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Abstract—70 % to 90 % of patients with Parkinson’s disease
(PD) show an affected voice. Various studies revealed, that voice
and prosody is one of the earliest indicators of PD. The issue of
this study is to automatically detect whether the speech/voice of a
person is affected by PD. We employ acoustic features, prosodic
features and features derived from a two-mass model of the vocal
folds on different kinds of speech tests: sustained phonations,
syllable repetitions, read texts and monologues. Classification is
performed in either case by SVMs. A correlation-based feature
selection was performed, in order to identify the most important
features for each of these systems. We report recognition results
of 91 % when trying to differentiate between normal speaking
persons and speakers with PD in early stages with prosodic
modeling. With acoustic modeling we achieved a recognition
rate of 88 % and with vocal modeling we achieved 79 %. After
feature selection these results could greatly be improved. But we
expect those results to be too optimistic. We show that read texts
and monologues are the most meaningful texts when it comes to
the automatic detection of PD based on articulation, voice, and
prosodic evaluations. The most important prosodic features were
based on energy, pauses and F0. The masses and the compliances
of spring were found to be the most important parameters of the
two-mass vocal fold model.

I. INTRODUCTION

Parkinson’s disease (PD) is a degenerative disorder of the

central nervous system. It results from the death of dopamine-

containing cells in the substantia nigra, a region of the mid-

brain. The cause of cell-death is unknown. PD accounts for a

variety of motor and non-motor deficits and is the second most

common neurodegenerative disorder after Alzheimer’s disease

[1]. The most obvious motor symptoms are shaking, rigidity,

slowness of movement, difficulty with walking and gait, and

communication. Non-motor symptoms affect the sensory sys-

tem, sleep, and emotion. Medical treatment alleviates certain

symptoms, but there is no causal cure now available, and early

diagnosis is critical for maximizing the effect of treatment and

improving the quality of the patient’s life [2].

The alteration of speech in PD, known as hypokinetic

dysarthria, is present in between 70 % and 90 % of all PD

patients [3]. Vocal impairment is most likely one of the earliest

indicators of the disease [4]. Phonation is the most affected

part of speech production [5], followed by articulation [6] and

prosody [7]. Different acoustic studies commonly revealed a

reduced loudness, monoloudness and monopitch, breathiness

and harshness, highly variable speech rate, speech disfluencies,

reduced stress, and reduced range of articulation movements

[6] with deficits in prosody being one of the most notable

signs in early stages of PD [8]. When PD advances, these

parameters worsen to a point where the voice is often neither

audible nor intelligible [9].

There are several speaking tasks that could be used to

evaluate the extent of speech and voice disorders in PD. The

most traditional of them including sustained phonation, rapid

syllable repetition, and variable reading of short sentences,

longer passages or freely spoken spontaneous speech [10].

In this work we focus on an automatic detection of PD

speakers based on different systems that use phonation, ar-

ticulation and prosody features. Phonation is modeled by a

glottal excitation system based on two-mass vocal fold mod-

eling, articulation is modeled by spectral features followed by

statistical modeling, and the prosody of a speaker is evaluated

by prosodic analysis.

A glottal excitation system allows a (distinct) analysis of

voice and phonation. The approach is based on the source-

filter model of the speech generation process. Voiced speech

sounds are generated by the excitation signal, i.e., the source

signal of the glottis, which is modeled by a two-mass-spring

model. This signal is filtered by the vocal tract, where different

frequencies are amplified or softened. The influence of the

vocal tract has to be omitted in order to allow meaningful voice

evaluations. As an approximation of the excitation signal, the

residue of the Linear Predictive Coding (LPC), an inverse

filtering of the speech signal with the LPC filter is calculated

in a data-driven optimization procedure. The model parameters

are now optimized to match the synthetic excitation signal as

close as possible to the LPC residue and the estimated pitch.

The final parameters are then analyzed in order to differentiate

between healthy voices and voices affected by PD. Articulation

modeling is achieved by a statistical modeling of acoustic

features (Mel Frequency Cepstrum Coefficients (MFCCs) ).

