
MEMORY EFFICIENT SUBSEQUENCE DTW FOR QUERY-BY-EXAMPLE SPOKEN TERM
DETECTION

Xavier Anguera and Miquel Ferrarons

Telefonica Research, Edificio Telefonica-Diagonal 00, Barcelona, Spain
xanguera@tid.es

ABSTRACT

In this paper we propose a fast and memory efficient Dynamic
Time Warping (MES-DTW) algorithm for the task of Query-by-
Example Spoken Term Detection (QbE-STD). The proposed algo-
rithm is based on the subsequence-DTW (S-DTW) algorithm, which
allows the search for small query sequences of feature vectors within
a much longer reference sequence by considering fixed start-end
points in the query and discovering optimal matching subsequences
within the reference. The proposed algorithm applies some modifi-
cations to S-DTW that make it better suited for the QbE-STD task,
including a way to perform the matching with virtually no system
memory, optimal when querying large scale databases. We also de-
scribe the system used to perform QbE-STD, including an energy-
based quantification for speech/non-speech detection and an overlap
detector for matches. We test the system proposed using the Medi-
aeval 2012 spoken-web-search dataset and show that, in addition to
the memory savings, the proposed algorithm brings an advantage in
terms of matching accuracy (up to 0.235 absolute MTWV increase)
and speed (around 25% faster) in comparison to the original S-DTW.

Index Terms— One, two, three, four, five

1. INTRODUCTION

Query-by-Example (QbE) algorithms are used to search for audio
patterns within audio documents by using audio examples. Within a
Spoken Term Detection (STD) task the example is a speech query,
which is searched for within a speech corpus to retrieve all the real-
izations of that query, regardless of the speaker that uttered them or
the recording acoustic conditions. Although this task could be ap-
proached by first decoding the data into phoneme lattices and then
searching for the decoded query phonetic string, doing so would re-
quire prior knowledge about what is being decoded and searched
for, which is not always available. Recently, a family of algorithms
based on pattern matching techniques have shown their effectiveness
in performing this task while not using any prior knowledge of the
language, or of the content being spoken nor any pre-trained acoustic
models [1].

Most pattern matching algorithms inherit from the well known
Dynamic Time Warping (DTW) algorithm [2] where an optimal non-
linear alignment is found between two sequences of feature vec-
tors through dynamic programming techniques. Although Hidden
Markov Models (HMM) made DTW obsolete in the 80’s by using
statistical processes to learn acoustic properties from many labelled
examples, recently DTW-based algorithms are becoming again use-
ful for zero-resource settings, where no (or very little) labeled data is
available for training. Among the first to propose novel adaptations
to DTW is the Segmental-DTW algorithm first introduced in [3] for
the task of unsupervised word pattern discovery in speech. The

Segmental-DTW algorithm applies successive DTW steps within
overlapping parallelogram-shaped global constraints on the data to
find matching sequences of acoustic frames. In [4] the authors im-
proved upon the previous work by using posterior probabilities from
a Gaussian Mixture Model (GMM) as features, useful when com-
paring multiple speakers. A variation of such posterior features, as
described in [5], have been used in this work. Also using posteriors,
[6] modifies the DTW algorithm for QbE. The segmental DTW al-
gorithm has also been used for the QbE task by forcing the start-end
points in the query, although it can be quite slow to compute.

In [7], the authors propose a QbE system using a variation of
the DTW algorithm and the use of an image algorithm in a post-
processing step. Also using image processing for improved perfor-
mance, [8] proposes a spoken term discovery system that has been
later applied to QbE in [9]. This system has been designed for ap-
plication to large scale databases, by using information retrieval and
image processing algorithms to make the search very fast, which
has traditionally been one of the major drawbacks of DTW systems.
Alternatively, in [10] QbE is performed by comparing audio at the
segment level, where the segmentation is obtained through agglom-
erative hierarchical clustering of similar acoustic frames.

