstractly an XML document a

decorated tree structure. Queries simply pick out
subsets of the nodes present in that tree. Example
queries include:

� CORPUS/DOC/TITLE/s – This matches all
the s nodes whose ancestors are exactly COR-
PUS/DOC/TITLE. The CORPUS node in
question has to be the root node of the hier-
archy. In figure 1 the query matches the node
<s>Hamster plays with dog</s>.

� CORPUS/DOC/./s – This relaxes the re-
quirement that the element within which the s
appears is a TITLE, but still requires that it be
the grandchild of a DOC. This query matches
all three <s> nodes in figure 1.

� CORPUS/DOC/.*/s – Now the * postfix op-
erator, playing a role analogous to that which
it plays in Posix regular expressions, allows
sentences to be found anywhere among the de-
scendants of the DOC element. In the example
this matches the same set of sentences as the
previous query.

� ./[0]/[1]/[1]/[5]– the query language
can also reference objects by position, us-
ing zero-based indexing. This query refers to
6th word of the second sentence of the sec-
ond element of the first (and only) document.
We could have specified more information,
giving ./DOC[0]/BODY[1]/s[1]/w[5],
and achieved the same result. Note however
that BODY[1] does not mean “the second
BODY element”, but rather “any element that
is both a BODY and in second position.” An
unwary user could run into trouble with this.

� .*/BODY/s/[0] – all the first elements of
sentences.

� .*/BODY/s/w[0] – all the first elements of
sentences, provided that they are words. In the
example words are the only things that can ap-
pear in the position, but if the content model
for s had been (#PCDATA|w|c)*, then there
might be sentences whose first element is a c
rather than a w and the query will return only
a subset of the result which the user probably
expects.
The British National Corpus uses a c element
in this way to code punctuation. In a subset of
the corpus there were 263,918 sentence-initial
w elements, but 20,699 sentence-initial c ele-
ments. There is therefore some risk that an

<?xml version="1.0"?>
<!DOCTYPE CORPUS [
<!ELEMENT CORPUS (DOC+)>
<!ELEMENT DOC (TITLE,BODY) >
<!ELEMENT TITLE (s+) >
<!ELEMENT BODY (s+) >
<!ELEMENT s (#PCDATA|w)* >
<!ELEMENT w (#PCDATA) >
<!ATTLIST w type CDATA #IMPLIED>
]>
<CORPUS>
<DOC>
<TITLE><s>Hamster plays with dog</s></TITLE>
<BODY>
<s>
<w>A</w> <w>hamster</w>
<w>played</w> <w>with</w><w>a</w><w>dog</w>
</s>
<s>
Update:<w>Unfortunately</w>,<w type="1">the</w> <w>dog</w>
<w>played</w> <w>with</w><w type="2">the</w><w>hamster</w>.
</s>
</BODY>
</DOC>

</CORPUS>

Figure 1: A sample XML input file

uninformed or forgetful user will miss nearly
10% of the relevant data.

� .*/BODY/s/[type] – all the elements be-
low s that are specified for type. In fig-
ure 1 we have distinguished between instances
of “the” that occur before a consonant from
those that occur before a vowel or “h”. The
distinction might be important in a study of the
way in which context affects the pronunciation
of this article. The query returns all the appro-
priately annotated data.

� .*/BODY/s/[type="2"] – all the ele-
ments below s that have “2” as their value for
type.

� .*/BODY/s/w[type="2"] – all the w ele-
ments below s that have “2” as their value for
type.

� .*/BODY/s/w[0 type="2"] – the do-
main initial w elements that have “2” as their
value for type.

From the outset, the LT XML query language was
designed to support corpus annotation. As we have
already seen, and will continue to see, it is far from
trivial to define a usable query language. At least
three constraints operate:

� The query language should be associated with
a precise interpretation, in order that users have
a chance of telling the difference between a
bug in the implementation and a bug in query
formulation. This is a sine qua non.

� There should be a good “story” (Pain and
Bundy,1987) about how the query language
works. Motivated users should be able to un-
derstand the query language with sufficient ac-
curacy that they are able to use it effectively.
The story might be a useful but sketchy ver-
sion of the real truth about what happens, or
might be the same as the interpretation given
above. If casual users can use it too, so much
the better.

