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Abstract

The paper presents a unified approach to local likelihood estimation for

a broad class of nonparametric models, including e.g. the regression,

density, Poisson and binary response model. The method extends the

adaptive weights smoothing (AWS) procedure introduced in Polzehl and

Spokoiny (2000) in context of image denoising. The main idea of the

method is to describe a greatest possible local neighborhood of every

design point Xi in which the local parametric assumption is justified by

the data. The method is especially powerful for model functions having

large homogeneous regions and sharp discontinuities. The performance

of the proposed procedure is illustrated by numerical examples for den-

sity estimation and classification. We also establish some remarkable

theoretical nonasymptotic results on properties of the new algorithm.

This includes the “propagation” property which particularly yields the

root-n consistency of the resulting estimate in the homogeneous case.

We also state an “oracle” result which implies rate optimality of the

estimate under usual smoothness conditions and a “separation” result

which explains the sensitivity of the method to structural changes.

Keywords: adaptive weights, local likelihood, exponential family, propagation, separation,

density estimation, classification
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1 Introduction

Local modeling is one of the most useful nonparametric methods. We refer to the book

by Fan and Gijbels (1996) for a rigorous discussion of local linear and local polynomial

estimation for regression and some other statistical models and many other references. An

extension to the local likelihood approach is discussed in Tibshirani and Hastie (1987),

Staniswalis (1989), Loader (1996), Fan, Farmen and Gijbels (1998) among others.

This paper offers a new approach to local likelihood modeling which is based on the idea

of structural adaptation and extends the Adaptive Weights Smoothing (AWS) procedure

from Polzehl and Spokoiny (2000) (referred to as PS2000). The main idea of AWS is to

describe in a data-driven way a maximal local neighborhood of every design point Xi

in which the local parametric assumption is justified by the data. This is realized using

the “propagation” idea: at the beginning of the procedure a very small neighborhood

of every point is taken. Then, during iteration every such neighborhood is extended

by including new points at which the local parametric assumption is not violated. The

precise description is given in term of weights: for every point Xi , the corresponding

neighborhood at step k is described by a collection of weights w
(k)
ij having values between

zero and one. Points Xj with significantly positive weights w
(k)
ij can be treated as included

in the local model at Xi at the step k . The weights w
(k)
ij are computed from the data

using the estimated results at the preceding step k− 1 . Note that our way of using data-

driven weights (for describing the largest possible region of local homogeneity) makes our

approach essentially different from other nonparametric procedures like sieve empirical

likelihood (see e.g. Fan and Zhang, 2003) or boosting (see e.g. Friedman, 2001) also using

data-driven weights.

The proposed approach also differs essentially from other adaptive methods of esti-

mation like global or variable bandwidth selection. In particularly, we allow the shape of

data-driven local neighborhoods to be different for different points while a global band-

width selection assumes the same shape of all local neighborhoods, cf. Fan, Farmen and

Gijbels (1998) and references therein. However, our weights w
(k)
ij describing the shape of

the local model at the point Xi at k th iteration step depend on the estimation results at

the other points, while the other pointwise adaptive methods proceed independently for

every point, c.f. Fan and Gijbels (1995) or Lepski, Mammen and Spokoiny (1997).

The original AWS procedure was proposed for the regression model in the context of

image denoising. The numerical results from PS2000 demonstrate that the AWS method



polzehl, j. and spokoiny, v. 3

is very efficient in situations where the underlying regression function allows a piecewise

constant approximation with large homogeneous regions. The procedure possesses a num-

ber of remarkable properties like preservation of edges and contrasts and nearly optimal

noise reduction inside large homogeneous regions. It is dimension free and applies in high

dimensional situations. However, the AWS procedure from PS2000 has some limitations.

The assumption of the regression model with additive errors considered in PS2000 restricts

the domain of its applications. The assumption of a local constant structure might be re-

strictive when a smooth function is considered. Finally, the iterative nature of the AWS

procedure makes its theoretical analysis quite complicated and PS2000 did not provide

any result about the quality of the proposed procedure. The aim of this paper is to extend

the propagation-separation (PS) approach to a broad class of nonparametric models and

to study it from a theoretical viewpoint. We explain how the procedure can be applied

in a unified way to different models like binary response, inhomogeneous exponential and

Poisson etc. having local exponential family structure. We also apply the PS method to

problems like density or Poisson intensity estimation and classification. More applications

can be found in Polzehl and Spokoiny (2002) (tail index estimation), Polzehl and Spokoiny

(2004b) (local constant and GARCH volatility estimation), Polzehl and Spokoiny (2004a)

(analysis of macroeconomic time series). We also establish some remarkable theoretical

nonasymptotic results on properties of the new PS algorithm. This includes the “prop-

agation” result which yields the root-n consistency of the resulting estimate in a special

homogeneous case. We also state an “oracle” result which implies rate optimality of the

estimate under usual smoothness conditions. The present paper, similarly to PS2000, fo-

cuses on the local constant approximation of the underlying model function. An extension

of the method to local polynomial estimation in the regression setup is given in Polzehl and

Spokoiny (2004c). An extension of both method and theory to a general local likelihood

modeling remains a challenging problem.

