
 
Abstract—In this paper, we provide a unified framework for 

identifying the source digital camera from its images and for 
revealing digitally altered images using photo-response non-
uniformity noise (PRNU), which is a unique stochastic 
fingerprint of imaging sensors. The PRNU is obtained using a 
Maximum Likelihood estimator derived from a simplified 
model of the sensor output. Both digital forensics tasks are 
then achieved by detecting the presence of sensor PRNU in 
specific regions of the image under investigation. The 
detection is formulated as a hypothesis testing problem. The 
statistical distribution of the optimal test statistics is obtained 
using a predictor of the test statistics on small image blocks. 
The predictor enables more accurate and meaningful 
estimation of probabilities of false rejection of a correct 
camera and missed detection of a tampered region. We also 
include a benchmark implementation of this framework and 
detailed experimental validation. The robustness of the 
proposed forensic methods is tested on common image 
processing, such as JPEG compression, gamma correction, 
resizing, and denoising. 

 
Index Terms—Photo-response non-uniformity, imaging 

sensor, digital forensic, digital forgery, camera identification, 
authentication, integrity verification. 

I. INTRODUCTION 
While digital representation of reality brings 

unquestionable advantages, digital images can be easily 
modified using powerful image editing software, which 
creates a serious problem of how much their content can be 
trusted when presented as silent witness in a courtroom. 
Another problem brought by digitization is verification of 
origin. Is it possible to prove that a certain image was taken 
by a specific camera? Reliable methods for establishing the 
integrity and origin of digital images are urgently needed in 
situations when a digital image or video forms a key piece 
of evidence, such as in child pornography and movie piracy 
cases, insurance claims, and cases involving scientific fraud 
[1,2]. 

The tasks of digital forensics can be broadly divided into 
the following six categories: 

1. Source Classification whose objective is to classify 
images according to their origin, such as scans vs. digital 
camera images, or Canon vs. Kodak, etc. 

2. Device Identification aims at proving that a given 
image was obtained by a specific device (prove that a 
certain camera took a given image or video). 

3. Device Linking groups objects according to their 
common source. For example, given a set of images, we 

would like to find out which images were obtained using 
the same camera. 

4. Processing History Recovery whose objective is to 
recover the processing chain applied to the image. Here, we 
are interested in non-malicious processing, e.g., lossy 
compression, filtering, resizing, contrast/brightness 
adjustment, etc. 

5. Integrity Verification or forgery detection is a 
procedure aimed at discovering malicious processing, 
examples of which are object removal or adding. 

6. Anomaly Investigation deals with explaining 
anomalies found in images that may be a consequence of 
digital processing or other phenomena specific to digital 
cameras. 

   In this paper, we focus on Device Identification and 
Integrity Verification. The problem of image origin (Tasks 
1–3) has been approached in the past by detecting camera 
processing artifacts [3–5] and using classification of image-
derived features [6]. While these methods are useful for 
Source Classification, they cannot be used for Device 
Identification as this problem calls for an equivalent of a 
unique “biometrics for cameras.” The first sensor 
biometrics were defective pixels (hot and dead pixels) [7,8]. 
Recently [9], the pixel photo-response non-uniformity 
(PRNU) was proposed as sensor biometrics and used for 
reliable Device Identification even from processed images. 
Approaches combining sensor noise with machine-learning 
classification were described in [9–14]. 

The second forensic task investigated in this paper, is 
Integrity Verification commonly known as forgery 
detection. Recently, numerous methods for detecting digital 
forgeries were proposed [15–27,38]. Most methods are 
based on detecting local inconsistencies, such as in 
resampling artifacts [19], color filter array (CFA) 
interpolation artifacts [20], illumination [21], or optical 
defects [23]. Some approaches detect identical regions in a 
copy-move forgery [25,26]. A different class of methods 
use classification of image features [16–18,24,38]. Each of 
these methods only works when specific assumptions are 
satisfied and will fail if the assumptions are not met. 
Obviously, digital forgery detection is a complex problem 
with no universally applicable solution. What is needed is a 
large set of tools based on different principles that can all 
be applied to the image at hand. Indeed, while it may be 
easy to create a forgery undetectable using each individual 
detection method, it may be hard to make sure that none of 
them applies. The decision about the content authenticity is 
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then reached by interpreting the results obtained from 
different approaches. This accumulative evidence may 
provide a convincing enough argument that each individual 
method cannot. 

In this paper, we describe a unified framework for both 
Device Identification and Integrity Verification using pixel 
PRNU as proposed in [9]. Both tasks start with estimation 
of the PRNU, which is achieved using a Maximum 
Likelihood estimator derived from a simplified model of 
sensor output. This improved estimator makes better use of 
available data in the sense that the number of images 
needed to estimate the PRNU can be significantly smaller 
than what was reported in [9]. By establishing the presence 
of PRNU in an image or in an image block, we can 
determine the image origin or verify the block integrity. A 
good analogy is to think of the PRNU signal as a unique 
authentication watermark involuntarily inserted by the 
imaging sensor. Establishing its presence in an image 
amounts to identifying the sensor, while checking its 
integrity reveals tampered (forged) regions.  

   The paper is organized as follows. In Section II, we 
describe a simplified sensor output model that will be used 
to derive the PRNU estimator and detector. In Section III, 
we derive a ML estimator for the PRNU and point out the 
need to preprocess the estimated signal to remove certain 
systematic patterns that might increase false alarms in 
Device Identification and missed detections in Integrity 
Verification. The task of detecting the PRNU is formulated 
as Neyman-Pearson hypothesis testing problem in Section 
IV. The correlation predictor used to obtain the distribution 
of the test statistics is detailed in Section V. Benchmark 
implementation of the proposed framework for both 
forensic tasks and the performance evaluation appear in 
Section VI. The experimental results are accompanied with 
discussion of limitations and ideas for future research. The 
paper is summarized in Section VII. 

Everywhere in this paper, boldface font will denote 
vectors of length specified in the text, e.g., X and Y are 
vectors of length n and X[i] denotes the i-th component of 
X. Unless mentioned otherwise, all operations among 
vectors, such as product, ratio, raising to a power, etc., are 
elementwise. The dot product of vectors is denoted as 
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II. IMAGING SENSOR OUTPUT MODEL 
The signal processing chain in digital cameras is quite 

complex and varies greatly with different camera types and 
manufacturers. It typically includes signal quantization, 
white balance, demosaicking (color interpolation), color 
correction, gamma correction, filtering, and, optionally, 
JPEG compression. Because details about the processing 

are not always easily available (they are hard-wired or 
proprietary), we decided to use a simplified model [28] that 
captures various elements of typical in-camera processing 
that are most relevant to our task. This enables us to 
develop low-complexity algorithms applicable to a wider 
spectrum of cameras. A more accurate model tailored to a 
specific camera would likely produce more reliable camera 
identification and forgery detection results at the cost of 
increased complexity. 

We denote by I[i] the signal in a selected color channel at 
pixel i, i = 1, …, n, generated by the sensor before 
demosaicking is applied. Let Y[i] be the incident light 
intensity at pixel i. Here, we assume that the pixels are 
indexed, for example, in a row-wise manner. Dropping the 
pixel indices for better readability, we use the following 
vector form of the sensor output model 

[ ]( ) qg γγ= ⋅ + + +I 1 K Y Λ Θ .                    (1) 
We remind that all operations in (1) are element-wise. In 
(1), g is the color channel gain and γ is the gamma 
correction factor (typically, γ ≈ 0.45). The gain factor g 
adjusts the pixel intensity level according to the sensitivity 
of the pixel in the red, green, and blue spectral bands to 
obtain the correct white balance. The multiplicative factor 
K is a zero-mean noise-like signal responsible for PRNU 
(the sensor fingerprint). Finally, Λ is a combination of the 
other noise sources including the dark current, shot noise, 
and read-out noise [29,30], and  is the quantization 
noise. The model (1) was selected over the more common 
additive model typically used in denoising because we 
intend to estimate the PRNU factor K. 

qΘ

Because in natural images the dominant term in the 
square bracket in (1) is the scene light intensity Y, we factor 
it out and only keep the first two terms in the Taylor 
expansion of (1 + x)γ = 1 + γ x + O(x2) at x = 0 : 
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To simplify the notation and avoid introducing too many 
symbols, in the last expression of (2) we absorbed the 
gamma correction factor into the PRNU factor K and wrote 
K instead of γK. The signal (0) ( )g γ=I Y  is the sensor 
output in the absence of noise,  is the PRNU term, 
and  is a complex of independent 
random noise components. 