The statistical modeling is achieved by Gaussian Mixture
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Models (GMMs). The mean vectors of these GMMs act as an

acoustic representation of this speaker. Prosody is evaluated

by a prosodic analysis based on a voiced/unvoiced (VUV)

decision. Different structured prosodic features are calculated

for the voiced segments. Our prosody module analyzes F0,

energy, duration, pauses, jitter and shimmer and different func-

tionals of them. Support Vector Machines (SVM) are used for

classification. We evaluate the different modeling approaches

with respect to the different kinds of speech tests (sustained

phonation, syllable repetitions, read texts and monologues) and

to determine the most expressive features by feature selection.

The outline of this paper is as follows: The data and the

different speech tasks are described in Sec. II. The articulation

modeling is presented in Sec, III. The prosodic system is de-

scribed in Sec. IV and the glottal excitation system is described

in Sec. V, Details about classification and feature selection

are given in Sec. VI. Results are presented and discussed in

Sec. VII. The paper is finished by a short summary (Sec. VIII).

II. DATA

A. Patients

Data was used from the original study of Rusz et al. [8].

A total of 46 Czech native speakers participated in this study.

Twenty-three individuals were diagnosed with an early stage

of idiopathic PD. All PD patients were examined in the drug-

naive state, immediately after the diagnosis was made and

before the symptomatic treatment was started. Their mean

age was 61.7 years (SD = 12.6), mean duration of PD

symptoms prior to examination was 30.2 months (SD = 22.1),

mean global motor score according to the Unified Parkinson’s

Disease Rating Scale III (motor rating scaled from 0 to 108,

where 108 represents severe motor impairment) was 17.5 (SD

= 7.3), and the stage of disease according to the Hoehn and

Yahr scale ranged from 1-2 (disability scale comprised of

stages 1 through 5, where 5 is most severe). In addition, 23

healthy control speakers with no history of neurological or

communication disorders were included. Their mean age was

58.1 years (SD = 12.9). Age distribution showed no significant

differences between both groups.

The speech data was recorded in a quiet room with a low

ambient noise level using an external condenser microphone

placed at approximately 15 cm from the mouth. The voice

signals were sampled at 48 kHz, with 16-bit resolution.

B. Speech Tasks

Table I details the speech data used in this study. The

speaking tasks ranged from producing isolated vowels to

reading short sentences and producing a spontaneous mono-

logue on a given subject. In each speaking task, the best

speech performances for every subject were retained. See [8]

for a comprehensive description of the data and recording

procedure.

III. ARTICULATION MODELING

Gaussian Mixture Models (GMMs) model acoustic features,

namely Mel Frequency Cepstrum Coefficients (MFCCs) in

task description

Sustained phonation of /i/ on one breath at a comfortable
T1 pitch and loudness as constant and long as possible,

at least 5-sec.

T2 Rapid steady /pa/-/ta/-/ka/ syllables repetition on one breath
as constant and long as possible, repeated at least 5-times.

T3 Reading the same standard text of 136 word.

T4 Monologue, at least approx. 90-sec.

T5 Reading the same text containing 8 variable sentences of 71
words with varied stress patterns on 10 indicated words.

Reading 10 sentences according specific emotions in a
T6 comfortable voice in response to an emotionally neutral

sentence.

T7 Rhythmically read text containing 8 rhymes of 34 words.
following the example set by the examiner.

TABLE I
DESCRIPTION OF THE DIFFERENT SPEECH TASKS USED IN THE

EXPERIMENTS.

a statistical way. For acoustic feature extraction a Hamming

window with a size of 25 ms and a time shift of 10 ms is

applied to the speech signal. Afterwards the Mel-spectrum

with 26 triangular filters is calculated and processed by Dis-

crete Cosine Transform (DCT). We take the first 13 Mel-

frequency Cepstral coefficients including C0. Cepstral mean

subtraction (CMS) is applied and first- and second order

derivatives of these features are calculated over a context

of 5 and 9 consecutive frames. In the end a 39-dimensional

feature vector is created. This feature vector is then modeled

by GMMs. For each speaker one GMM is created by GMM-

UBM modeling. After extraction of the spectral features a

Universal Background Model (UBM), i.e., a class-independent

GMM with 128 Gaussians, is trained on the whole training

set using the Expectation-Maximization (EM) algorithm. The

means of the UBM are adapted by relevance Maximum A
Posteriori (MAP) adaptation in order to get speaker specific

GMMs. The means of each speaker are then used as speaker-

specific features, which forms 4992-dimensional (128 × 39)

feature vectors.

