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Abstract
We present several concatenation arguments for polyominoes and polycubes, and show their
applications to setting lower and upper bounds on the growth constants of some of their families,
whose enumerating sequences are pseudo sub- or super-multiplicative. Inter alia, we provide
bounds on the growth constants of general and tree polyominoes, and general polycubes.

1 Introduction

A polycube of size n is a connected set of n cells on Zd, where connectivity is through
(d − 1)-dimensional facets. Two-dimensional polycubes are also called polyominoes. Two
fixed polycubes are equivalent if one can be translated into the other. We consider only
fixed polycubes, hence we simply call them “polycubes.” The study of polycubes began
in statistical physics [4, 14], where they are called lattice animals. Counting polyominoes
and polycubes is a long-standing problem. Let Ad(n) denote the number of d-dimensional
polycubes of size (area) n. Values of A2(n) are currently known up to n = 56 [8]. The
growth constant of polyominoes also attracted much attention. Klarner [9] showed that
λd := limn→∞

n
√
Ad(n) exists. The convergence of Ad(n+1)

Ad(n) to λd (n→∞) was proven much
later [11]. The best known lower [1] and upper [10] bounds on λ2 are 4.0025 and 4.6496,
respectively.

In this paper, we develop methods for deriving bounds on the growth constants of families
of polyominoes and polycubes, for which the enumerating sequences are pseudo sub- or super-
multiplicative. Such a property can be derived from a generalized polyomino-concatenation
argument, as we show below. We demonstrate various applications of this method to general
polyominoes and polycubes, as well as to specific families, such as tree polycubes.

2 Preliminaries

2.1 Concatenation and Sub-/Super-multiplicative Sequences
A sequence (Z(n)) is super-multiplicative (resp., sub-multiplicative) if Z(m)Z(n) ≤ Z(m+ n)
(resp., Z(m)Z(n) ≥ Z(m+n)) ∀m,n ∈ N. It is known [13, p. 171] that a super-multiplicative
(resp., sub-multiplicative) sequence Z(n), with the property that Z ′(n) = n

√
Z(n) is bounded

from above (resp., below), has a growth constant. That is, the quantity limn→∞ Z ′(n) exists.
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(a) Two polyominoes (b) Vertical concatenation (c) Horizontal concatenation

Figure 1 Concatenations of two polyominoes.

Let us define a total order on cells of the cubical lattice: First by x1 (x in two dimensions),
then by x2 (y in two dimensions), and so on. Thus, in two dimensions, the smallest (resp.,
largest) square of a polyomino P is the lowest (resp., highest) cell in the leftmost (resp., right-
most) column of P . The vertical (resp., horizontal) concatenation of two polyominoes P1, P2
is the positioning of P2 such that its smallest cell lies immediately above (resp., to the right
of ) the largest cell of P1 (see Figure 1).

Similarly, two d-dimensional polycubes can be concatenated in d ways. Concatenating
two polycubes always yields a valid polycube (connected and with no overlapping cells), and
two different pairs of polycubes of sizes m,n always yield by concatenation two different
polycubes of size m+n. Many polycubes, however, can be represented as the concatenations
of several pairs of polycubes, whereas others cannot be represented at all as concatenations
of smaller polycubes.

The following is a folklore concatenation argument for polyominoes, setting a rather
weak lower bound on their growth constant. A direct consequence of the discussion above is
that A2

2(n) < A2(2n). That is, n
√
A2(n) < 2n

√
A2(2n). Hence, a sequence of the form A∗ =(

n02i
√
A2(n02i)

)∞
i=0

is monotone increasing for any natural number n0. Since the entire

sequence A = (A2(n)) is super-multiplicative, and the sequence A′ =
(

n
√
A2(n)

)
is bounded

from above [6], the sequence A has a growth constant λ2. Obviously, every subsequence of A′
also converges to λ2. In addition, since any such subsequence A∗ is monotone increasing,
any element of it, n0

√
A2(n0), is a lower bound on λ2. Empirically, the best (largest) lower

bound is obtained this way by setting n0 = 56 (the largest value of n for which A2(n) is
known), yielding the bound λ2 > 3.7031.
Remarks. 1. Although A∗ is a subsequence of A′, the upward monotonicity of the former
does not imply the monotonicity of the latter. Nevertheless, the known values of Ad(n) (in
all dimensions) suggest that A′ be also monotone increasing. We later refer to this as “the
unproven monotonicity of the root sequence” (“

√
UM,” in short).