A reference implementation of our algorithms is available as a contributed package

(aws) of the R-Project for Statistical Computing from http://www.r-project.org/ .

The paper is organized as follows. Section 2 describes the model, presents the main ex-

amples, discusses the problem of local modeling and estimation and gives some important

deviation bounds for the likelihood. The local likelihood PS procedure is introduced in

Section 3. Section 4.1 demonstrates how the PS method can be used to estimate a density

function. The classification problem is considered in Section 4.2. Section 5 discusses
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main properties of the proposed method, among them the “propagation condition” and

the rate of estimation of a smoothly varying parameter.

2 Local likelihood estimation

This section introduces and discusses the local likelihood estimation problem. Suppose

we are given independent random data Z1, . . . , Zn of the form Zi = (Xi, Yi) . Here every

Xi is a vector of “features” or explanatory variables which determines the distribution of

the “observation” Yi . For simplicity we suppose that the Xi ’s are valued in the finite

dimensional Euclidean space X = IRd and the Yi ’s belong to Y ⊆ IR . An extension to

the case when both the Xi ’s and Yi ’s are valued in some metric spaces is straightforward.

The vector Xi can be viewed as a location and Yi as the “observation at Xi ”. Our model

assumes that the distribution of each Yi is determined by a finite dimensional parameter

θ which may depend on the location Xi , θ = θ(Xi) . We illustrate this set-up using a

few examples.

Example 2.1. (Gaussian regression) Let Zi = (Xi, Yi) with Xi ∈ IRd and Yi ∈ IR

following the regression equation Yi = θ(Xi) + εi with a regression function θ and i.i.d.

Gaussian errors εi ∼ N (0, σ2) .

Example 2.2. (Inhomogeneous Bernoulli (Binary Response) model) Let again

Zi = (Xi, Yi) with Xi ∈ IRd and Yi a Bernoulli r.v. with parameter θ(Xi) , that is,

P (Yi = 1 | Xi) = θ(Xi) and P (Yi = 0 | Xi) = 1 − θ(Xi) . Such models arise in many

econometric applications, they are widely used in classification and digital imaging.

Example 2.3. (Inhomogeneous Exponential model) Suppose that every Yi is ex-

ponentially distributed with the parameter θ(Xi) , that is, P (Yi > t | Xi) = e−t/θ(Xi) .

Such models are applied in reliability or survival analysis. They also naturally appear in

the tail-index estimation theory.

Example 2.4. (Inhomogeneous Poisson model) Suppose that every Yi is valued in

the set N of nonnegative integer numbers and P (Yi = k | Xi) = θk(Xi)e
−θ(Xi)/k! , that

is, Yi follows a Poisson distribution with parameter θ = θ(Xi) . This model is commonly

used in the queuing theory, it occurs in positron emission tomography, it also serves as an

approximation of the density model, obtained by a binning procedure.

All these examples are particular cases of the local exponential family model, see

Section 2.1 for more details.

Now we present a formal definition of our model. Let P = (Pθ, θ ∈ Θ) be a family of
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probability measures on Y where Θ is a subset of the real line IR1 . We assume that this

family is dominated by a measure P and denote p(y, θ) = dPθ/dP (y) . We suppose that

each Yi is, conditionally on Xi = x , distributed with density p(·, θ(x)) . The density is

parameterized by some unknown function θ(x) on X which we aim to estimate.

A global parametric structure simply means that the parameter θ does not depend on

the location, that is, the distribution of every “observation” Yi coincides with Pθ for some

θ ∈ Θ and all i . This assumption reduces the original problem to the classical parametric

situation and the well developed parametric theory applies here for estimating the under-

lying parameter θ . In particular, the maximum likelihood estimate θ̃ = θ̃(Y1, . . . , Yn) of

θ which is defined by maximization of the log-likelihood L(θ) =
∑n

i=1 log p(Yi, θ) is root-n

consistent and asymptotically efficient under rather general conditions. However, a global

parametric assumption is typically too restrictive. The classical nonparametric approach

is based on the idea of localization: for every point x , the parametric assumption is only

fulfilled locally in a vicinity of x . This leads to considering a local model concentrated in

some neighborhood of the point x .

The most general way to describe a local model is based on weights. Let, for a fixed

x , a nonnegative weight wi = wi(x) ≤ 1 be assigned to the observations Yi at Xi ,

i = 1, . . . , n . When estimating the local parameter θ(x) , every observation Yi is used

with the weight wi(x) . This leads to the local (weighted) maximum likelihood estimate

θ̃(x) = arginf
θ∈Θ

n∑

i=1

wi(x) log p(Yi, θ). (2.1)

Note that this definition is a special case of a more general local linear (polynomial)

likelihood modeling when the underlying function θ is modelled linearly (polynomially)

in x , see e.g. Fan, Farmen and Gijbels (1998). However, our approach focuses on the

choice of localizing weights in a data-driven way rather than on the method of local

approximation of the function θ .