� The final constraint is acceptable efficiency. In
our view the primary factor here is document

size rather than query complexity, but that is
strongly conditioned by the particular tasks for
which we have needed query languages. Pre-
sumably there are as many justified opinions
on this as there are significantly different use
cases for query languages.

All the above queries can be run using sggrep.
This is one of the LT XML tools. Each is express-
ible as a single path terminating in the item of inter-
est. A sample command line is:

sggrep -q ’.*/s/w[type]’

The tool prints out all the satisfying instances, but
does not show the surrounding context. To see con-
text it is necessary to split sggrep’s query into two
parts. As before, the first part of the query (specified
with -q) selects a subset of the nodes in the input
document. These nodes are then tested with a sec-
ond query (the subquery, specified on the command
line with -s). If a node satisfies the subquery, it is
printed out by the tool. Thus, to see all the sentences
containing a word specified for type, an appropriate
command line is:

sggrep -q ’.*/s’ -s ’./w[type]’

Finally, sggrep allows a third argument, speci-
fied with -t, by means of which a user may provide
a Posix-style regular expression which is to match
the textual content of the leaf node at the foot of the
search path specified by -q and -s. Thus, if we
want to search for sentences containing a particular
word in third position we can do this as follows.

sggrep -q ’.*/s’ -s ’./w[2]’ \
-t ’[Hh]amster’

This mirrors the behaviour of the standard grep
utility. For grep the input is a series of records,
the extent of each record is defined by a newline
character, and the output is a filtered subset of these
records. Similarly, for sggrep the input is a series
of records, the extent of each record is defined by
the -q argument, and the output is a filtered subset
of these records. For many purposes this is just what
is required.
Sggrep is a simple tool, and it sometimes

produces results significantly different from those
which would be most useful. Sggrep satisfies
queries in the following way. It first searches for
a node satisfying the main query. The search is
top-down, and ceases as soon as a matching node is
found, so any ambiguity is resolved in favor of the
highest node that matches the query. This node is

now read into memory, and tested against the predi-
cates from the -s and -t arguments. If it passes all
tests, the node will be printed, otherwise not. Either
way, the node is now discarded, and search recom-
mences immediately after its right boundary. This
is not necessarily desirable.

For example, one might wish to examine the
prepositional phrases occurring in a syntactically
analysed corpus. If the corpus is marked up in the
obvious way, we will find PPs nested within other
PPs. If we nevertheless attempt to use sggrep it
is natural to use the query -q .*/pp. The good
news is that this will print out every PP in the cor-
pus, but the corresponding bad news is that it does
not print out a separate record for each pp. Instead
it prints out a separate record only for those PPs that
are not enclosed by another PP 1. If one wants one
record per PP, postprocessing is needed. This is a
limitation of sggrep rather than a deficiency in the
query language itself. One solution is to move to
a generic transformation langage such as XSLT or
Xduce: another, pursued here, is to investigate the
possibility of adjusting the behaviour of the query
language to more closely match user expectations.

3 An incremental algorithm for regular
expression matching

Figure 2 is an implementation of a regular ex-
pression matching algorithm described by Joe En-
glish(English), which he encountered in Usenet
postings by Mark Hopkins. This algorithm is based
on the insight that given a regular expression � over�

that defines a regular language � and a sym-
bol � in

�
, we can compute a new regular expres-

sion delta ��� which represents the (possibly empty)
language that is formed stripping the first symbol
from the front of any strings in � that start with
� . This new regular expression is referred to as
the derivative of the first with respect to � . The
code in the figure (a transcription into Objective
Caml of Haskell code by English) shows that this
can be done extremely concisely. Delta is non-
deterministic. When we are computing the deriva-
tive of a sequence (ef)whose first element is nul-
lable, it is uncertain whether � will be consumed by
� or by � , so the algorithm explores both possibili-
ties.