(0)I K
(0) / qγ=Θ I Λ Y Θ+

III. PRNU ESTIMATION AND PREPROCESSING 
In this section, we describe the first step in the proposed 

framework for Camera Identification and Integrity 
Verification, which is the estimation of the PRNU factor K. 

A. PRNU estimation 
Assuming that either the camera that took the image is 

available to the analyst or at least some other (non-
tampered) images taken by the camera are available, we 



estimate K from a set of N images taken by the camera. To 
improve the SNR between the signal of interest  and 
observed data I, we perform host signal rejection and 
suppress the noiseless image I

(0)I K

(0) by subtracting from both 
sides of (2) the denoised version of I, (0)ˆ ( )F=I I , obtained 
using a denoising filter1 F: 
      (0) (0) (0) (0)ˆ ˆ ( )= − = + − − +W I I IK I I + I I K Θ

 .= +IK Ξ               (3) 
The noise Ξ  is a sum of Θ and two additional terms 

introduced by the denoising filter. Since the image content 
is significantly suppressed in the noise residual W, we can 
better estimate (and detect) the PRNU from W than from I. 
On the other hand, the denoising filter further shapes the 
signal we are trying to estimate or detect and it makes the 
noise  non-stationary (e.g.,  is larger in textured 
areas). 

Ξ var( )Ξ

We now derive the estimator of the PRNU factor K from 
N images I1, …, IN obtained by the camera. We assume 
here that the images are relatively smooth. If the camera is 
available, we can for example take images of blue sky. For 
such images, we can accept a simpler model of the noise 
term and model the sequence , …,  for each 
pixel i as white Gaussian noise (WGN) with variance σ 

1[ ]iΞ [ ]N iΞ
2. 

We would like to emphasize here that the energy of the 
PRNU signal IK is small compared to the noise term Θ  
and thus it is reasonable to assume that Ξ  is independent of 
IK. From (3), we have for each k = 1, …, N 

(0) (0)ˆ ˆ,    ,  ( )k k
k k k k k
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The log-likelihood of observing  given K is /k kW I
2

2 2
2 2

1 1

( / )( ) log(2 /( ) )
2

N N
k k

k
k k k

NL πσ
σ= =

−
= − −∑ ∑ W I KK I

I2 /( )
.  (5) 

The ML estimate  for the PRNU factor is obtained by 
taking partial derivatives of (5) with respect to individual 
elements of K and solving for K 
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By computing the second partial derivative, we obtain 
the Cramer-Rao Lower Bound (CRLB) on the variance of 
K̂
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           (7) 
Because our model (3) is linear, the ML estimator is 

minimum variance unbiased (MVU) and the CRLB 
determines its variance ~ 1/N. Equation (7) also ˆvar( )K
                                                           

1 We use the filter described in [9,31]. 

informs us what images are best for estimation of K. The 
luminance Ik should be as high as possible but not saturated 
because saturated pixels (Ik[i] ≈ 255 for an 8-bit grayscale 
image) carry no information about the PRNU factor. Also 
notice that ~ σˆvar( )K  2, the variance of the sum of image 

acquisition noise sources Θ and the terms 0 0
ˆ−I I  

introduced by denoising. Therefore, better estimates are 
obtained using smooth test images. The best images are 
images of bright (but not saturated) uniformly white scenes. 
In practice, we recommend taking out-of-focus images of 
cloudy sky. 

We use estimator (6) also when Ik are images of natural 
scenes. The estimator still performs well, but more images 
are needed to obtain the same quality PRNU estimate 
(about twice as many). In terms of the derived CRLB (7), 
this is because the average light intensity in natural images 
is lower and the noise residual Ξ  has larger variance due to 
edges present in natural images. 

B. PRNU preprocessing 

The estimated factor  contains all components that are 
systematically present in every image, most importantly 
some weak artifacts of color interpolation, on-sensor signal 
transfer [32], and sensor design [36]. Such artifacts are not 
unique to the sensor and are shared among cameras of the 
same brand or cameras sharing the same imaging sensor 
design

K̂

2 . The PRNU factors estimated from two different 
cameras may thus be slightly correlated, which would 
increase the false identification rate and decrease the 
reliability of camera identification. Therefore, we suppress 
these artifacts from the estimated factor  before using it 
in our proposed framework. We evaluate how successfully 
the unwanted artifacts were removed using the correlation 
between PRNU factors, aiming for the correlation to be as 
close to zero as possible. 

K̂

We have experimentally identified three primary 
processes responsible for the artifacts. 

a) Color interpolation. Cameras equipped with a CFA 
can only capture one color at each pixel. Due to varying 
sensitivity of silicone to light of different wavelengths, the 
sensor output is first adjusted for gain before color 
interpolation. The remaining colors are interpolated from 
neighboring pixels. Thus, interpolated colors are obtained 
through a different mechanism than colors that were truly 
registered at the pixel. As a result, slightly offset gains may 
introduce small but measurable biases in the interpolated 
colors. Since all CFAs form a periodic structure, these 
biases will introduce a periodic pattern in column and row 
averages of the estimated factor . K̂

b) Row-wise and column-wise operation of sensors 
and processing circuits. The row-wise and column-wise 
character of operations of digital imaging sensors and/or 
image processing circuits [32] also introduces a bias into 

                                                           
2  This observation was already made in [9] but was not further 

investigated. 



each column and row. 
c) Other artifacts. Besides the row and column artifacts, 

there may exist other artifacts in the estimated PRNU factor 
caused by the sensor design, such as the polygonal patterns 
reported in [36]. Since these artifacts manifest themselves 
as structures in the Fourier transform of  they can be 
removed by high-pass filtering in the Fourier domain. 

ˆ ,K

We note that strong JPEG compression also creates 
blockiness artifacts that can propagate into the estimated 
PRNU factor. This is especially true for video [33] where 
the PRNU is estimated from thousands of frames; it is less 
of an issue for still images. Such artifacts are best removed 
using frequency selective filters. 

Since the first two artifacts are specific to the sensor 
design, the CFA, and color interpolation, they may be 
potentially useful for identification of the camera brand or 
model. 

We propose the following procedure to suppress the 
unwanted artifacts in the estimated PRNU factor  To 
remove artifacts a) and b), we subtract the column average 
from each pixel in the column (for each color channel 
separately) and then subtract the row average from every 
pixel in the row. The processed PRNU factor will thus have 
zero mean in every row and column. We denote this 
operation as  and call the difference 

 the linear pattern, which is a useful 
forensic entity by itself. The linear pattern is weak 
compared to  with SNR below –10dB for compact or 
single lens reflex (SLR) cameras. It can be stronger for 
cheap cameras, such as those built in cell-phones. As an 
example, we show in Fig. 1 a magnified portion of the 
linear pattern for the Canon S40 camera. As this camera has 
the Bayer CFA with period 2 along the rows and columns, 
the linear pattern exhibits the same periodicity. 