The subsequence-DTW algorithm (S-DTW) initially proposed
by Müller in [11] for QbE on music stands out from the previous
due to its simplicity and effectivity. In S-DTW a standard DTW
is applied which does not penalize insertions in the first and last
frames of the query when analyzing any query-reference position.
As we will see in the experimental section, the original S-DTW is
already quite competitive with regard to computational complexity
when compared to most of the approaches mentioned above, with
the exception of [8]. Still, S-DTW and many other algorithms are
quite memory inefficient. For example, for a query of length N and
a reference of length M, S-DTW involves storing a matrix of NxM
values, which can become prohibitive when M is quite large. Note
that although the main goal in QbE amounts to simply finding the
locations (and maybe the score) of all reference segments matching
a query, these algorithms additionally output the exact alignment be-
tween matching sequences, at the expense of considerably increasing
the memory required. We will see that by not storing such an align-
ment we will be able to dramatically reduce the memory required.

In this paper we propose a memory efficient implementation of
the S-DTW that does not return the unnecessary frame-by-frame
alignment between query and found reference sequences, but only
outputs the matching start-end points and their matching scores. The
algorithm proposed (which we call MES-DTW for Memory Efficient
S-DTW) uses a sliding window to compute the optimum alignment
and just requires the storage of around Nx2 values in memory at a
time. In addition, in this paper we also propose a speedup to S-DTW
and experiment with two different normalization techniques that are
able to boost S-DTW performances. As a result, the proposed MES-

DTW is shown to be much faster than many pattern-matching im-
plementations while requiring very little memory. These properties
make MES-DTW suitable for application in embedded devices and
for searching on mid-to-large scale databases.

In addition, we also describe the QbE-STD system that allows
for the search of an input query signal in a reference speech database
by using the MES-DTW algorithm. The system is composed of
a feature extraction front end to extract posteriorgram features, a
speech/non-speech detector that uses a quantization-based thresh-
olding, the MES-DTW algorithm and an overlap detector to postpro-
cess all matches corresponding to very similar matching sequences.

The remaining of this paper is structured as follows. First, in
Section 2, we review the S-DTW algorithm, as it is the baseline of
our proposed algorithm. Then, Section 3 describes the three im-
provements of S-DTW that conform the proposed MES-DTW algo-
rithm. Then we describe the QbE system that uses the MES-DTW
algorithm in Section 4. Finally, in Section 5 we evaluate the system
performance and in Section 6 some conclusions are drawn.

2. SUBSEQUENCE DYNAMIC TIME WARPING

In this section we review the S-DTW algorithm first introduced
by Müller in [11] as a modification to the classical DTW algo-
rithm to find matching subsequences between a query feature se-
quence X := (x1, x2, . . . , xN) and a reference feature sequence
Y := (y1, y2, . . . , yM) where N and M are the length of each se-
quence and usually N � M . This algorithm is suitable to be used
in query-by-example applications, where the start-end points of the
query are fixed to the extremes of X , and one wants to find the sub-
sequence in Y (i.e. Y (a∗ : b∗) := (ya∗ , ya∗+1, . . . , yb∗)) that opti-
mally matches X. More specifically, we are looking for the locations
(a∗, b∗) in Y, where 1 ≤ a∗ ≤ b∗ ≤ M , that satisfy equation 1
where DTW () is the global time-warped distance between two se-
quences of feature vectors.

(a∗, b∗) := argmin
(a,b):1≤a≤b≤M

(DTW (X,Y (a : b))) (1)

S-DTW finds the optimal solution to equation 1 by applying a
standard DTW where insertions in the alignment paths are not pe-
nalized when they appear at the beginning or the end of X . The
S-DTW algorithm implements this in two steps. First, the accumu-
lated cost matrix (D(n,m) where 1 ≤ n ≤ N relates to frames in
X , and 1 ≤ m ≤ M relates to frames sin Y) is modified so that
D(1,m) := c(x1, ym) for 1 ≤ m ≤ M , where c() indicates the
distance between a given query frame and a reference frame. Such
modification allows the dynamic programming process to consider
all points (1,m) as possible starting points for the optimal match-
ing subsequence. Then, once we have computed the entire matrix
D(n,m), the optimum matching subsequence ending point b∗ is se-
lected following equation 2.

b∗ := argmin
bε[1:M]

D(N, b) (2)

This second step also differs from the classic DTW implemen-
tation in that we allow the optimum matching subsequence to finish
in any position along the reference subsequence that follow equation
2. This is equivalent to a DTW implementation where the cost of
insertion in the first and last query rows is 0. Once the last point
in the matching subsequence (N, b∗) has been found, [11] performs
a trackback dynamic programming process (inverse to that used to

find b∗) to find the optimum starting point (1, a∗) and therefore the
subsequence Y (a∗, b∗) optimally matching X .