IV. PROSODIC MODELING

The prosodic system is not based on any speech recognition

output or forced time alignments. Thus, the prosodic features

are calculated whenever a voiced speech segment is found. The

voiced-unvoiced (VUV) decision is based on the zero crossing

rate, the normalized energy of the signal and the maximum

energy.

Prosodic base features are calculated on the whole utterance.

These are, fundamental frequency (F0), energy, VUV seg-

ments and pitch periods. The structured prosodic features

are calculated on the voiced segments. Adjacent segments

are merged, when they are separated by less than 50 ms;

the corresponding F0 contour is interpolated to make the

segmentation more robust. Context segments, that merge two

adjacent segments together, are used additionally. All in all

73 features are calculated for each segment. They model F0,

energy, duration, pauses, jitter and shimmer. Note that the F0
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features are normalized w.r.t. the mean F0 and transformed to

semitones in order to be comparable across gender. A detailed

description of the whole feature set is given in [11]. Finally, we

compute mean, minimum, maximum and standard deviation

of these 73 segment features. This forms our 292-dimensional

prosodic feature vector.

V. GLOTTAL EXCITATION MODELING

A. Two-Mass Model

The approach estimates the parameters of a physical glottis

model. The goal is to find pathology-related changes in

the model parameters that reflect voice-related parameters in

order to detect speakers suffering from PD. Therefore, the

used glottis model should ideally have physically meaningful

parameters, in contrast to just describing the shape of the

excitation signal. The model should be flexible enough to

adequately represent pathology-related changes of the voice.

Considering these requirements we employed the two-mass

vocal fold model introduced by Stevens [12] and illustrated

in Fig. 1. The model consists of two pairs of masses, larger

air

M1

M2

C1

C2

Cc

Fig. 1. Two-mass vocal fold model by Stevens [12].

ones (M1) representing the inferior part of the vocal folds, and

smaller ones (M2) representing the superior part of the vocal

folds. The model is symmetric, i.e., there is no differentiation

between the masses of the left and right side. The mechanism

depends on the fact, that the inferior and superior part of the

vocal folds do not move together as a rigid body. There is

a certain degree of freedom to move relatively to each other

[13]. This freedom is modeled with a coupling compliance by

springs. Each mass moves on a spring that is connected with

the lateral wall. The masses are connected among themselves

by an additional spring. The compliances of the springs are

described by the parameters C1, C2 and Cc (for the spring

that connects M1 with M2). Note that parameters for the

masses and compliances are given as mass per unit length
and compliance per unit length, i.e., they may change when

the vocal folds are stretched. Air flows from bottom to top

through the glottis when both M1 and M2 have a positive

displacement, as shown in Fig. 1.

The excitation function of the two-mass vocal fold model

by Stevens is obtained in three steps. First, the displacements

x1(t) and x2(t) of the inferior and superior part of the vocal

folds over time t are computed. The width of the glottal

opening d(t) is defined to be min(x1(t), x2(t)). Second, from

the width of the opening, the airflow Ug(t) through the glottis

is determined. In the third step, taking the derivative of Ug(t)
results in the excitation function.

The whole process of the excitation function computation is

described in Chapter 2 of [12]. However, some details cannot

be found in the book. In [14] a detailed derivation of all

model formulas is given. The initial and fixed values for all

parameters are taken from [12] and summarized in [14].

B. Model Optimization

Our hypothesis is that glottis model parameters contain

information about the pathology of PD speakers. To test this

hypothesis, we find the optimal model parameters that fit the

speech data and observe how they change between healthy

speakers and speakers with PD.

Fig. 2. Optimization of the parameters of the glottal excitation model

Figure 2 depicts a block diagram of the optimization loop.