The salient implementation points are

1By analogy with the non-recursive base NPs studied in the
chunking literature, one might want to call these antibase PPs

(* regular expressions over some base type ’a *)

type ’a re = Zero | Unit | Sym of ’a | Rep of ’a re | Plus of ’a re
| Opt of ’a re | Seq of (’a re) * (’a re) | Alt of (’a re) * (’a re)

(* operator identities *)

let rep x = match x with
| Unit -> Unit (* repeating [] gives [] *)
| Zero -> Unit (* repeating 0 no times is [] *)
|e -> Rep e

let plus x = match x with
| Unit -> Unit (* repeating [] gives [] *)
| Zero -> Zero (* repeating 0 at least once gives 0 *)
| e -> Plus e

let opt x = match x with
|Unit -> Unit (* optional [] same as [] *)
|Zero -> Unit (* optional 0 matches [] *)
|e -> Opt e

let seq x y = match x,y with
| Zero,_ | _,Zero -> Zero (* sequences with 0 are 0 *)
| Unit,f -> f (* Unit is the left identity for sequences *)
| e,Unit -> e (* Unit is also the right identity *)
| (e,f) -> Seq(e,f)

let alt x y = match x,y with Zero,f ->f | e,Zero-> e | e,f -> Alt(e,f)

(* nullable e -- true if e could match the empty sequence *)

let rec nullable x = match x with
| Sym _ | Zero -> false
| Opt _ |Rep _ | Unit -> true
| Plus e -> (nullable e)
| Seq (e,f) -> (nullable e) && (nullable f)
| Alt (e,f) -> (nullable e) || (nullable f)

(* delta e x -- regular expression derivative *)

let rec delta e x = match e with
| Zero| Unit -> Zero
| Sym sym when x = sym -> Unit
| Sym sym -> Zero
| Rep e -> seq (delta e x) (rep e)
| Plus e -> seq (delta e x) (rep e)
| Opt e -> delta e x
| Seq (e,f) when (nullable e) -> alt (seq (delta e x) f) (delta f x) (*1*)
| Seq (e,f) -> seq (delta e x) f
| Alt (e,f) -> alt (delta e x) (delta f x)

let matches e items = nullable (List.fold_left delta e items)

Figure 2: A regular expression validator

� The familiar repertoire of regular expres-
sion components for symbols, sequenc-
ing,alternation and repetition are represented
by constructors:Sym,Seq,Alt,Plus,Rep.

� There are separate constructors for the empty
sequence (Unit) and for an empty alternation
(Zero) that denotes the empty language. This
last is not something that any user is likely to
want, but is very useful as a representation of
failure.

� delta does not construct regular expressions
directly, but goes through a layer of constructor
functions that apply operator identities.

In effect, the algorithm is creating and exploring the
deterministic automaton that is implicit in the input
regular expression. It does not explore branches that
are not required by the input. Hopkins puts it like
this

The method used is to incrementally
construct a DFA for the given regular ex-
pression one state at a time as the input
is being processed. For regular expres-
sions with small DFA’s construction of
new states will be complete early on with
the result that most of the input file will
be processed relatively fast without hav-
ing to calculate new states. For regular
expressions with large DFA’s but smaller
inputs, the construction of new states will
be kept to a minimum.

The key idea here (one that is not reflected in the
Objective Caml implementation given above) is that
delta should be memoized. Several of its clauses
may generate regular expressions that are larger
than their inputs, copying subparts of the input to
more than one location. Under these circumstances,
even though application of the operator identities
may mitigate the increase in size, memoization is
necessary for efficiency. In a lazy functional lan-
guage, such as the original Haskell, memoization
would be the responsibility of the underlying imple-
mentation, but in Objective Caml, which is a strict
language, no such convenience is available. We
need not for the moment be too concerned about
this, since our main interest in the algorithm comes
from the insight that it gives into the problem of par-
laying a validator into a query language.

In the following two sections we describe two
extensions of REGEX. The first extends the string

matcher to produce a tree validator, while the sec-
ond produces a query language over strings. In com-
bination, the two extensions yield a query language
over trees, as required. This query language is very
close in spirit to McKelvie’s XMLQUERY (McK-
elvie).