Using S-DTW for query-by-example applications where mul-
tiple matching subsequences might be found in reference Y for a
given queryX is straightforward and also covered by [11]. Once the
first matching subsequence has been found, all values around point
(N, b∗) in the last query row in matrix D(n,m) are set to a high
value, and equation 2 is run again to find the next best ending point
(N, b∗2). The process is then repeated iteratively while the accumu-
lated distance of selected matching subsequences remains below a
given threshold τ , D(N, b∗i) < τ . In our implementation of the al-
gorithm we ignore all points between the selected local minima and
adjacent local maxima.

3. MEMORY EFFICIENT SUBSEQUENCE DYNAMIC
TIME WARPING

In this section we describe the memory efficient dynamic time warp-
ing algorithm (MES-DTW), derived from the S-DTW algorithm de-
scribed in Section 2. The three main novelties of MES-DTW w.r.t.
S-DTW are the use of a lookup table to perform a fast trackback to
determine the value of a∗ once b∗ is found, two alternative normal-
izations of matching paths, and a memory efficient implementation
that dramatically reduces the required system memory. Next we de-
scribe each of these novelties in detail.

3.1. Matching Subsequence Fast Trackback

In the original definition of S-DTW, upon finding the optimum sub-
sequence ending point (N, b∗) we need to perform a dynamic pro-
gramming trackback through the cumulative cost matrixD(n,m) to
find the optimum starting point a∗. This step can be easily sped up
by storing the alignment steps taken locally by the forward dynamic
programming process in an additional matrix S(n,m) so that the
trackback can be performed without recomputing the comparisons
between nodes. Alternatively, the processing can be further reduced
by instead storing in S(n,m) the optimal starting points in Y at each
step of the dynamic programming process, so that once b∗ is found,
one just needs to lookup in S(N, b∗) the value of a∗. Note that this
modification to the algorithm requires that the matrix S(n,m) be
stored in memory, which can become a burden in certain cases. We
will see, though, that by using the memory efficient implementation
explained below, this memory increase is greatly reduced.

3.2. Matching Path Normalization

When applying dynamic programming techniques to find the opti-
mal alignment between two sequences, each local alignment deci-
sion is taken based on the comparison of the cumulative cost values
of nearby points, chosen according to predefined local constraints.
In this setting, diagonal alignments are favored as less steps are re-
quired to align both sequences when these are constrained to contain
the whole query sequence. In order to control the importance of each
alignment path some research [12] has addressed the application of
weights together with local constraints. Similarly, in [13] a local
normalization of points by their path lengths is made before the se-
lection of the best local alignment. Alternatively, the final distance
of the matching paths can be globally normalized by the matching
length in order to make the result comparable among matches of dif-
ferent lengths.

In S-DTW the normalization of scores is quite relevant as paths
starting in different starting points compete for the optimal align-

ment at each point, where diagonal alignments are also favored. Un-
like in [11] where no normalization is applied, we experiment in this
paper with both local and global normalizations. At the local level
we normalize the cumulative costs before deciding the local align-
ment. At the global level we normalize the final alignment so that
global distances are comparable between different-length sequences.
Note that the theoretical assumptions that make dynamic program-
ming suitable for the alignment of two sequences are still valid when
applying such normalizations over the cumulative distance matrix.

In this paper we use the same local constraints as proposed in
[11], i.e. single-frame insertion, deletion and alignment. In this set-
ting, local normalization modifies the constraints as shown in equa-
tion 3, where D(n,m) is the accumulated cost matrix and C(n,m)
stores the length of the best alignment path leading to each point
(n,m). In this work we measure the path length by using the Man-
hattan distance.

D(n,m) = min


D(n−1,m)+d(n,m)

C(n−1,m)+1

D(n−1,m−1)+d(n,m)
C(n−1,m−1)+2

D(n,m−1)+d(n,m)
C(n,n−1)+1

(3)

Note how this normalization requires the storage of an additional
matrix C(n,m) to keep track of the path length for each point. In
section 3.3 we see how to minimize the effect of this memory in-
crease.