ˆ .K

ˆ( )ZM K
ˆ ˆ ˆ( ) ( )LP ZM= −K K K

K̂

The final step in preprocessing the estimated PRNU 
factor is applied only when there exist artifacts in the form 
of visually identifiable patterns in [36]. We 

transform  into the Fourier domain, filter it using 
the Wiener filter, and only keep the noise component 

ˆ( )ZM K
ˆ( )ZM K

   ( ) ( ) ( )( ){1ˆ ˆ( ) ( ) ( ) ,WF ZM ZM W ZMK K−= −F F F }K̂

)

where W is the 3×3 Wiener filter with variance obtained as 
the sample variance of the magnitude of the Fourier 

transform ( ˆ( )ZM KF . The resulting PRNU has a flatter 

frequency spectrum than  (see Fig. 2). ˆ( )ZM K
To demonstrate how effective the preprocessing is in 

removing the artifacts, we show in Table I the correlations 
between differently processed PRNU factors estimated 
from Canon G2 and Canon S40. We note that both cameras 
come from the same manufacturer and share the same CCD 
sensor. The PRNU estimate was generated from 20 high 
quality JPEGs (for G2) and 20 raw images (for S40). 

 

 
Fig. 1:  Detail of the linear pattern for Canon S40. 

 
Fig. 2: Fourier transform of the estimated PRNU before and after Wiener 

filtering. 
 

TABLE I. CORRELATION BETWEEN  FOR CANON G2 AND  FOR 

CANON S40 BEFORE AND AFTER PRE-PROCESSING. 
G2K̂ S40K̂

Correlation Red Green Blue 

G2K̂  vs.  S40K̂ 0.0251 0.0134 0.0197 

G2
ˆ(ZM K )  vs.  S40

ˆ( )ZM K 0.0122 0.0113 0.0077 

G2
ˆ( ( ))WF ZM K vs.  S40

ˆ( ( )WF ZM K ) 0.0013 0.0007 0.0005 

 
TABLE II. CORRELATION BETWEEN  FOR LG VX8100 AND 

SAMSUNG A900 BEFORE AND AFTER PRE-PROCESSING. 
LGK̂

SAK̂

Correlation Red Green Blue 

LGK̂  vs.  SAK̂ 0.0164 –0.0058 0.0344 

LG
ˆ(ZM K )  vs.  SA

ˆ( )ZM K –0.0011 0.0014 –0.0020 

LG
ˆ( ( )WF ZM K ) )vs.  SA

ˆ( ( )WF ZM K 0.0002   0.0010 –0.0012 

 
In Table II, we show another example for two 1.3 

megapixel cell phone cameras LG VX8100 and Samsung 
A900. Only 10 images of sky and gray wall were used for 

 and 125 similar images for The zero-meaning 
significantly reduced the correlation between the estimated 
PRNU factors. Fourier filtering further decreased the 
correlation. 

LGK̂ SA
ˆ .K

To avoid introducing too many symbols, in the remainder 
of this paper, the symbol  will denote the PRNU factor 
estimated using (6) and subsequently processed as 
explained in Section III.B to suppress any non-PRNU 
components. 

K̂



IV. PRNU DETECTION 
As described in the introduction, we approach both 

Camera Identification and Integrity Verification by 
establishing the presence of sensor PRNU in the entire 
image or its region, respectively. In this section, we 
formulate the detection task as a hypothesis testing problem 
and explain the detection methodology. 

The model (3) with the assumption that Ξ  is WGN is an 
approximately valid representation of reality for images 
with smooth content. It was already explained in Section 
III.A that while such a model was reasonable for PRNU 
estimation (we can make sure test images have the required 
properties) for most real-life images a more complex model 
is needed. First, the noise Ξ  becomes colored as it is 
strongly influenced by texture. Second, the PRNU term is 
modulated by an attenuation factor because we may be 
subtracting a part of PRNU with the denoised image  in 
(3). Thus, the model we accept for PRNU detection is 

0Î

ˆ= +W TIK Ξ ,           (8) 
where T[i] is a pixel-wise multiplicative attenuation factor 
and  is a sequence of independent Gaussian variables 

with unequal variances  (colored Gaussian noise).  

[ ]iΞ
2 [ ]iΞσ

We now formulate the problem of detection of PRNU in 
the noise residual  of a given image region as a 
binary hypothesis testing        

0
ˆ= −W I I

           H0: ,   =W Ξ
 H1: ,   (9) = +W TX Ξ

where  is the non-attenuated PRNU term. The 
noise-only hypothesis H

ˆ=X IK
0 should have been written as 

 where  is a PRNU factor from some 
other camera. However, because the combined noise term 

 dominates the contribution from the PRNU, we consider 
the PRNU term as a weak signal and include it in the noise 
term. 

ˆ '= +W TIK Ξ, ˆ 'K

Ξ

In the next two sections, we derive corresponding 
optimal test statistics separately for Camera Identification 
and for Integrity Verification. 

A. Camera identification 
In order to estimate the shaping factor T and the variance 
, we can either accept a parametric model and estimate 

the parameters or estimate T and  locally from the 
image. However, it is not an easy task to find a good model 
because both quantities depend on a complex interplay 
between the denoising filter, local texture, and image 
content. Similarly, it is not possible to accurately estimate 
these two non-stationary quantities at every pixel due to 
insufficient data. Thus, we opted for the following 
simplified approach. 

2
Ξσ

2
Ξσ

We start by dividing the image into M disjoint blocks and 
assume that, within each block b∈{1, …, M}, T[i] and 

 are constant equal to T2 [ ]iΞσ b and 2
bσ , respectively3. Both 

quantities will be replaced with their estimated values , b̂T
2ˆbσ , obtained using a predictor (see Section V). Allowing 

these estimates to be accurate up to an unknown 
multiplicative factor common to all blocks (this factor may 
be due to processing uniformly applied to the whole image, 
such as lossy compression or filtering), we arrive at the 
following hypothesis testing problem 

                H0: c=W Ξ , 
 H1: a c= +W TX Ξ ,   (10) 

where now , i∈B[ ]iΞ Bb, is WGN with zero mean and known 

variance 2ˆbσ  and T[i], i∈BbB , is a known constant . Both a 
and c are unknown multiplicative factors that are the same 
for all blocks. The optimal detector for (10) is the 
normalized Generalized Matched Filter (see Chapter 4.4 in 
[34]) 
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and  is the 

normalized correlation between the PRNU term  

and the noise residual W

/ || |||| || ( , )b b b b b b bcorrρ = =X W X W X W:
ˆ

b b=X I Kb

b (  is the PRNU factor in the b-
th block estimated using (6)). 

ˆ
bK

We now explain how the shaping factor Tb and variance 
2
bσ  are estimated. Under H1, W comes from the tested 

camera and we have  or 1( , )b b b bcorr T caρ −= +X X Ξb

2 1

2 2 1 1

|| || .
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:
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Because  is zero mean and independent of XbΞ b, the 
mixed term  is small compared to the other terms 
in the denominator of (12). Thus, 

bX Ξ:

2 2 1 2 1 2

2 2

|| || 1
|| ||  || || || ||1

|| ||

b b
b

b b b b

b b

T
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T
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X
X Ξ Ξ

X

,   (13) 

where  is the energy of the noise in the b-th 
block and |B

2 2|| || | |b b Bσ=Ξ b

Bb| is the cardinality of BbB

                                                          

. From (13), we obtain 
the SNR between the signal of interest and noise 

 
3 The blocks will be described by their index sets BBb⊂{1, …, n}. Signals 
constrained to the b-th block will be denoted with subscript b, e.g., Xb, Wb, 
etc. 
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X
.   (14) 

Because from (10)  

using (14) we obtain  and 

2 2 2 2 2 2|| || || || || || ,b b b ba T c= +W X Ξ

b̂T 2ˆbσ  as functions of the known 
signals Xb, Wb, and bρ : 
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In the expressions for 2ˆbσ  and we can skip the 
multiplicative factors (c 

ˆ ,bT
2|BBb|)  and a , respectively, 

because they are the same for all blocks (if all blocks are of 
the same size) and thus do not influence the value of ρ in 
(11). 