2. A stronger observed phenomenon is the upward monotonicity of the ratio sequence, i.e.,
Ad(n)/Ad(n− 1) < Ad(n+ 1)/Ad(n) (for n ≥ 2). Equivalently, A2

d(n) < Ad(n+ 1)Ad(n− 1),
and in a more general form, A2

d(n) < Ad(n+ k)Ad(n− k) (for n > k ≥ 1).
3. Yet another observation is that n

√
Ad(n) < Ad(n)

Ad(n−1) for all n > 1, and in a more general
form (using the convention A(0) = 1), n

√
Ad(k)Ad(n− k) < Ad(n−k)

Ad(n−1−k) (for n > k ≥ 0).
4. Property (2) implies Properties (1) and (3). If all are true, then the ratio sequence (n

√
Ad(n))

converges to λd faster than the root sequence ( Ad(n+1)
Ad(n) ), as is widely believed to be case.

Similarly, for any sub-multiplicative sequence (B(n)), for which B′(n) = n
√
B(n) is

bounded from below, and for which we can show that B′(n) ≥ B′(2n) for any n ∈ N, any
known value B(n0) sets the upper bound B′(n0) on the growth constant of (B(n)).
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2.2 Pseudo Super- and Sub-Multiplicativity
A sequence (Z(n)) is pseudo super-multiplicative (resp., pseudo sub-multiplicative) if P (m+
n)Z(m)Z(n) ≤ Z(m + n) (resp., Z(m)Z(n) ≥ P (m + n)Z(m + n)), for all m,n ∈ N and
for a positive subexponential function P (·). (Hereafter, we will consider cases in which this
function is polynomial.) In such cases, we use the fact that limn→∞

n
√
P (n) = 1 and obtain

bounds on the growth constant of Z(n) from known values of Z(n).

I Theorem 2.1. Assume that for a sequence (Z(n)), the limit µ := limn→∞
n
√
Z(n) exists.

Let ci (c1 6= 0) be some constants, and � ∈ {‘≤’, ‘≥’}. Then:
(a) (multiplicative polynomial) If c1n

c2Z2(n)�Z(2n) ∀n ∈ N, then n
√
c1(2n)c2Z(n)�µ ∀n ∈ N.

(b) (index shift) If c1Z
2(n+c3)�Z(2n) ∀n ∈ N, then n

√
c1Z(n+ 2c3)�µ ∀n ∈ N. Equivalently,

if c1Z
2(n) � Z(2n+ c3) ∀n ∈ N, then n

√
c1Z(n− c3) � µ ∀n > c3.

Proof. In both cases, we manipulate the given relation and reach a relation of the form ζ(n)�
ζ(2n). Then, we follow closely the logic of the basic argument given in the introduction.

(a) Simple manipulations of the given relation show that n
√
c1(2n)c2Z(n) � 2n

√
c1(4n)c2Z(2n).

Then, by setting ζ(n) = n
√
c1(2n)c2Z(n), we see that ζ(n) � ζ(2n). It follows that the

subsequence (ζ(2i+1n0))∞i=0 is monotone increasing (if � = ‘≤’) or monotone decreasing
(if � = ‘≥’), and converging to µ, for any natural number n0. The claim follows.

(b) In this case, we substitute n := m+c3 in the given relation and manipulate as above, obtain-
ing that c2

1Z
2(m+2c3)�c1Z(2m+2c3). Hence, m

√
c1Z(m+ 2c3)� 2m

√
c1Z(2m+ 2c3). Ele-

mentary calculus shows that the limits of the sequences
(

m
√
c1Z(m)

)
and

(
m
√
c1Z(m+ 2c3)

)
,

as m → ∞, are equal. Finally, we fix ζ(m) = m
√
c1Z(m+ 2c3) and continue as above.

The equivalent case, where the shift is in the right side of the relation, is treated similarly.
J

3 Methods of Concatenation

We now list a few concatenation methods. For ease of exposition, we use relations that yield
lower bounds on the growth constants. The sequence and its growth constant are denoted
by Z(n) and λZ , respectively. Polycubes P1, P2 are to be concatenated, and the largest
(resp., smallest) cell of P1 (P2) is a1 (a2). Consistently with

√
UM, we observed that the

best (largest) lower bounds on λd were obtained by using the largest known Ad(n).

[E] The most elementary method of concatenation attaches cell a1 to cell a2 in a single way.
This leads to the relation Z2(n) ≤ Z(2n), which implies that λZ ≥ n

√
Z(n) for all n ∈ N.