Alternatively, a global normalization is performed by using non-
normalized local constraints and normalizing the cumulative cost for
n = N as shown in equation 5 before performing the search for
the optimum ending point b∗. This is equivalent to the score we
obtain at that location by applying local normalization, except that
local decisions here have been taken without any normalization. In
fact, when applying a global normalization we can avoid building a
distance matrix C(n,m) as we can obtain the normalizing factor as
C(N,m) = N + (b∗ − a∗).

Dnorm(N,m) =
D(N,m)

C(N,m)
(4)

3.3. Memory Efficient Implementation

The implementation of any DTW-based algorithm usually involves
computing first a similarity matrix between all frames in the two
sequences being compared and then performing dynamic program-
ming steps to find the optimal alignment between the sequences. In
S-DTW this typical approach requires the storage of the accumulated
cost matrix D(N,M) in memory, occupying N ·M real-valued po-
sitions. In addition, in order to speedup the trackback of the best
matching sequence start a∗ for an optimum ending point b∗ we cre-
ate matrix S(n,m) with an extra N ·M values. Finally, if a local
normalization by the path length is to be applied, yet another N ·M
values need to be stored for matrix C(n,m). Overall, the amount
of memory required if the two modifications proposed above are ap-
plied is around 3 ·N ·M Which can cause a burden in the memory
required to run S-DTW if M (reference data) is very big.

Given that for a typical QbE search the goal is usually only to
find the optimum locations (a∗, b∗) in Y and their alignment score,
there is no need to store the local alignment steps or the values to
track them back once the optimum ending points have been found
for the whole reference sequence. We can obtain the exact same
results by storing in memory only the values needed to make local
decisions and to find the optimum starting point a∗ once the opti-
mum ending point b∗ has been found. We achieve this through the

processing of the dynamic programming through a sliding window
on the reference data, as shown in Algorithm 1.

Algorithm 1 Memory Efficient Subsequence DTW
Input: X,Y sequences of feature vectors
Output: Y (a∗i : b∗i); i = 1 : K matching subsequences

Initialize vectors D′1 ←∞, C′1 ← 0, S′1 ← 0
for m = 1 to M do

for n = 1 to N do
if n == 1 then
D′2(1)← d(n,m), C′2(1)← 1

else
Apply local constraints to D′2(n) {equation 3}

end if
end for
if D′1(N)/C′1(N) is a local minima then

Consider match at b∗ = m and retrieve a∗ = S(N, b∗)
end if
swap vectors D′, C′ and S′

end for
return top K matching subsequences

To find matching subsequences using MES-DTW, instead of the
full accumulated cost matrix D(n,m), we require only the storage
of two vectors corresponding to the two columns in D(n,m) in-
volved in the local decisions D′1:2 = D(n,m − 1 : m). The same
applies to the C(n,m) and S(n,m) matrices. In addition, we also
store the single value D(N,m − 2) in order to decide on the exis-
tence of a local minima in D′1(N).

Initialization of the algorithm is done by setting D′1 ←
∞, C′1 ← 0, S′1 ← 0. This is similar to what is done in [11] for
an extended row 0 in the accumulated cost matrix D. Then, for each
processing step (i.e. each reference frame) we apply the local con-
straints shown in 3, except for n = 1 where all paths are set to start
from (i.e. no insertion penalty is applied).

After each step we compare the ratio D′1(N)/C′1(N) to its
neighboring normalized values (all with n = N) and whenever we
find a local minima we consider that frame to be an ending point
b∗ of an optimum matching subsequence. As our objective is to re-
turn the best K matching subsequences, at this step we just store the
tripletm,S′1(m), D′1(m) for later processing. Before we move onto
the next reference frame we swap the contents of both vectors (op-
timally implemented through memory pointers) so that D1, C1 and
S1 contain data for the step we just finalized and D2, C2 and S2

become available to be filled in the next step.
After all processing of the reference data has been performed,

we rank the stored triplets according to the matching scores obtained
and return the K-results with the smallest values.