–1 –1

The estimates (15), however, depend on ρb, which we 
only know under hypothesis H1 but not under H0. We 
address this problem by constructing a predictor of the 
normalized correlation ρb on small blocks under H1 based 
on our knowledge of  and a few block-derived features 
that most influence ρ

K̂
b (see Section V for details). We use 

the predicted values ˆbρ  in (15) to obtain  and b̂T 2ˆbσ . The 
correlation value can thus be expressed as 

  ˆb b bρ ρ ν= + ,                                (16) 
where ˆbρ  is the predicted value and νb is a random variable 
representing the modeling error. The data from which the 
predictor was constructed can also be used to 
experimentally determine the pdf of the prediction error νb, 
which is needed to obtain the pdf of the test statistics (11) 
under hypothesis H1. 

To decide whether or not a given image I was taken with 
a specific camera whose PRNU K has been estimated in 
Section III, we use Neymann-Pearson hypothesis approach 
and set the decision threshold to obtain a required false 
alarm rate (FAR). False acceptance occurs when hypothesis 
H0 is true but we decide H1, while false rejection occurs 
when we accept H0 when H1 is true. To estimate the pdf of 
the test statistics (11) under H0, p(x|H0), we evaluate (11) 
for a large amount of images coming from other cameras 
against the PRNU K and model p(x|H0) using density 
estimation techniques [35]. 

The false rejection rate (FRR) depends on the pdf p(x|H1) 
of the test statistics for images coming from the same 
camera. However, as shown in Section VI, it is not possible 
to find a simple statistical model for p(x|H1) because ρ 
strongly depends on image content, which makes the 
distribution too dependent on the available database of 
images. Moreover, trying to fit one pdf for all images would 
lead to overly conservative error estimates for “good” 
images with high ρ and overly optimistic error estimates for 
highly textured images that typically have a much lower 
value of ρ. We should be evaluating the FRR against 
images of approximately the same content or approximately 
the same value of ρ. The correlation predictor enables us to 
achieve this goal, because it provides us with the pdf of the 

prediction error νb across blocks with a similar ˆbρ  (see 
Section V). All necessary details concerning the density 
modeling and NP testing are explained in Section VI. 

B. Integrity verification 

Having obtained an estimate of the PRNU  some 
types of tampering operations can be identified as those 
lacking the PRNU. We work under the assumption that 
tampered regions will not contain the PRNU from the 
camera, which is certainly true if the region was pasted 
from another image from a different camera. It is also true 
if the region is from an image coming from the same 
camera as long as its spatial alignment in the image is 
different than in the forged image. We note that some 
malicious changes in the image may preserve the PRNU, 
such as changing the color of a stain to blood stain [38]. 
Such manipulations will not be detected using our method. 

ˆ ,K

If the forged image was modified using some known 
geometrical transformation, such as resizing or cropping, 
the PRNU must be preprocessed in the same manner before 
applying our forgery detection algorithm. If the geometrical 
operation is not known, the forgery detection algorithm 
might still apply after the geometrical transformation is 
estimated and the image is properly aligned. For this 
purpose, we might use the PRNU itself as a registration 
pattern or apply other forensic techniques, such as 
estimation of resampling parameters [19]. 

The forgery detection at each pixel is formulated as 
hypothesis testing (9) applied to a block surrounding the 
pixel. We test for the presence of PRNU in each sliding 
block separately and finally fuse all local decisions. As in 
Camera Identification, we assume that, over each block, the 
unknown multiplicative factor T[i] is constant and the noise 
term is WGN with an unknown variance . In contrast 
to Camera Identification, it is not necessary to estimate 
these unknown factors, because we test each block 
separately. Thus, we readily obtain the optimal detector as 
the normalized correlation 

2 [ ]iΞσ

( ,b bcorrρ = X W )b

b

.    (17) 
The distribution of this test statistics under hypothesis 

H0, p(x|H0), is obtained by correlating the known signal Xb 
with noise residuals from other cameras. The distribution of 
ρb under H1, p(x|H1), can be again obtained using the same 
predictor as already mentioned in Section IV.A. In simple 
words, the predictor tells us what the value of the test 
statistics ρb and its distribution were if the block b was not 
tampered and indeed came from the camera. 

Specific implementation details of this forgery detection 
algorithm and all experiments appear in Section VI. 

V. CORRELATION PREDICTOR 
In this section, we construct a predictor of the correlation 

 on small blocks for images coming 
from the same camera as the PRNU. From experiments, we 
determined that the three factors that influence ρ

( , )b bcorrρ = X W

b the most 



are image intensity, texture, and signal flattening. 
The predictor is constructed as a mapping from some 

feature space to a real number in the interval [0,1]⎯the 
predicted value of ρb. The block size should not be too large 
because then the assumption of stationarity of T and  is 
less likely to hold, neither can it be too small to avoid the 
lack of statistically significant data. For typical sizes of 
digital camera images with 1 million pixels or more, square 
blocks with |B

2
Ξσ

Bb| = 128×128 pixels performed overall the 
best. 

Image intensity. Because the PRNU term  is 
multiplicative, the correlation is higher in areas of high 
intensity. However, due to the finite dynamic range, the 
PRNU term is not present in saturated regions (I[i] = 255) 
and is attenuated for  because the chances 
that the intensity falls into the saturation range is higher. 
The critical value of intensity I

ˆIK

[ ] 255critI i≤ <I

crit depends on the camera. 
We define the intensity feature as the average image 
intensity attenuated close to the maximum dynamic range 

 1 ( [ ])
| |

b
b i B

f att i
B ∈

= ∑I I ,   (18) 

where att(x) is the attenuation function 

                     (19) 
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I II
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and τ is a constant. For example, for our tested Canon G2 
camera, we experimentally determined Icrit = 250, τ = 6. 
The algorithm was a simple brute-force search in the 
intervals Icrit∈[230, …, 255], τ∈[3, …, 8] that produced the 
best predictor (in the MSE sense) over a mixture of high-
intensity cloudy sky images and natural scenes. 

Texture. The correlation tends to be lower in textured 
areas because the variance  is larger and the attenuation 
factor T < 1 since the denoising filter removes part of the 
signal of interest. We calculate the texture feature f

2
Ξσ

T from 
the high-frequency component of the image. Since the 
denoising filter performs wavelet transform, we 
conveniently use this intermediate data and generate a high-
pass filtered image F as the inverse wavelet transform of 
the LH, HH, and HL in the two outmost bands (6 subbands 
altogether). The texture feature is then computed as 

             
5

1 1
| | 1 var ( [ ])

b
b i B

f
B i∈

=
+∑T F

,         (20) 

where var5(F[i]) is the variance of F in the 5×5 
neighborhood of pixel i. The reciprocal normalizes fT to the 
interval [0, 1]. 

Signal flattening. Image processing that is of low-pass 
filtering nature, such as JPEG compression, further 
attenuates the PRNU noise and thus decreases the 
correlation. In a relatively flat and high intensity 
unsaturated area, the predictor would overestimate the 
correlation. These “flattened” areas will typically have a 
low value of the local variance. Thus, we added the third 
feature fS defined as the ratio of pixels in the block with 

average local variance below a certain threshold  
1 { | [ ] [ ]b
b

}f i B i c i
B

σ= ∈ <S I I ,  (21) 

where c is an appropriately chosen constant that depends on 
the variance of the PRNU K (e.g., c = 0.03 for Canon G2) 
and  is the local variance of image intensity I[i] at 
pixel i estimated from a local 5×5 neighborhood. 