[C] A simple improvement on Method [E] is achieved by considering all possible (lattice
dependent) c ways of attaching a1 to a2, s.t. a1 is smaller than a2. This leads to the
relation cZ2(n)≤Z(2n), which, by Theorem 2.1(a), implies that λZ≥ n

√
cZ(n) ∀n ∈ N.

[M] A possible improvement on Method [C] can be obtained by considering all possible
polycubes of size k concatenated in between P1 and P2. As in Method [C], there are c
ways of attachments. This leads to the relation c2Z(k)Z2(n) ≤ Z(2n + k), which, by
Theorem 2.1(b), implies that λZ ≥ n

√
c2Z(k)Z(n− k) for all k, n ∈ N, such that n > k.

[O1] One can also overlap cells a1 and a2. This always yields a valid polycube, and different pairs
of polycubes generate by this method different polycubes. This leads to Z2(n) ≤ Z(2n−1),
which, by Theorem 2.1(b), implies that λZ ≥ n

√
Z(n+ 1) for all n ∈ N.

[MO] One can also concatenate P1 and P2 through all possible polycubes of size k, using 1-cell
overlaps in the middle concatenations. This leads to Z(k)Z2(n) ≤ Z(2n+ k − 2), which,
by Thm. 2.1(b), implies that λZ ≥ n

√
Z(k)Z(n− k + 2) for all k, n ∈ N, s.t. n > k − 2.

EuroCG’20
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Known OEIS Concatenation Methods Other
Dimensions Values Sequence [E] [C] [O1] Methods

2 56 A001168 3.703120 3.749241 3.792324 4.00253 [1]
3 19 A001931 6.021134 6.379548 6.652636 —
4 16 A151830 8.462728 9.228670 9.757631 —
5 15 A151831 10.909365 12.144998 12.939813 —
6 15 A151832 13.523756 15.239618 16.288833 —
7 14 A151833 15.598535 17.924538 19.269014 —
8 12 A151834 16.647767 19.797643 21.497519 —
9 12 A151835 18.841772 22.627780 24.606050 —

Table 1 Lower bounds on the growth constants of polycubes, obtained by different methods.
(Best previously-published lower bounds appear in boldface.)

T1 T2

(a) Two dimensions (b) Three dimensions

Figure 2 Concatenating trees.

4 Simple Applications

4.1 General
We applied methods [E], [C], and [O1] to polyominoes and polycubes, and found lower
bounds on λd (for 2 ≤ d ≤ 9). Table 1 summarizes our findings. (In two dimensions, the
bounds are inferior to the bound 4.00253 obtained by the much stronger twisted cylinders
method [1], which, unfortunately, cannot be generalized efficiently to higher dimensions
because it becomes computationally intractable.) We show in Section 5 how to improve all
known bounds in d ≥ 3 dimensions.

4.2 Trees
A polycube is a tree if its cell-adjacency graph is acyclic. Tree polycubes and their respective
growth constants also attracted interest in the literature (see, e.g., [5]). In order to preserve the
tree property, special restrictions must be enforced while concatenating them. Figures 2(a,b)
show two tree polycubes T1, T2, having cells c1, c2 as their largest and smallest cells, resp.,
concatenated by Method [E]. To remain a tree, the only valid concatenation is the one in
which c1 and c2 are aligned with the most dominant axis of the lexicographic order. This
leaves a (d−1)-dimensional buffer that prevents cycles in the concatenation of T1 and T2.

Let Ad;T (n) and λd;T denote the number of n-cell tree polycubes in d dimensions,
and their growth constant, respectively. As in similar examples, we obtain the relation
A2

d;T (n) ≤ Ad;T (2n), which, by Theorem 2.1(b), implies that λd;T ≥ n
√
Ad;T (n) for all n ∈ N.

Table 2 shows the best lower bounds obtained this way in dimensions 2–8, in all cases using
the largest known values of the respective sequences.
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Known OEIS Method
Dimensions Values Sequence [E]

2 44 A066158 3.4045
3 17 A118356 5.5592
4 10 A191094 6.7698
5 10 A191095 8.8035
6 8 A191096 9.4576
7 7 A191097 10.0909
8 7 A191098 11.4891

Table 2 Lower bounds on the growth constants of tree polycubes of various dimensions.

x2

x1

x2

x1

h− 1 n− h− 1

++

h− 2 n− h

++

(a) (b) (c) (d)

Figure 3 Constructions for the proof of Theorem 5.1.