Over all, the required memory for the dynamic programming
step with all proposed modifications is roughly 3 · 3 · N , which is
significantly smaller that the memory required in the “full-memory”
version, which would be roughly 3 ·N ·M .

4. QUERY-BY-EXAMPLE SPOKEN TERM DETECTION
SYSTEM

One of the most common current applications of the subsequence-
DTW algorithm is for Query-by-Example (QbE) Spoken Term De-
tection (STD) where a given acoustic query is searched for within a
corpus of reference audio recordings. The objective consists in de-
termining with high accuracy in which locations in the corpus each

query appears. Figure 1 shows the steps followed to perform QbE-
STD using the subsequence matching algorithm proposed above.

First, we extract MFCC-39 (13 cepstral + 13 derivatives + 13
accelerations) features from the acoustic data (both reference and
queries) in a standard way (10ms scroll in 25ms window). Then,
like in standard ASR-based systems, we account for the non-speech
frames present in the reference and query data. Every query will usu-
ally have an unknown amount of non-speech both at the beginning
and the end, in the case of a single-word query, and anywhere else
for multiple words. It is desirable to detect and not consider such
frames in the matching, as non-speech frames always obtain high
matching scores and can turn the system unusable. In order not to
depend on external data to pre-train an acoustic model to detect such
frames, we implement an energy-based system that is trained on the
reference data itself. Note that in a QbE-STD application the refer-
ence data is considered known by the system before performing the
test with unknown queries, therefore training better acoustic models
with this data should not be considered over-fitting.

The speech/non-speech model is trained by using only the en-
ergy values of the signal. First, we gather the 10% of acoustic frames
with lowest energy from our reference dataset. With these frames we
train a one Gaussian non-speech model and with the rest we train a
4-Gaussian speech model. Then we iteratively decode and retrain
the models using the same data. This usually increases the number
of frames in the silence model to around 30%, as we do not impose
any minimum speech or non-speech duration. We stop after 20 it-
erations or when the difference in number of frames between two
consecutive iterations is small. We store the Gaussians in the speech
model ordered by their mean energy.

Queries and reference data are then labeled using this model.
Instead of just labeling each frame with the most likely model, we
record which of the Gaussian mixtures is the closest one. This
produces a frame-level energy-based labeling with label 0 for non-
speech and 1 through 4 for speech frames. This was done because
we found a big correlation between frame energy and matching er-
rors. Before performing any matching between query and reference
data we eliminate those frames below a certain level (from 1 to 4).
The higher the level, the fewer the frames that will be matched, and
therefore the system will run faster and with more reliable data, but
also more false alarms can result when queries become too small. In
our experiments we eliminated all frames assigned to levels 0 and 1.

Next, 128-dimensional posterior probabilities are obtained from
speech frames. Posterior probabilities have been successfully used
in pattern matching for some time [4]. They have been shown to
be a robust representation of the acoustic signal when attempting to
match audio from different speakers. Several methods have been
proposed in the literature to obtain the posterior probabilities. These
include posteriors obtained from Gaussian Mixture Models (GMM)
[4], from phonetic decoders [7] or from models derived automati-
cally from the data through acoustic segment models [14]. In our
system we use Gaussian posteriors obtained from a modified GMM
model [5] trained on all available reference data (i.e. development
and testing data). This modified GMM training combines the use of
EM and K-means iterations in order to maximize the discovery and
separation of automatically generated acoustic regions in the acous-
tic space.

Comparison between any two feature vectors is done by means
of the distance proposed in equation 6. Note that we do not apply any
post-processing to the posterior probability features (e.g. imposing
a minimum posterior value) like in [6], as we found no advantage in
doing so.

d(x,y) = − log

(
x · y
||x||||y||

)
(5)

Posterior-probability features are the input to a DTW-based al-
gorithm, which can either be the MES-DTW, S-SDW or others. In
the current implementation the reference data is first loaded into
memory and then each query (much smaller in size) is used to re-
trieve the K-best subsequences of the reference matching the query.
Note that in QbE-STD applications the number of matches is not
known, and can range from none to several hundreds, depending on
the length of the reference. Depending on the particular use-case
scenario that the algorithm is applied to one needs to decide on the
value of K. Given that in this paper we are not interested in any
particular use-case, but in measuring retrieval accuracy, we set K to
a high value (i.e. K = 1000) and later apply a score thresholding
on the final resulting matches to find the optimum balance between
precision and recall.