2[ ]iσ I

From experiments, the correlation coefficient strongly 
depends on the collective influence of texture and intensity. 
Sometimes, highly textured regions are also high-intensity 
regions. Thus, we included the following combined 
texture-intensity feature 

5

1 ( [
| | 1 var ( [ ])

b
b i B

att if
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=
+∑TI

I
F
])

k

.                 (22) 

Having specified the features, machine learning can now 
be used to learn the relationship between the features and 
the correlation. In this paper, we opted for a simple 
polynomial multivariate least square fitting. Let ρ be a 
column vector of K normalized correlations (12) calculated 
for K image blocks and fI, fT, fS, and fTI be the 
corresponding K-dimensional feature vectors. We model ρ 
as a linear combination of the features and their second-
order terms 

      0 1 2 3 4

4 5

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] ... [ ],

k k k k
k k k k k
θ θ θ θ θ

θ θ
= + + + +

+ + +
I T S TI

I I I T

ρ f f f f
f f f f ψ

+
   (23) 

where ψ[k] is the modeling noise and θ  is the vector of 
coefficients to be determined. In (23), there are total of 
1+4+10=15 terms. Rewriting (23) in a matrix form, we 
have  

= +ρ Hθ ψ ,           (24)  
where H is a K×15 matrix of features and their 
multiplications and 0 1 14( , , , )θ θ θ=θ … is the unknown vector 
parameter. Applying the least square estimator (LSE) to 
estimate  we obtain ,θ

                             ( ) 1ˆ T T−
=θ H H H ρ                       (25) 

and the predictor is 
 [ ] ˆˆ , , , , , ,...b f f f f f f f fI T S TI I I I T θρ = . (26) 

We note that the images used to build the predictor 
should be as diverse as possible so that the features 
extracted from the blocks cover a large portion of the 
feature space. This is in contrast to the requirements for 
calculating the PRNU factor where we preferred smooth 
uniform images. By overlapping the blocks, one can extract 
several hundreds of blocks from one image, depending on 
the image size. In practice, good predictors can be obtained 
from as few as 10 images. 

As an example, we show in Fig. 3 (top) the true value of 
the correlation vs. the predicted value for one of the 
cameras tested in Section VI. This experimental data can be 
used to determine the pdf of the prediction error νb and, in 
turn, the pdf of the test statistics p(x|H1) for both Camera 
Identification and Integrity Verification. Fig. 3 (bottom) 



shows the scatter plot of the test statistics ρ obtained using 
(11) vs. its predicted value obtained using the predictor 
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Fig. 3: Top: scatter plot of bρ  vs. ˆbρ  for K=30,000 128×128 blocks from 
300 TIF images for Canon G2. Bottom: true test statistics ρ (11) vs. 

1
ˆ M

b bb
ˆρ β ρ

=
=∑  for 285 Canon G2 images not used for calculating the 

PRNU or the predictor. The PRNU was obtained from 30 blue sky images 
(see Section VI). 

 
We note that if the image under investigation I is a JPEG 

image, a slightly better predictor is achieved if the predictor 
is trained on JPEG images of approximately the same 
quality factor. If the image has undergone an unknown 
processing that influences the values of correlations, the 
predictions may be off by a multiplicative factor because 
the PRNU will be attenuated in such images. This does not 
invalidate our approach, however, because in our model 
(10) we allow unknown global multiplicative factors a and 
γ. 

We remark that the features can be defined in other 
ways and evaluated in different domains. We tested 
predictors based on features all calculated in the spatial 
domain and obtained a very similar performance. Likewise, 
other machine learning tools that we tested (neural 
networks) provided similar results. It is very likely that a 

more detailed study of the influence of image properties on 
the test statistics combined with better machine-learning 
tools will further improve the predictor and thus lead to 
more accurate Camera Identification and Integrity 
Verification methods. 

Note that all features (18)–(22) can be evaluated using 
FFT-based convolution, which greatly reduces the 
complexity and computation time of the resulting camera 
identification and forgery detection algorithms. 

VI. EXPERIMENTS 
This section describes implementation details and 

contains extensive experimental tests of both Device 
Identification and Integrity Verification. Both tasks can be 
formulated as binary hypothesis testing and are achieved by 
detecting the presence of PRNU (see Table III). 

 
TABLE III HYPOTHESIS TESTING FOR BOTH FORENSIC TASKS. 

 Camera Identification Integrity Verification 
Image not taken by camera Region tampered H0

PRNU not present 
Image taken by the camera Region non-tampered H1

PRNU present 
 

A. Experimental Setup 
 
We use a wavelet-based denoising filter F, which has been 
described in detail in our previous work [9] and in the 
original publication [31]. The filter accepts a parameter, 
which is the variance of the white additive Gaussian noise 
that it removes. We set this variance to 3 assuming the 
dynamic range of 8 bits for I. The PRNU term for each 
camera was calculated from 30 blue sky images or 
uniformly lit test images obtained using a light box. 

The estimated PRNU factor  is further preprocessed 
by zero-meaning the rows and columns of  and filtering 
in the Fourier domain as described in Section III.B. The 
purpose of this step is to remove artifacts that are not 
unique to the camera sensor and would thus slightly 
increase false identification for camera ID or produce false 
integrity verification. 

K̂
K̂

 
TABLE IV CAMERAS USED IN EXPERIMENTS, PROPERTIES OF THEIR 

SENSORS, AND IMAGE FORMAT USED FOR TEST IMAGES. 

 Camera brand Sensor Native 
Resolution 

Image 
Format 

 Canon 
 PowerShot G2 1/1.8” CCD 2272×1704 TIFF 

 Canon 
 PowerShot S40 1/1.8” CCD 2272×1704 TIFF 

 Olympus 
 Camedia C765-1 1/2.5” CCD 2288×1712 TIFF 

 Olympus 
 Camedia C765-2 1/2.5” CCD 2288×1712 TIFF 

 Olympus 
 Camedia C3030 1/1.8” CCD 2048×1536 JPEG 

 Sigma SD9 20.7×13.8mm 
CMOS-Foveon X3 2268×1512 TIFF 



 
Our set of test cameras includes 5 CCD digital still 

cameras and one single lens reflex (SLR) camera with the 
Foveon X3 CMOS sensor. Relevant technical specifications 
of the cameras are shown in Table IV. Note that the set 
contains two cameras of exactly the same brand (Olympus 
C765). 

B. Camera Identification 
In this section, we first describe the Neyman-Pearson test 

for the Camera Identification algorithm and then report 
experimental results. 

The identification method starts with dividing the image 
under investigation into M 128×128 blocks where we 
assume that the attenuation factor is constant and the noise 
is white. We calculate in each block b the detection statistic 
ρ. 

To estimate the probabilities of erroneous decisions for 
Camera Identification, we need the distribution of ρ on 
images obtained using other cameras, p(x|H0), and the 
distribution of ρ on images obtained using the same camera, 
p(x|H1). The distribution p(x|H0) determines the false 
acceptance ratio (FAR), while p(x|H1) determines the false 
rejection ratio (FRR). 

To obtain p(x|H0) for each tested camera, we calculated ρ 
for 2500 images from over 1000 different cameras in their 
native resolution downloaded from www.flickr.com, 
including the images from the other five tested cameras. We 
modeled p(x|H0) as Generalized Gaussian distribution 4  
GG(μ0, σ0, α0), where the parameters μ0, σ0, and α0 were 
estimated using the method of moments [37]. In Fig. 4, we 
show an example of the distribution of ρ under H0 for 
Canon G2, while Fig. 5 shows the goodness of the GG fit 
using the log-tail plot. 

Estimating p(x|H1) is more difficult because the test 
statistics strongly depends on the image content. Thus, 
determining the distribution from available images would 
be influenced too much by the database of test images 
unless the database is very large and diverse. Moreover, this 
way we would obtain overly conservative error estimates 
for “good” images and too optimistic error estimates for 
highly textured images. We really should be evaluating the 
FRR against images of approximately the same content. 
The correlation predictor will enable us to achieve this goal 
in the following manner. Note that the variance of the 
prediction error νb does not depend on the predicted 
correlation value (see Fig. 3 top). Thus, data used to train 
the correlation predictor can also be used to estimate the pdf 
of the prediction error νb. 