4 XMLX: making REGEX into an XML
validator

We now address the extensions needed to make
REGEX into a validator for a tree language simi-
lar to XML The code in figure 2 already exploits the
type system of Objective Caml to produce a regular
expression matcher that is non-committal about the
base type of the sequences that are matched. This
is reflected in the presence of a type variable in the
definition of ‘a re. The same code can be used
either to match a regular expression whose leaves
are integers against a sequence of integers or a reg-
ular expression whose leaves are strings against a
sequence of strings. This is useful, but not enough,
for the code still requires identity between the base
types of the regular expressions and the sequences.
Fortunately, there is only one point in the code at
which this identity is required. This crucial frag-
ment is repeated below:

let rec delta e x = match e with
...
| Sym sym when x = sym -> Unit
| Sym sym -> Zero
...

It is straightforward to relax this constraint by
changing the fragment to

let rec delta e x = match e with
...
| Sym sym when

compatible x sym -> Unit
| Sym sym -> Zero
...

and providing an appropriate definition of
compatible such as:

let compatible s q =
s = int_of_string q

. This setup requires the base type of the query to be
string while the base elements of the sequence
searched is int. This is not very useful in itself,
but provides some of the flexibility that a query lan-
guage will need. An alternative definition, shown
below, provides a simple wild-card facility.

let compatible s q =
match q with
| "." -> true
| _ -> s = q

Clearly this idea can be extended. The base type
of the searched sequences could be a discriminated
union of XML start tags, end tags and textual con-
tent, and the base type of queries can be enriched to
allow not only wild cards but also the attribute tests
used by LT XML. While crude, this would clearly
be an XML query language.

This is not sufficient, because REGEX is based
on deterministic finite state automata, while XML
validation requires the power of a push down au-
tomaton. We therefore need a more elaborate ex-
tension to the REGEX framework. Two things must
change:

� The query now has to provide a regular expres-
sion for each XML element type that might
arise in the input. This is the content model
aspect of DTDs and other schema languages.

� At run time we need a push-down stack that
can hold partially matched elements.

In the original delta regular expressions alone
were sufficient to represent all necessary informa-
tion each branch of the non-deterministic matching
process that is required. Non-determininism is rep-
resented in the alt statements of the regular ex-
pressions. For the extension, all that has to happen
is that delta provides each process not only with a
residual regular expression reflecting the consump-
tion of a symbol but also with a push-down stack of
return incomplete items. As we encounter start tags
with a we push the appropriate content model ex-
pression for onto the stack, and when we encounter
end tags we pop the stack and resume matching of
the content model for the parent. This is of course
old technology, that of a recursive transition net-
work.

This extension preserves the architecture of the
original REGEX, and keeps the nice property that
the whole thing works incrementally. We are now
getting close to the capabilities of the LT XML
query language.

5 REGEX-Q: making REGEX into a
query language

A very similar extension to REGEX can con-
vert REGEX into a query language which we

dub REGEX-Q. REGEX uses Zero to represent
a match failure and Unit to represent expressions
that match the empty string. A regular expression
matches if, by the time the input string has been con-
sumed, there exists at least one branch of the non-
deterministic execution that is equivalent to Unit.
This is checked by the nullable function.

If we want to keep essentially the the same al-
gorithm, but to return a set of strings, we can ad-
just delta so that whenever it matches a symbol
(which will happen when we get to a Sym element
of the query expression) it incorporates information
about that symbol in the expressions that it passes
to the next stage. Things are arranged so that ev-
ery branch yields a set of strings. Correspondingly,
nullable will need to be adapted to combine the
sets in an appropriate way, replacing the boolean op-
eration that pulls the results from different branches
of an Alt with a set-union

This is very straightforward to do (though so me-
chanical that it is tempting to complicate the task
by implementing the as a source-to-source transfor-
mation on the original code). It is not especially
useful, because all expressions that match the string
will record the same information, namely that they
managed to match the whole string, and we will be
going to great lengths to form sets whose eventual
composition we can be sure of from the outset.