Given a list of reference subsequences optimally matching the
query, the next step is to post-process this list to eliminate subse-
quences that are highly overlapping. Even though the algorithms
described in this paper forbids for multiple ending points b∗ to be
very close to each other, in reality there are still multiple matching
subsequences being returned by the algorithm. This is due to the na-
ture of speech, where nearby acoustic frames are acoustically very
similar. In order to detect overlaps we apply equation 7 on two ref-
erence matching subsequences Y (a∗1 : b∗1) and Y (a∗2 : b∗2) to obtain
the overlap ratio.

ovl(Y (a∗1 : b∗1), Y (a∗2 : b∗2)) =
min(b∗1, b

∗
2)−max(a∗1, a∗2)

min((b∗1 − a∗1), (b∗2 − a∗2))
(6)

Whenever the ratio is greater than 0.5 we consider the two se-
quences to be in overlap and eliminate the one with highest average
distance to the query.

The last step in the process involves inserting back the elimi-
nated non-speech frames in order to get accurate start-end times in
the reference dataset.

5. EXPERIMENTAL SECTION
In this section we show the results of comparing the proposed MES-
DTW and the QbE system to the S-DTW algorithm and another state
of the art algorithm in QbE search. To do so, we used the Mediaeval
2012 SWS evaluation datasets and metrics [15]. The database con-
sists of around 7.5 hours of telephone recordings from 4 different
African languages, created as a subset of the Lwazi database [16]
and split into a 3.6h development set and 3.8h evaluation set. A set
of 100 development and 100 different evaluation queries are used
to query the data, where multiple instances of each of the queries
might exist, produced by different speakers. As a result, the sys-
tem needs to return the exact locations of found matches, and their
scores. The metrics used to compare results are the MTWV (Mini-
mum Term Weighted Value) and the real-time speedup factor. The
MTWV was initially used in the NIST 2006 Spoken Term Detection
evaluation [17]. Like in the Mediaeval 2012 evaluation, the scor-
ing parameters of the MTWV metric were modified to reduce the
impact of false alarms in the results and give more importance to
missed matches. The real-time speedup factor computes the average
time speedup obtained when searching for a 1 second query within
the reference database compared to manually listenning to the whole
database. Experiments were conducted using an Ubuntu virtual ma-
chine with 2 assigned cores and 8GB of RAM over a computer with
2xIntel Xeon CPUs 2.5GHz and 96Gb of DDR3 RAM 1333MHz.

Fig. 1. General system blocks for SWS task

Table 1. Evaluation of modifications to S-DTW (development set)
System MTWV Speedup

S-DTW [11] 0.169 897
S-DTW + origin matrix 0.169 903
S-DTW + local norm 0.404 834

MES-DTW + local norm 0.404 1165
S-DTW + global norm 0.393 919

MES-DTW + global norm 0.393 1287
RAILS [9] 0.381 8002

Table 2. Evaluation of modifications to S-DTW (evaluation set)
System MTWV Speedup

S-DTW [11] 0.243 1033
S-DTW + origin matrix 0.243 1045
S-DTW + local norm 0.375 956

MES-DTW + local norm 0.375 1272
S-DTW + global norm 0.394 1006

MES-DTW + global norm 0.394 1377
RAILS [9] 0.384 n/a

5.1. Performance analysis

Tables 1 and 2 show the results obtained with the development and
evaluation sets respectively. We compare the original S-DTW as
proposed in [11] with the modifications that derive into our proposed
MES-DTW. In all cases, the same QbE-STD system was used, with
the same parameters. As expected, the inclusion of the S matrix
to store the origin of each possible path does not affect the MTWV
score. Surprisingly, although on paper the use of matrix S(n,m)
should bring about big processing performances, the actual real-time
speedup increase is not very significant. Our hypothesis is that the
time spent in memory management is quite big, therefore eating up
the improvements brought by not performing a trackback.