A set of initial parameters (M1, M2, C1, Cc, x0, d1, φ,

l) is the input of the glottis excitation model. The model

generates an excitation signal for a 10 ms speech frame. At

the same time, the LPC residue of the original speech signal

is calculated and the log spectrum transform is applied to both

of these excitation signals. The similarity of the generated

excitation signal is compared to the original signal using two

Euclidean distances. The distance between the log spectrum

of the two signals is compared in a first step. In a second

step, the distance between the generated and the original pitch

for the frame are compared. The combined distance measure

is passed to the optimization algorithm, which modifies the

parameter set, passing the new parameter set to the excitation

model. Thus, an optimization loop is formed, modifying the

parameters, generating a new candidate excitation signal, and

testing it against the original signal. The simplex algorithm

[15] and simulated annealing [16] are used for optimization.
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param description

M1 mass of inferior part of the vocal fold

M2 mass of superior part of the vocal fold

C1 compliance of spring between M1 and lateral wall

Cc compliance of spring between M1 and M2

d1 average vertical length of the lower portion of the vocal fold

x0 resting position of M1 in the absence of any force

φ skewness factor; constriction of the vocal tract

l length of glottis (assuming rectangular shape)

D optimization distance measure (see Eq. 2)

TABLE II
DESCRIPTION OF THE PARAMETERS OF THE GLOTTAL EXCITATION MODEL

The optimization is formulated as:

θ̂ = argmin
θ

[D(sm(θ), sorg)] (1)

θ = {M1, M2, C1, Cc, x0, d1, φ, l}
where D(sm(θ), sorg) is the combined distance between the

model excitation signal sm and the original excitation signal

sorg.

The distance measure combines distances between both the

respective log spectra and the respective pitches pm, porg, and

is defined as:

D(sm(θ), sorg) = D(logspec(sm(θ)), logspec(sorg))
+λ · D(pm, porg) (2)

where D(·, ·) is the Euclidean distance between two vectors

and the constant λ scales the influence of the pitch distance.

Note that the optimization is only performed on voiced speech

segments. TABLE II contains a description of all parameters

of the glottal excitation model. The exact derivation of the

formulas and parameters is omitted here. For a description

see [12] and [14].

VI. CLASSIFICATION AND FEATURE SELECTION

Classification is done for either way of modeling by Support

Vector Machines (SVMs). In order to account for the low num-

ber of participants of this study, experiments were performed

by cross-validation in a leave-one-speaker-out (LOO) manner.

SVM was used from the weka toolkit [17] with standard

parameter settings to avoid overfitting.

Feature selection was performed in order to determine the

features of the three different approaches that discriminate

best between speakers with PD and healthy speakers. We

decided to use a correlation based approach that evaluates

the worth of features by considering the individual predictive

ability of each feature along with the degree of redundancy

between them. The correlation-based feature selection (CFS)

approach prefers subsets of features that are highly correlated

with the class while having low inter-correlation [18]. The

evaluation function CFSS describes the heuristic “merit”

of a feature subset S containing k features. rcf accounts

for the mean feature-class correlation (f ∈ S), and rff is

the average feature-feature inter-correlation with r being the

Pearson correlation coefficient:

task GMM PROS GLOTTAL
% REC AUC % REC AUC % REC AUC

T1 85.7 0.90 57.1 0.69 59.5 0.58
T2 83.3 0.88 78.6 0.89 61.9 0.57
T3 85.7 0.88 90.5 0.94 78.6 0.87
T4 78.6 0.82 88.1 0.97 71.4 0.77
T5 88.1 0.88 66.7 0.86 69.1 0.75
T6 85.7 0.90 76.2 0.86 78.6 0.86
T7 83.3 0.94 85.7 0.91 52.4 0.53

TABLE III
RECOGNITION RESULTS (% REC) AND AREA UNDER THE ROC-CURVE

(AUC) OF THE THREE DIFFERENT SYSTEMS

(GMM,PROSODIC,GLOTTAL EXCITATION) ON THE DIFFERENT

TASKS (T1-T7)

CFSS =
krcf√

k + k(k − 1)rff

(3)

CFS has to be combined with a search strategy. We decided

to use a simple forward selection. Forward selection begins

with no feature and adds a single feature at a time. This step

is repeated until no possible single feature addition results in

a higher CFSS .