But if we augment the regular expression lan-
guage with a save operator that can wrap parts of
the query (and perhaps also name them), then more
interesting things can happen. As we walk through
the symbol string, state is built up in a set of dif-
ferent accumulators, and the way that this happens
may differ in interesting ways dependent on the ex-
ecution path taken. At this point the whole non-
deterministic apparatus is motivated and the result
is a set of possibly different query results, expressed
as bindings for the marked expressions.

This too is not difficult to do, and preserves the
skeleton of the REGEX algorithm. Although more
contextual information is retained, the whole thing
remains incremental and is essentially little more
than the lazy exploration of an automaton. There
are some issues which arise: in particular it is not
obvious what it should mean when a save operator
is nested within a repetition operator (see later for
our provisional solution to this).

6 XMLQUERY
McKelvie’s XMLQUERY (McKelvie) combines
the two extensions to REGEX described above. It
uses essentially the same non-deterministic execu-
tion model, working with multiple processes, which
McKelvie describes in the following way

he xmlquery program works by read-
ing and parsing the query string. If this
parse succeeds then, the parsed query (in
the form of a parse tree) is translated into
a program for an abstract machine. The
abstract machine is a non-deterministic
stack automaton.

There are a number (initially one) pro-
cesses that execute this program. . . . Each
process has:

� a program counter
� a depth stack
� a save stack

Some of the instructions are non-
deterministic, in these cases a process that
executes them splits into two processes,
one for each branch.

Notice that the above description, modulo ter-
minology, is identical to what would be obtained
by implementing both of the extensions to REGEX
that are introduced above. XMLQUERY has both
a return stack for managing tree context and a save
stack for keeping track of the material that has been
matched to particular parts of the regular expres-
sion.

The syntax of XMLQUERY is similar to that of
the LT XML query language introduced above. It
uses , as an explicit sequencing operator, so that

xmlquery -q ".*/(a,.*/b,a)" test.xml

matches any sequence of siblings consisting of an a,
then any element that contains a b anywhere inside
it, followed by another a. XMLQUERY uses ! as
postfix operator to indicate what should be printed
out.

xmlquery -q ".*/s/phr/w!" test.xml

matches and returns any w inside a phr inside an s
anywhere. while

xmlquery -q ".*/s/phr!/w" test.xml

matches and returns any phr inside an s anywhere,
so long as it contains a w. It also allows variables

xmlquery -q ".*/%X!/%X!" test5.xml

Match and return any element which has a child of
the same element name.

XMLQUERY is also efficient, though not as fast
as the much simpler sggrep. The performance
penalty is on the order of a factor of two for some
simple queries.

Because XMLQUERY is non-deterministic, it
avoids the difficulties that we noted when we con-
sidered using sggrep as a tool for treating a corpus
as a database of tree fragments. If a query matches
several ways, it may be that the same part of an
XML document will appear several times in the out-
put, albeit in different contexts. Both behaviours are
useful.

7 TREX
James Clark’s TREX(Clark) is a clean, simple and
powerful schema language for XML. It is imple-
mented in Java, and the source is available. We
chose it as the basis for extension partly because
we were familiar with Java, and partly because it is
well-documented and easily available, and because
it seems to be designed with a concern for simplic-
ity. TREX has since been folded into a larger com-
munity effort called RELAX-NG (Relax) TREX
and RELAX-NG have strong similarities. Our work
was based on the original TREX. We wanted to test
the hypothesis that the approach to query language
contruction outlined above is viable when applied
to a validator which uses a language more conven-
tional than Objective Caml or Haskell.

8 TREX-Q
The TREX-Q implementation effort began the first
author’s senior thesis

but has spilled over into further work conducted
after graduation.

TREX-Q allows parts of a document to be saved
and returned upon successful validation. Parts to be
saved are in between <save> tags.

It is possible to save complete elements.

<element name="a">
<save>
<element name="b">
<empty/>

</element>

</save>
</element>

When running the TREX-Q processor with the
above pattern on the following document:

<a>

We obtain the following output:

<matches total="1">
<match id="1">

</match>
</matches>

We can also save elements and attribute names
This facility will be more useful given the regular
expression string matching described below.