We model νb as GG(0, σv, αv) by fitting the GG model 
through ˆb bρ ρ−  for all blocks available for training the 
predictor. The GG fit is shown using the log-tail plot in Fig. 
6. Note that it is the left tail that plays the role in 
                                                           

4 ( )| |/( , , ) /(2 (1/ )) xGG e
αμ σμ σ α α σ α − −= Γ  is the pdf of a GG model with 

variance σ 2Γ(3/α)/Γ(1/α), mean μ, and shape parameter α. 

determining the FRR. The fit is thus conservative as the left 
tail of the data falls off faster than the model. In all our 
experiments, we constructed the predictor from several 
thousands of 128×128 blocks obtained from 20 images. 
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Fig. 4: Test statistics ρ for PRNU factor from Canon G2 and noise residual 
from 2500 images from other cameras. The curve is the GG fit. 
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Fig. 5: The log-tail plot of data shown in Fig. 2 showing the probability of 
observing a value larger than x (for the right tail) and less than –x (for left 
tail) determined from the model (thick curve) and from measured data as a 
function of |x|. 
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Fig. 6: The log-tail plot for the prediction error showing the probability of 
observing a value of the error larger than x (for the right tail) and less than 
–x (for left tail) determined from the model (thick curve) and from 
measured data as a function of |x|. 
 

Since the test statistics (11) is a linear combination of 
random variables (12), we now have a means to estimate its 



distribution. The errors from different blocks, however, are 
not independent because it is likely that neighboring blocks 
will have similar content and thus the prediction errors will 
likely be similar. To avoid modeling these dependencies 
and to obtain a conservative estimate of the FRR, we made 
the assumption that the prediction errors are completely 
correlated, in which case ρ is GG(μ1, σ1, α1) with 

( )2
2 2

1 11 1
ˆ ,   ,   M M

b b b vb b υ 1μ β ρ σ β σ α α
= =

= =∑ ∑ =

                                                          

.     (27) 

We decide that I was taken by the camera when ρ > t. As 
we use the Neyman-Pearson criterion, we set the decision 
threshold t for the test statistics ρ to obtain 

              5
0 0FAR (0, , ) 10

t
GG dxσ α

∞ −= =∫
and calculate the probability of false rejection FRR as 

1 1 1FRR ( , , )
t

GG dxμ σ α
−∞

= ∫ .                  (28) 

We remind that the FRR is the probability that an image 
(taken with the camera) with the same value of predicted 
correlation would be mistakenly identified as not coming 
from the camera. 

C. Robustness to processing 
All tests were performed on images transformed to 

grayscale. For example, the noise residual was extracted 
from each color channel and then combined into a grayscale 
image using the linear combination as in RGB to grayscale 
conversion. The estimated PRNU factors for each color 
channel were also combined in this manner. The predictor 
features were always extracted from the image converted to 
grayscale. We tested all available test images from each 
camera (approximately 300 per camera) that were not used 
for calculation of the PRNU or the predictor in their native 
format as shown in Table IV. Then, we repeated the tests 
after the images were processed using some common image 
processing operations that included JPEG compression with 
quality factors 90 and 75, denoising using the Wiener filter 
with a 3×3 window5, gamma correction with γ = 0.5, and 
scaling by a factor of 0.6. The last three operations were 
followed by JPEG compression with quality factor 90. 

In Tables V–X, we display the FRR (at FAR=10–5) for 
eight selected images. For each camera, we selected the 
worst image in the set (No. 1) and the best image (No. 8). 
By best and worse, we understand images with the lowest 
and highest value of the test statistics. The other six images 
were chosen uniformly between the extremes. In Fig. 7, we 
show the eight images used in tests with Canon G2. We 
note that the worst images were always heavily textured, 
such as images taken in the woods combined with very 
bright (saturated) and dark areas. The PRNU in such images 
is largely attenuated and difficult to detect. 

In agreement with our expectations, the combination of 
Wiener denoising and JPEG compression increases the 
FRR but not beyond making the identification process 
unreliable (FRR of a few percent for FAR = 10–5). 

 
5 The noise variance for the Wiener filter was chosen as the average 

local variance over the whole image (default setting in Matlab). 

 

  

  

  

  
Fig. 7: Eight Canon G2 images used in experiments reported in Table III. 

 
The identification is markedly worse for Sigma SD9. Its 

PRNU is weaker because its 20.7×13.8 mm CMOS sensor 
has larger pixels, which translates to better pixel uniformity 
in sensor manufacturing. We believe that the noticeable 
difference between FRR for RAW and 90% quality JPEGs 
(Table X) is due to the fact that this camera is equipped 
with the Foveon sensor and thus does not have color 
interpolation in its processing chain. Consequently, the 
PRNU energy is more in high spatial frequencies than for 
the other cameras because color interpolation acts as a low-
pass filter shifting the energy of the PRNU to medium 
frequencies, which increases resistance to JPEG 
compression. 
 

TABLES V–X FRR FOR FAR=10–5 FOR ALL 6 TESTED CAMERAS.  
Canon

S40 RAW JPG 90 JPG 75 Wiener 
JPG 90 

γ = 0.5 
JPG 90

s = 0.6 
JPG 90

1 3.5e–2 3.1e–2 6.0e–2 9.6e–2 4.2e–2 1.7e–3 
2 9.5e–3 8.4e–3 2.5e–2 5.6e–2 1.8e–2 6.2e–3 
3 3.5e–4 4.3e–4 8.1e–3 1.9e–2 4.1e–3 3.7e–3 
4 2.4e–5 2.5e–5 1.2e–3 4.2e–3 7.5e–4 7.9e–4 
5 3.9e–7 2.6e–7 1.5e–4 2.4e–4 1.7e–5 1.6e–4 
6 6.9e–11 1.8e–10 3.2e–4 3.6e–5 1.3e–4 4.2e–6 
7 1.3e–12 1.4e–13 2.3e–6 7.6e–7 4.8e–6 6.5e–9 
8 8.4e–15 1.3e–13 4.1e–5 2.5e–6 2.9e–5 1.0e–7 

 



TABLE VI 
Canon 

G2 RAW JPG 90 JPG 75 Wiener 
JPG 90 

γ = 0.5 
JPG 90 

s = 0.6 
JPG 90

1 2.9e–2 2.7e–2 4.7e–2 1.0e–1 2.7e–2 6.4e–3 
2 4.8e–3 6.9e–3 1.8e–2 3.8e–2 5.5e–3 2.3e–3 
3 6.2e–4 1.9e–3 9.4e–3 2.0e–2 3.0e–3 1.2e–3 
4 3.5e–5 1.6e–4 2.1e–3 6.0e–3 6.6e–4 1.9e–6 
5 5.0e–7 2.7e–6 1.9e–4 3.9e–4 7.3e–5 5.9e–7 
6 1.8e–8 1.1e–7 1.7e–5 1.8e–5 3.9e–6 3.7e–9 
7 5.8e–9 4.9e–8 9.4e–6 9.9e–6 1.8e–6 1.8e–9 
8 8.6e–11 2.3e–9 4.3e–6 3.6e–7 1.5e–7 3.0e–12