Results for the local and global normalizations are also shown,
both for the non-efficient and for the memory efficient S-DTW al-
gorithms. Results for the development and evaluation sets are dif-
ferent. While in the development set performing a global normal-
ization achieved best results, it is with the local normalization that
the best MTWV values are found for the evaluation set. In average,
the local normalization still obtains best results between both sets.
In terms of computation, we observe how by introducing an extra
normalization matrix C in ”S-DTW+local norm” we obtain slower
results than in ”S-DTW+origin matrix”. This could be explained,
as before, by the fact that it takes extra computation to allocate and

2The value reported by the authors was adapted for a 1 second query.

free the necessary memory. All these problems can get resolved by
using the MES-DTW algorithm, with which the necessary allocated
memory is minimal. For this reason all of the results for MES-DTW
have much better real-time speedup factors than their counterparts.
Overall, the MES-DTW system with global normalization achieves
the best real-time speedup factor of all possibilities, reaching a 30%
improvement compared to the S-DTW in the development set and a
25% improvement in the evaluation set.

Finally, we compare our results to those reported in [9] on the
same database. The system proposed in [9, 8] follows a pattern-
matching approach while using some image processing and infor-
mation retrieval concepts for fast retrieval of results. Recently, in
[18] very good performances have been shown on truly large scale
(> 400h) databases. For the database proposed here, their reported
MTWV are slightly outperformed by our system’s results while their
real-time speedup factor (normalized to 1s queries) is much slower.
In their defense we should say that for the databases used in this pa-
per (∼ 4h) their information retrieval setup might not be able to take
full advantage of their large-scale speedups.

5.2. Matching length analysis

In the present implementation of S-DTW or MES-DTW there is no
explicit enforcement of any global constraints to the aligned paths.
This means that no constraints are imposed to the alignment (other
than an implicit predilection for diagonal alignments, as explained
in Section 3.2) to avoid very short queries from matching very long
reference subsequences, and vice versa.

Fig. 2. Histogram of matching length ratios

To analyze how this might affect our matching, Figure 2 shows
in blue, the normalized histogram of sequence length ratio between

all query sequences and matching reference subsequences returned
by the system for the development set. Note that many of these se-
quences might not correspond to a true match, but do correspond
to a match that the MES-DTW finds plausible (we repeated the test
for a smaller subset of the top best matches and results were equiv-
alent). The ratio between both sequence lengths has been computed
as shown in Equation 8 which is close to 0 when both lengths are
equal, positive when the query sequence is longer and negative when
the reference subsequence is longer.

ratioi =
M − (b∗i − a∗i)
M + (b∗i − a∗i)

(7)

For comparison we also plot, in red, the same ratio computed
over the ground truth queries and corresponding reference subse-
quences for the development set. We can see how, in both cases,
there is an important portion of the matches in which one of the se-
quences is more than twice as long (|ratio| > 0.33) than the other.
This might be due to some of the queries being formed by more than
one word, with variable amounts of silence in between or by hesi-
tations. Although a speech/non-speech detector is applied, we find
it desirable to allow for any warping between both signals to ensure
no matches are missed. Some further work will need to address how
to eliminate the extra false alarms that such “free warping” gener-
ates. In addition, note how the MES-DTW histogram tends to tilt
towards returning short reference subsequences. This might be due
to the system’s inability to correctly locate the start and end points of
reference matching subsequences, mostly when the acoustic context
surrounding the matching sequence is different between query and
reference. This results in no silence being inserted at the beginning
and end of the matching reference subsequence in the last step of the
system, which causes a length difference w.r.t. the query.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a novel pattern-matching based algorithm
we call MES-DTW which derives from the subsequence-DTW pro-
posed by [11], and initially applied to music matching. The MES-
DTW algorithm improves the S-DTW algorithm in three ways. First,
we eliminate the trackback across the accumulated cost matrix to
find the reference subsequence starting point once the ending point
has been found. Second, we experiment with two different score nor-
malization approaches, one at local level and one at global level, that
are able to boost matching performance, mostly when applying de-
cisions to multiple query matches. Both these improvements include
the need for extra support matrices that might become a memory
burden in certain situations, that are solved by a memory efficient
implementation that allows for the matching to be performed with
very little memory allocations. We then propose a QbE-STD system
that is used to compare the proposed MES-DTW with the S-DTW
in a common framework. Results not only confirm that the system
is more effective than S-DTW in finding matching subsequences but
also much faster by reducing the amount of memory being allocated
and freed. Future work includes improving the selection of start
and end locations in the reference in order not to cut the beginning
and end of found words, and testing the algorithm with very large
databases.