VII. RESULTS AND DISCUSSION

We present the results of the three different systems in

Sec. VII-A. Results after feature selection are presented in

Sec. VII-B.

A. Results of the different systems

TABLE III shows the results of the three different sys-

tems. One can see that the GMM system achieves quite

balanced recognition rates for the different tasks. None of the

differences achieved with the GMM system are significant.

However, the best recognition result (88.1 %) is achieved when

evaluating the recordings of task T5, which is a reading task.

Note that in T5 the participants were instructed to produce an

unnatural intonation on a given word. This could be a problem

for persons with PD because they have problems with imitating

a given stress/intonation pattern. Task T7, a reading task with

repeating heard rhymes achieves the highest “area under the

receiver operator characteristics (ROC)-curve” (AUC, 0.94).

Again and also for T6, the problems of people with PD to

imitate a given pattern could be an explanation for the good

results. The GMM system achieves the lowest recognition rate

and AUC with task T4, where the patients are asked to give

a short monologue. GMMs rely on acoustic information in

form of MFCCs. Task T4 is the only task, where the patients

are not asked to repeat a text. Thus, this task has a higher

degree of freedom, since speakers will utter different words.

This is problematic when comparing the acoustics/articulation

of different speakers.

The prosodic system achieves a recognition rate of 90.5 %

when using the recordings of task T3 (reading task). The

highest AUC (0.97) is achieved with task T4, a monologue

of approx. 90 sec. Fig. 3 contains the ROC curve for this

task. Task T1 contains an isolated vowel, so prosodic features
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Fig. 3. ROC curve of the prosodic system on task T4 (monologue);
AUC=0.97

are expected to produce a low recognition rate (57.1 %).

The recognition results of prosody achieved on task T5 are

unexpectingly low, especially because of the good results

with the GMM system on T5 and the good results of both

systems on T7. One might expect that task T2 (repeating

steady syllables) should achieve higher recognition results.

However, generally speaking the tasks containing read speech

and monologues (T3-T7) achieve higher recognition results be-

cause they contain more data than isolated vowels or repeated

syllables.

The glottal excitation system achieves the best recognition

and AUC results on the reading tasks T3 and T6. In task T6

the persons had to repeat sentences with acted emotions. We

believe, that the results for the glottal excitation system are

higher for this task, because the vocal folds play a strong role

in expressing emotions and the capability to express emotions

is strongly affected by PD. Task T7, where the speakers are

asked to repeat different rhymes, seems not to contain any

discriminative glottal parameters.

It is too early to decide, what task would be best for a

screening scenario for early detection of PD. The database is

too small and the results should be verified on a larger database

and across languages. Screening tasks should be short and

cheap, i.e., doable without the need of a supervising expert to

be present. The best results across all systems were achieved

with the standard reading task T3. This is also the easiest and

most natural task and could be realized in an unsupervised

recording procedure, i.e., people are asked to read a passage

over the phone or via an internet-based client/server-system.

The spontaneous task requires more supervision, because one

has to make sure, that the monologue is long enough and it

might be necessary to encourage the tested person to continue.

For the imitation tasks (T5-T7) the results are mixed. It is

not clear at this moment, why the voice and prosody analysis

is worse and less consistent compared to both voice and

prosody analysis of T3 and T4 and acoustic analysis of T5-

T7. Again, the supervision requirements are higher, because

it is an unnatural task to repeat given intonation, stress, and

emotion patterns. Tasks T1 and T2 are probably too short to

provide enough speaker specific data.

Almost all task/classification-system constellations produce

results which are significantly above chance, so no task can

be ruled out for a detailed diagnosis or detailed screening

procedure, but for a fast and cost-efficient screening task T3

(reading a standard text) seems to be the best choice.

B. Results after feature selection
In order to obtain the parameters of the prosodic and glottal

excitation system that are the most meaningful parameters

for discriminating between healthy persons and PD patients,

we conducted feature selection experiments. For the sake

of completeness we also performed feature selection on the

features of the GMM system, i.e., the mean vectors of the

Gaussian densities. Please keep in mind, that we performed

the feature selection on the same dataset, that we used for

the LOO experiments. Thus, recognition results after feature

selection might be too optimistic and we do not report on

any achieved improvement after feature selection. In theory,

adding useless features to a classification system should not

degrade the performance of a recognizer if the dataset is big

enough. Thus, the kind of selected features might be of higher

interest.
Feature selection on the GMM system achieved a higher

recognition rate than before and is even more balanced over the

different tasks than without feature selection. One interesting

fact is, that the feature selection approach selects only approx.