TABLE VII 
Olympus 
C765-1 RAW JPG 90 JPG 75 Wiener 

JPG 90 
γ = 0.5 
JPG 90 

s = 0.6 
JPG 90

1 5.2e–2 6.7e–2 1.1e–1 1.7e–1 5.6e–2 2.4e–2 
2 1.1e–2 1.8e–2 3.3e–2 3.3e–2 7.6e–3 1.5e–2 
3 6.0e–3 1.0e–2 2.1e–2 2.9e–2 6.2e–3 7.2e–3 
4 1.1e–3 2.7e–3 9.6e–3 9.5e–3 1.7e–3 4.5e–3 
5 3.5e–4 1.3e–3 6.7e–3 4.3e–3 2.1e–3 8.5e–4 
6 3.7e–5 9.4e–5 5.6e–4 8.4e–4 2.5e–4 1.0e–4 
7 5.2e–6 1.4e–5 2.7e–4 4.5e–4 1.3e–4 2.2e–5 
8 1.9e–8 7.0e–8 1.5e–5 1.7e–5 3.5e–5 2.3e–8 

TABLE VIII 
Olympus 
C765-2 RAW JPG 90 JPG 75 Wiener 

JPG 90 
γ = 0.5 
JPG 90 

s = 0.6 
JPG 90

1 6.5e–2 8.3e–2 1.4e–1 2.2e–1 8.2e–2 3.9e–2 
2 2.8e–2 4.1e–2 7.8e–2 1.2e–1 3.2e–2 2.9e–2 
3 9.2e–3 1.9e–2 4.9e–2 7.4e–2 2.0e–2 2.2e–2 
4 6.1e–4 1.9e–3 1.1e–2 1.2e–2 2.5e–3 3.5e–3 
5 1.6e–4 6.7e–4 5.5e–3 5.3e–3 1.4e–3 1.8e–3 
6 4.2e–6 1.2e–5 2.1e–4 3.8e–4 1.3e–4 3.3e–5 
7 1.8e–6 1.9e–5 5.6e–4 3.6e–4 1.7e–4 3.0e–5 
8 1.4e–9 7.0e–9 2.0e–6 2.2e–6 3.6e–7 2.5e–7 

TABLE IX 
Olympus 

C3030 RAW JPG 90 JPG 75 Wiener 
JPG 90 

γ = 0.5 
JPG 90 

s = 0.6 
JPG 90

1 4.0e–2 4.4e–4 3.4e–3 9.4e–2 1.1e–2 7.3e–5 
2 1.5e–4 4.7e–5 3.5e–4 4.1e–3 2.9e–3 5.9e–5 
3 1.4e–5 1.3e–5 1.9e–4 2.0e–3 3.3e–3 7..8e–6 
4 9.9e–7 7.7e–7 2.6e–5 2.2e–4 6.3e–4 1.2e–6 
5 3.0e–7 2.5e–7 8.9e–6 1.4e–4 8.2e–4 1.9e–7 
6 3.9e–9 1.2e–9 1.4e–7 3.2e–6 2.0e–4 1.1e–10
7 2.1e–10 1.0e–10 3.5e–8 3.0e–8 4.8e–5 1.5e–11
8 5.8e–12 7.1e–12 1.5e–9 5.5e–9 8.1e–5 1.3e–13

 

 

 

 

 

 

 

 

 

TABLE X 
Sigma 
SD9 RAW JPG 90 JPG 75 Wiener 

JPG 90 
γ = 0.5 
JPG 90

s = 0.6 
JPG 90

1 7.7e–2 1.5e–1 2.5e–1 3.0e–1 1.6e–1 1.5e–1 
2 3.1e–2 9.4e–2 1.6e–1 2.3e–1 9.0e–2 1.1e–1 
3 7.6e–3 4.5e–2 1.0e–1 1.1e–1 6.2e–2 6.3e–2 
4 2.3e–3 1.9e–2 5.4e–2 7.2e–2 3.7e–2 2.8e–2 
5 3.1e–4 1.1e–2 4.3e–2 4.5e–2 3.9e–2 2.1e–2 
6 9.9e–5 7.4e–3 4.0e–2 2.3e–2 4.1e–2 1.8e–2 
7 1.1e–5 3.8e–3 2.6e–2 1.2e–2 1.6e–2 2.0e–2 
8 2.2e–6 1.1e–3 1.2e–2 4.6e–3 8.8e–3 3.5e–3 

 
To obtain a better insight of the performance of the 

proposed camera identification method on a larger scale, in 
Fig. 8 we show the histograms of log10 FRR obtained for all 
274 tested images for Canon G2 (and for FAR = 10–5 as 
before). Each histogram corresponds to one type of 
processing.  
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Fig. 8: Histograms of log10 FRR for all 274 tested Canon G2 images after 
processing. 

 

D. Integrity Verification 
In this section, we report the implementation details and 

experimental results for the Integrity Verification algorithm 
as described in Section IV.B. 

The algorithm proceeds by sliding a 128×128 block 
across the image and evaluates the test statistics 
ρb = corr(Xb, Wb) for each block b. As in Camera 
Identification, the pdf p(x|H0) is estimated from more than 
30,000 correlations between 128×128 blocks Xb and the 
noise residual Wb from blocks coming from 200 images 
obtained using other cameras. A GG model was then fit 
through the correlations. The pdf p(x|H1) is obtained for 
each block from the predictor in the same way as in the 
previous section and modeled as GG( ˆbρ , vσ , vα ). 

We set the decision threshold t for the test statistics ρb to 
twice the standard deviation of p(x|H0). Accepting the 
Neyman-Pearson criterion, we decide that block b has been 
potentially tampered if ρb < t but only attribute this decision 
to the central pixel i of the block. As a result, for an N1×N2 
image, we obtain an (N1–127)×(N2–127) binary array 
Z[i] = ρb < t indicating the potentially tampered pixels with 
Z[i] = 1. Our choice of threshold gives about 1% 
probability of misidentifying a tampered block as non-

tampered. 
Since the NP criterion is oblivious to the distribution 

p(x|H1), it decides ‘tampered’ whenever ρb < t even though 
ρb  may be “more compatible” with p(x|H1). This is more 
likely to occur when ρb is small, such as for highly textured 
blocks. To reach a conservative decision and avoid labeling 
non-tampered pixels as tampered, we select a threshold 6  
β > 0 and label pixels i for which 

1[ ] ( | H )
t

p i p x dx β
−∞

= >∫ ,                     (29) 

as non-tampered (we set Z[i] = 0). Here, p[i] is the 
probability of falsely labeling a pixel as tampered when it 
was not. The resulting binary map Z identifies the forged 
regions in their raw form. 

At first sight, it appears that Bayesian hypothesis testing 
would be perhaps more appropriate, however, our 
experiments indicate that this NP approach gives overall 
slightly better results over the Bayesian approach.  

The block dimensions impose a lower bound on the size 
of tampered regions that our algorithm can identify. Thus, 
we remove all simply connected tampered regions from Z 
that contain fewer than 64×64 pixels (one quarter of the 
number of pixels in the block). Finally, we dilate the 
resulting binary map Z with a square 20×20 kernel. The 
purpose of this final step is to compensate for the fact that 
we attribute the decision about the whole block only to its 
central pixel and thus potentially miss portions of the 
tampered boundary region. The resulting processed binary 
array Z is what we take as the final output from the 
Integrity Verification algorithm. 

 
1) Tests on forged images 

We manipulated two images from each tested camera. 
The forgeries varied from a simple copy-move within one 
image to object removing and pasting objects from other 
images. The manipulated images were stored in three 
versions: TIFF and JPEG with quality factors 90 and 75. To 
further test the robustness of the proposed algorithm, we 
processed the forged TIFF images in three additional ways 
to simulate typical processing or enhancement that might be 
done in real life. The TIFF forgery was denoised using the 
Wiener 3×3 filter with the default noise variance in Matlab, 
gamma corrected with γ = 0.5, and scaled to 60% of its 
original size. All three processed images were then 
additionally JPEG compressed with quality factor 90. 