7. REFERENCES

[1] Florian Metze, Nitendra Rajput, Xavier Anguera, Marelie
Davel, Guillaume Gravier, Charl Van Heerden, Gautam V
Mantena, Armando Muscariello, Kishore Prahallad, Igor
Szöke, and Javier Tejedor, “The Spoken Web Search Task at
MEDIAEVAL 2011,” in ICASSP, 2012.

[2] Hiroaki Sakoe and Seibi Chiba, “Dynamic Programming Al-
gorithm Optimization for Spoken Word Recognition,” IEEE
Transactions on Acoustics, Speech and Signal Processing, , no.
1, 1978.

[3] Alex S Park and James R Glass, “Unsupervised Pattern Dis-
covery in Speech,” IEEE Transactions on audio, Speech and
Language Processing, vol. 16, no. 1, pp. 186–197, 2008.

[4] Yaodong Zhang and James R Glass, “Unsupervised Spoken
Keyword Spotting via Segmental DTW on Gaussian Posterior-
grams,” in Proc. ASRU, Merano, Italy, 2009, pp. 398–403.

[5] Xavier Anguera, “Speaker Independent Discriminant Feature
Extraction for Acoustic Pattern-Matching,” in Proc. ICASSP,
2012.

[6] Timothy J. Hazen, Wade Shen, Christopher M White, and
A Phonetic Posteriorgram Representation, “Query-By-
Example Spoken Term Detection Using Phonetic Posterior-
gram Templates,” in ASRU, 2009, pp. 421–426.

[7] Armando Muscariello, Guillaume Gravier, and Frederic Bim-
bot, “Zero-resource audio-only spoken term detection based
on a combination of template matching techniques,” in Proc.
Interspeech, 2011.

[8] Aren Jansen and Benjamin Van Durme, “Efficient Spoken
Term Discovery Using Randomized Algorithms,” in ASRU,
2011.

[9] Aren Jansen, Benjamin Van Durme, and Pascal Clark, “The
JHU-HLTCOE Spoken Web Search System for MediaEval
2012,” in Proc. Mediaeval workshop, 2012.

[10] Chun-an Chan and Lin-shan Lee, “Unsupervised Spoken-
Term Detection with Spoken Queries Using Segment-based
Dynamic Time Warping,” in Proc. Interspeech, 2010.

[11] Meinard Müller, “Dynamic Time Warping, chapter 4,” in
Information Retrieval for Music and Motion, pp. 69–84.
Springer-Verlag, Berlin, Germany, 2007.

[12] Cory Myers, Lawrence R Rabiner, and Aaron E Rosenberg,
“Performance Tradeoffs in Dynamic Time Warping Algo-
rithms for Isolated Word Recognition,” IEEE Transactions on
Acoustics Speech and Signal PRocessing, , no. 6, pp. 623–635,
1980.

[13] Armando Muscariello and Guillaume Gravier, “Variability tol-
erant audio motif discovery,” in Proc. International Conference
on Multimedia Modeling, 2009.

[14] Haipeng Wang and Tan Lee, “CUHK System for the Spoken
Web Search task at Mediaeval 2012,” in in Proc. Mediaeval
workshop, 2012.

[15] Florian Metze, Etienne Barnard, Xavier Anguera, and Guil-
laume Gravier, “The Spoken Web Search Task,” in Proc. Me-
diaeval Workshop, 2012.

[16] Etienne Barnard, Marelie Davel, and Charl Van Heerden,
“ASR Corpus Design for Resource-Scarce Languages,” in In-
terspeech, 2009, pp. 2847–2850.

[17] Jonathan G Fiscus, Jerome Ajot, John S Garofolo, and George
Doddingtion, “Results of the 2006 Spoken Term Detection
Evaluation,” in Interspeech, 2007.

[18] Aren Jansen and Benjamin Van Durme, “Indexing Raw Acous-
tic Features for Scalable Zero Resource Search,” in Inter-
speech, 2012.