5 Recursive Bounding

We now present a recursive scheme for improving bounds obtained by all methods described
above. Let us demonstrate the scheme by a concrete example of setting lower bounds on the
growth constants of polycubes. As observed earlier, the sequence enumerating d-dimensional
polycubes is super-multiplicative and it has a growth constant, hence, by concatenation
Method [O1], any term of the form n−1

√
Ad(n) is a lower bound on λd. In practice, we can

prove relations which are tighter than the super-multiplicativity condition, for example:

I Theorem 5.1. Let h = b(n+ 1)/2c. Then, for every n ≥ 4, we have that

Ad(n) ≥ Ad(h)Ad(n−h+1)+ d(d− 1)2

2 (Ad(h−1)Ad(n−h−1)+Ad(h−2)Ad(n−h)). (1)

Proof. The term on the left side of Relation 1 is the number of all d-dimensional polycubes
of size n, whereas the terms on the right count a subset of these polycubes.

We distinguish between three types of polycubes by the connectedness of their cells.
The first term, Ad(h)Ad(n− h+ 1), counts d-dimensional polycubes obtained by concate-

nating two polycubes of sizes h and n−h+1 with a 1-cell overlap. In these combinations, the
lower h cells, as well the upper n−h+1 cells, form valid polycubes which share the hth cell.

The second factor of the second term, Ad(h−1)Ad(n−h−1) +Ad(h−2)Ad(n−h), counts
two types of constructions. In both types, we place 3-cell L-shapes (Figures 3(a,b)) in the
middle in order to force the hth cell to be disconnected from either the upper n−h cells or
the lower h−1 cells (Figures 3(c,d)). The largest (smallest) cell of the lower (upper) polycube
is marked by an empty circle, and the hth cell of the resulting polycube is marked by an
asterisk. The trick is to mix between no-overlap and 1-overlap on the two sides of the L. To
this aim, the L-shape in Figure 3(a) is overlapped with the lower polycube of size h−1, and
concatenated to the upper polycube of size n−h−1 (Figure 3(c)). Similarly, the L-shape in
Figure 3(b) is concatenated to the lower polycube of size h−2 and overlapped with the upper
polycube of size n−h (Figure 3(d)).

EuroCG’20
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d Bound
2 3.7944
3 6.6621
4 9.7714
5 12.9569
6 16.3087
7 19.2927
8 21.5298
9 24.6416

Table 3 Improved lower bounds on λd for 3 ≤ d ≤ 9.

Let us finally explain the first factor of the second term. First, there are
(

d
2
)
options for

choosing the orientation of L. (Directions are denoted by x1 and x2, where x1 has precedence
over x2 in the lexicographic order.) Second, the no-overlap concatenation (on one of the
sides) can be done in d−1 ways: All directions are valid except direction x2, the direction
which would cover the forbidden cell (marked with an “×” in Figures 3(a,b)). This constraint
avoids multiple counting; otherwise, we would have in the middle a 2×2 square which can be
created in more than one way. Overall, we have a factor of

(
d
2
)
(d− 1) = d(d− 1)2/2.

It is easy to see that all resulting polycubes are different by construction. J

Unfortunately, we cannot derive from Relation (1) “chains” of lower bounds. However,
we can apply a recursive procedure for bounding from below any value of Ad(n). Since
we know values of Ad(n) up to some n = n0, we can construct a sequence B(n), such
that B(n) ≤ Ad(n) for every n: For 1 ≤ n ≤ n0, let B(n) = Ad(n); and for n > n0, set B(n)
recursively to the value calculated from the right side of Relation 1.

One can apply this method for large values of n ad infinitum, or, more practically, until
the available computing resources are exhausted, and choose the best value encountered. We
ran this procedure up to n ≈ 12,000,000 for 2 ≤ d ≤ 9. This improved the lower bounds
on λd in all of 3 ≤ d ≤ 9 dimensions. Table 3 summarizes the obtained bounds.

6 Conclusion

We explore concatenation arguments and their applications to setting lower bounds on the
growth constants of polycubes and tree polycubes. In the full version of the paper, we also
provide a much more complex application of the method to setting an upper bound on the
growth constant of convex polyominoes.

A possible direction for future work is analyzing the quality of our lower bounds. It was
conjectured [2] that λd behaves asymptotically like (2d− 3)e+O(1/d) (as d→∞); see the
blue line in the graph shown in Figure 4. Bounds obtained by the recursive-bounding method
also exhibit a linear dependence on d, surprisingly similar to 3.13d−2.63 (obtained with
Rvalue=0.9998, using Python’s linear least-squares regression tool scipy.stats.linregress);
see the orange line in the same figure. Are the approximate slope π and intercept −e a
coincidence, or are they inherently related to the concatenation method?
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Figure 4 Conjectured growth constants (blue), and lower bounds we obtained (orange).
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