50-60 out of 4992 features. After analyzing the selected

features with respect to the different tasks, we found that

the feature selection mostly selected features of the second

derivative, i.e., the mean vectors of coefficients between 27

and 39, and some lower coefficients, i.e., the mean vectors of

MFCC1-MFCC4.
The feature vector of the prosodic system contains 12-

17 out of 292 features after feature selection. Improvements

have been achieved for tasks with a low performance. When

analyzing the types of selected features, one sees a clear

trend: For the reading and monologue tasks (T3 - T6) various

energy features and some F0 features have been selected. Note,

that our prosodic feature vector contains 73 different features

calculated on voiced segments and we calculated min, max,

mean, and stddev features for each speaker. The F0 features

were selected from the mean values, energy features were

selected from min, max and mean in similar portions. Various

studies found out, that PD patients speak in a diminished

loudness and monopitch. That perfectly explains the kind of

selected features. Task T1 (sustained phonation of /i/) relies

on energy features and voiced/unvoiced proportion features.

The explanation for this also is associated with the diminished

loudness and with the difficulty in producing a sustained

vowel, which leads to unvoiced decisions within the vowel. For

task T2 (rapid repetition of steady syllables) only minimum

and maximum energy features where selected. For this task it

is known, that the loudness of PD patients diminishes much

faster when repeating steady syllables than the loudness of

normal speaking persons.
Only a few glottal features are selected automatically, with

the correlation-based feature selection approach for the dif-

ferent tasks. Note, that the feature set contained minimum,

482



task GMM PROS GLOTTAL
% REC # feat. % REC # feat. % REC # feat.

T1 90.5 61 76.2 12 66.7 1
T2 97.6 58 85.7 12 71.4 4
T3 92.9 51 88.1 12 83.3 5
T4 97.6 47 85.7 17 66.7 1
T5 97.6 58 81.0 14 73.8 3
T6 97.6 63 88.1 17 76.2 3
T7 100.0 59 85.7 16 59.5 2

TABLE IV
RECOGNITION RESULTS (% REC) AND NUMBER OF SELECTED FEATURES

(# FEAT.) OF THE THREE DIFFERENT SYSTEMS (GMM,PROS,GLOTTIS)
ON THE DIFFERENT TASKS (T1-T7) AFTER FEATURE SELECTION

maximum, mean and stddev functionals of the basic features

of the glottal excitation system In each of the reading tasks

(T3,T5,T6 and T7) minimum and maximum values for at least

one of the masses and one of the different spring compliances

are selected. (see Fig. II for details). We expect these features

to contain information about the harshness and the breathiness

of the voice and about the reduced loudness.

VIII. SUMMARY

In this work we focused on the automatic discrimination

between healthy speakers and speakers within early stages of

PD. We tried to identify the speech tasks with the most mean-

ingful acoustic, prosodic, and vocal information to achieve

this discrimination. We found out, that read speech and

monologues contain the most important acoustic, prosodic

and vocal information, when it comes to an automatic de-

tection/discrimination of PD speech. With an acoustic sys-

tem we achieved a recognition rate of 88 %, with n voice

modeling system we achieved 79 % recognition rate. The

best results (90.5% recognition rate and 0.97 AUC) was

achieved with a prosodic system for the detection of PD

speakers in early stages. For a fast and cost-efficient screening

procedure reading a standard text seems to be most promising.

Feature selection experiments revealed, that the most important

prosodic features rely on energy pauses and F0. The masses

and compliances of the springs where identified to be the most

important features of the glottal excitation system. Especially

the results achieved by the glottal excitation system are quite

promising. However, the reported results on this system are

at an early stage, since this system was newly developed

and not applied to pathologic speech before. In future work

we will focus on an improvement of the glottal excitation

modeling and on a combination of the three approaches, since

the different ways of modeling should add complementary

information when combined.
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