We give full results of this experiment for one camera 
and briefly comment on the remaining cases. Figs. 9 and 10 
show the output of the Integrity Verification algorithm for 
two forged images coming from the Olympus C765-1 
camera, including the original image, the forged image, the 
potentially tampered pixels as determined by the NP 
criterion only, and the final detected region highlighted in 
the forged image. The algorithm overall performs very well 
and is able to identify the tampered region very accurately 
even from processed images. In Fig. 10, we included the 
                                                           

6 The threshold was set to β = 0.01. 



worst result of this test, which shows a woodchuck on 
grass. The forged image has the same woodchuck 
duplicated. Both the woodchuck’s fur and the grass are 
highly textured regions with low values of the test statistics 
ρb. While the algorithm does not produce any falsely 
tampered regions, the pasted woodchuck is less accurately 
identified, especially after combined Wiener filtering and 
JPEG compression. 

In Fig. 11, we show more examples from the other five 
tested cameras for the forged images stored as 90% quality 
JPEG. In all cases, the tampered regions were accurately 
estimated. 

As an implementation detail, we note that the sliding-
window calculation of image features for the predictors can 
be computed efficiently using convolution implemented 
using FFT. A Matlab implementation of the proposed 
algorithm was able to verify the integrity of a 4 megapixel 
image in 4–5 minutes on a computer equipped with a 3.4 
GHz Pentium processor. 
2) Tests on non-forged images 

To estimate the probability of falsely identifying a non-
forged region as tampered, we applied the proposed 
algorithm to more than 400 non-forged images from Canon 
G2, Olympus C765-1 and Olympus C3030 stored in the 
JPEG format with quality factor 90. The false alarms have 
occurred in specific regions that can be easily characterized 
(two examples are shown in Fig. 12). All misidentified 
regions contain saturated background with dark regions, 
often combined with a complex texture, such as saturated 
sky showing through a mesh of black tree branches. Such 
regions naturally lack the PRNU and thus cannot be 
authenticated using our algorithm. Although not 
incorporated in this paper, these singular cases could 
probably be removed by post-processing or expanding the 
predictor by adding a suitable feature. 

 
3) Large scale test on forged images 

In order to assess the accuracy of the proposed algorithm, 
we subjected it to a large scale test. We took 345 Canon G2 
images and pasted into them regions from images from 
other cameras. The regions were rectangular with varying 
shapes and sizes with the smallest and largest sides of 228 
and 512 pixels, respectively. All forged images were saved 
with JPEG quality factor 90 and 75. We then ran our 
Integrity Verification algorithm on all forged images 
registering the percentage of correctly detected forged 
pixels and the percentage of falsely identified pixels (non-
tampered pixels marked as tampered). Both percentages 
were calculated with respect to the size of the forged area.  

The histograms of results for all 345 tested images are 
shown in Figs. 13 and 15. We summarize the test by saying 
that for the JPEG quality factor 90, in 85% of forgeries at 
least 2/3 of the forged region was correctly identified, while 
for only 23% of forgeries, the number of falsely identified 
pixels was larger than 20% of the forged region. For JPEG 
quality factor 75, in 73% of forgeries at least 2/3 of the 
forged region was correctly identified, while in 21% of 

cases we saw more than 20% of falsely identified pixels. 
The falsely identified areas were generally located around 
the boundary of the real forged area due to the 128×128 
block size of the sliding window and the dilation post 
processing. By visually inspecting the outliers in this 
experiment, we concluded that the few cases when a large 
portion of the tampered region was missed corresponded to 
the situation when the pasted region contained a large dark 
region in which the PRNU is naturally suppressed. The few 
large false positives all were of the type already mentioned 
above and shown in Fig. 12. In all cases, the algorithm was 
able to correctly outline the shape of the tampered region. 

VII. CONCLUSIONS 
In this paper, we present a unified framework for Camera 

Identification and image Integrity Verification. Both digital 
forensic tasks are approached through detection of pixels’ 
photo-response non-uniformity (PRNU) in the image. The 
PRNU is first estimated using Maximum Likelihood 
principle from a simplified model of sensor output. The 
same model is then used to formulate the task of detecting 
the PRNU as a hypothesis testing problem using Neyman-
Pearson criterion. Appropriate optimal detection statistics 
are derived for both Camera Identification and Integrity 
Verification. The distribution of the test statistics under 
both hypotheses is obtained experimentally from a large 
number of images from other cameras and using a 
correlation predictor. The Camera Identification algorithm 
is tested on six digital cameras. It can reliably identify the 
source camera from its images even after combined 
processing and JPEG compression. Compared to our 
previous work on this subject, the new approach makes 
better use of available data (significantly fewer images are 
needed to obtain the PRNU factor) and allows more 
accurate error estimates. 

In our future effort, we plan to investigate other methods 
for PRNU estimation, such as the image separation using 
Bayesian source separation scheme [39]. Also, there is 
potential to use the linear pattern for forensic purposes for 
camera brand identification (Device Classification). We are 
currently extending the camera identification technology 
from images that have been simultaneously cropped and 
scaled. 
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(a) Original 

 
(c) NP decision, TIFF 

 
(d) Tampered region, TIFF 

 
(b) Forgery 

 
(e) NP decision, JPEG 90 

 
(f) Tampered region, JPEG 90 

 

 
(g) NP decision, JPEG 75 

 
(h) Tampered region, JPEG 75 

 

 
(i) NP decision, Wiener 3×3 and JPEG 90 

 
(j) Tampered region, Wiener 3×3 and JPEG 90 

 

 
(k) NP decision, γ = 0.5 and JPEG 90 

 
(l) Tampered region, γ = 0.5 and JPEG 90 

 

 
(m) NP decision, scaling by 0.6 and JPEG 90 

 
(n) Tampered region, scaling by 0.6 and JPEG 90 

Fig. 9: An Olympus C765-1 forgery and its detection. (a) original image, (b) forged image, (c), (e), (g), (i), (k), (m) are the potentially tampered pixels for TIFF, 
JPEG 90, JPEG 75, Wiener filtered and JPEG 90, gamma corrected and JPEG 90, and scaled to and JPEG 90, while (d), (f), (h), (j), (l), (n) display the 
corresponding final forgery detection results. 

 



 
(a) Original  

 
(c) NP decision, TIFF 

 
(d) Tampered region, TIFF 

 
(b) Forgery 

 
(e) NP decision, JPEG 90 

 
(f) Tampered region, JPEG 90 

 

 
(g) NP decision, JPEG Q75 

 
(h) Tampered region, JPEG Q75 

 

 
(i) NP decision, Wiener 3×3 and JPEG 90 

 
(j) Tampered region, Wiener 3×3 and JPEG 90 

 

 
(k) NP decision, γ = 0.5 and JPEG 90 

 
(l) Tampered region, γ = 0.5 and JPEG 90 

 

 
(m) NP decision, scaling by 0.6 and JPEG 90 

 
(n) Tampered region, scaling by 0.6 and JPEG 90 

 
Fig. 10: An Olympus C765-1 forgery and its detection. (a) original image, (b) forged image, (c), (e), (g), (i), (k), (m) are the potentially tampered pixels for TIFF, 
JPEG 90, JPEG 75, Wiener filtered and JPEG 90, gamma corrected and JPEG 90, and scaled to and JPEG 90, while (d), (f), (h), (j), (l), (n) display the 
corresponding final forgery detection results. 
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Fig. 11: Integrity verification results for tampered images from the other five tested cameras Canon G2, Canon S40, Olympus C765-2, Olympus C3030, and 
Sigma SD9. All tampered images were saved as JPEG with quality factor 90. 
 

 

Fig. 12: Example of regions misidentified as tampered. 
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Fig. 13: Histogram of the percentage of correctly identified tampered pixels (left) and falsely identified pixels (right) over 345 tampered images from Canon G2 
compressed using JPEG with quality factor 90. 
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Fig. 14: Histogram of the percentage of correctly identified tampered pixels (left) and falsely identified pixels (right) over 345 tampered images from Canon G2 
compressed using JPEG with quality factor 75. 
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