8.1 Repetition
We had to decide how save patterns should inter-
act with repetition operators. In the case where the
<save> pattern outscopes the repetition operator
we (uncontroversially) return the sequence matched

<root>
<a/>
<a/>
<a/>

</root>

<element name="root">
<save>
<oneOrMore>
<element name="a">
<empty/>

</element>
</oneOrMore>
</save>

</element>

<matches total="1">
<match id="1">
<a/>
<a/>
<a/>

</match>
</matches>

More controversially, we implement the following
semantics for <save> patterns within repetion op-
erators

<root>
<a/>

<a/>

</root>

<element name="root">
<oneOrMore>
<save>
<element name="a">
<empty/>

</element>
</save>
<element name="b">
<empty/>

</element>
</oneOrMore>

</element>

<matches total="1">
<match id="1">
<a/>

</match>
<match id="2">
<a/>

</match>
</matches>

8.2 Regular expressions

TREX-Q allows queries to specify any string by a
Perl 5 regular expression. This is done by setting a
regexp attribute within a ¡string¿ tag to ”true”.

Say you wanted to make sure a particular string
started with the letter ”t”. This can be used in the
following way.

<root>twinkiesaregood</root>

<element name="root">
<save>
<string regexp="true">ˆt.*</string>

</save>
</element>

<matches total="1" pattern="regexp.trex">
<match id="1" filename="regexp.xml">
twinkiesaregood

</match>
</matches>

8.3 Variables
Finally we implement variables, essentially s in
XMLQUERY but with different syntax.

<element name="root">
<element name="a">
<variable name="x"/>

</element>
<variable name="x"/>

</element>

<root>
<a>

</root>

The same query would also match

<root>
<a>

<c/>

<c/>

</root>

9 Conclusions
We have shown one way of making an XML valida-
tor into a query language. Building on similar pre-
vious work by Hopkins, English and McKelvie we
have shown how a decision to explicitly represent
run-time non-determinism can lead to a design that
is not only easy to understand but also potentially
efficient in its handling of large corpora.

We think that the non-determinism that arises
is inherent in the task, and that any query lan-
guage will need to handle it in one way or an-
other. This is not specific to XML, but arises even
in query languages for string search. While one ap-
proach is to use devices such as the longest match
heuristic in order to mitigate the impact of non-
determinism, we have preferred to search for a so-
lution that is as clean as we know how to make it.
Early indications, especially from McKelvie’s XM-
LQUERY(McKelvie), are that this approach can
succeed.

Our implementation of these ideas is directly
based on James Clark’s TREX language, which the
author describes as

“basically the type system of XDuce
with an XML syntax and with a bunch
of additional features (like support for at-
tributes and namespaces) needed to make
it a practical language for structure vali-
dation.”

What has been presented here is an interim report
on our efforts to extend TREX into a useful query
language, as well as a commentary on the lessons
learned in this endeavour.

References
Clark J. TREX - “Tree Regular Exores-

sions for XML” ms. available from
www.thaiopensource.com/trex

Clark J. and Murata M. RELAX NG specification
www.oasis-open.org/committees/relax-ng

English, J “How to validate XML” ms.
available from www.flightlab.com/
j̃oe/sgml/validate.html

McKelvie D. XMLQUERY 1.5
manual. ms. available from
www.ltg.ed.ac.uk/d̃mck/xmlstuff

McKelvie, D., Isard, A. Mengel, A. Moeller,M.B.
Grosse, M. and Klein, M. (2001) “The MATE
Workbench - an annotation tool for XML coded
speech corpora”, Speech Communication 33 (1-
2) (2001) pp 97-112. Special issue, “Speech An-
notation and Corpus Tools”

Pain, H. and Bundy, A. (1987). What Stories
Should We Tell Novice Prolog Programmers? In:
R. Hawley (Ed.), Artificial Intelligence Program-
ming Environments. Ellis Horwood: Chichester,
U.K.

Penoff B. and Brew C.H. TREX-Q tutorial (2001)
available at ling.osu.edu/p̃enoff

Thompson, H.S. McKelvie,D. Brew, C.H.
Mikheev, A. and Finch, S. (2000)
The LTXML Toolkit available at
www.ltg.ed.ac.uk/software