We mention two examples of choosing the weights wi(x) . Localization by a bandwidth

is defined by weights of the form wi(x) = Kloc(li) with li = |ρ(x, Xi)/h|2 where h is a

bandwidth, ρ(x, Xi) is the Euclidean distance between x and the design point Xi and

Kloc is a location kernel. This approach is intrinsically based on the assumption that

the function θ is smooth leading to its local linear (polynomial) approximation within

a ball of some small radius h centered in the point of estimation, see e.g. Tibshirani

and Hastie (1987), Hastie and Tibshirani (1993), Fan, Farmen and Gijbels (1998), Carroll
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et.al. (1998), Cai et.al. (2000). The method has serious problems and has to be sub-

stantially extended when functions with inhomogeneous smoothness and especially with

discontinuities are considered.

Localization by a window simply restricts the model to a subset (window) U = U(x)

of the design space which depends on x , that is, wi(x) = 1(Xi ∈ U(x)) . Observations

Yi with Xi outside the region U(x) are not used when estimating the value θ(x) . This

kind of localization arises e.g. in the regression tree approach, in change point estimation

Müller (1992) and Spokoiny (1998), in image denoising, Qiu (1998), Polzehl and Spokoiny

(2003) among many others.

In this paper we do not assume any special structure for the weights wi(x) , that is,

any configuration of weights is allowed. The weights are computed in an iterative way

from the data. In what follows we identify the set W (x) = {w1(x), . . . , wn(x)} and the

local model in x described by these weights and use the notation

L(W (x), θ) = w1(x) log p(Y1, θ) + . . . + wn(x) log p(Yn, θ).

Then θ̃(x) = argsupθ L(W (x), θ) .

In our procedure we consider a family of local models, one per design point Xi , and

denote them as Wi = W (Xi) = {wi1, . . . , win} .

2.1 Local likelihood estimation for an exponential family model

The examples introduced in Section 2 can be considered as particular cases of local expo-

nential family distributions. The density functions p(y, θ) = dPθ/dP (y) are of the form

p(y, θ) = p(y)eyC(θ)−B(θ) . Here C(θ) and B(θ) are some given nondecreasing functions on

Θ and p(y) is some nonnegative function on Y . The presentation simplifies if we assume

p(y) strictly positive. This assumption is not restrictive because the factor p(y) cancels

in the likelihood ratio. The parameter θ is defined by the equations
∫

p(y, θ)P (dy) = 1

and EθY =
∫

yp(y, θ)P (dy) = θ .

In our study we suppose that the considered parametric family P satisfies the following

standard regularity condition:

(A1) P = (Pθ, θ ∈ Θ ⊆ IR) is an exponential family, the parameter set Θ is compact

and the functions B(θ) and C(θ) are continuously differentiable on Θ .

Under this condition, the functions B(θ) and C(θ) are connected by the differential equa-

tion B′(θ) = θC ′(θ) . The Kullback-Leibler divergence K(θ, θ′) = Eθ log
(
p(Y, θ)/p(Y, θ′)

)
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for θ, θ′ ∈ Θ and the Fisher information I(θ) := Eθ|p′θ(Y, θ)/pθ(Y, θ)|2 satisfy

K(θ, θ′) = θ
(
C(θ) − C(θ′)

)
−
(
B(θ) − B(θ′)

)
, I(θ) = C ′(θ).

Moreover, the regularity condition A1 implies for some constant κ that

|I(θ′)/I(θ′′)|1/2 ≤ κ, θ′, θ′′ ∈ Θ.

Next, for a given set of weights W = {w1, . . . , wn} with wi ∈ [0, 1] , it holds

L(W, θ) =
n∑

i=1

wi log p(Yi, θ) = SC(θ) − NB(θ) + R

where N =
∑n

i=1 wi , S =
∑n

i=1 wiYi and R =
∑n

i=1 wi log p(Yi) . Maximization of this

expression w.r.t. θ leads to the estimating equation NB′(θ)− SC ′(θ) = 0 . This and the

identity B′(θ) = θC ′(θ) yield the local MLE

θ̃ = S/N =
n∑

i=1

wiYi

/ n∑

i=1

wi .

This also implies for any θ ∈ Θ that L(W, θ̃) = N
{
θ̃C(θ̃) − B(θ̃)

}
+ R and

L(W, θ̃, θ) := L(W, θ̃) − L(W, θ) = NK(θ̃, θ).

Our procedure and the theoretical study heavily relies on a deviation bound for the

“fitted log-likelihood” L(W, θ̃, θ) . A general result is given in Section 6. Here we present

two special cases that are important for our presentation. Our first result considers the

parametric situation and can be regarded as a nonasymptotic local version of the Wilks

theorem, cf. Fan, Zhang and Zhang (2001).

Theorem 2.1. Let W = {wi} be a local model such that maxi wi ≤ 1 . If θ(·) ≡ θ then

P
(
L(W, θ̃, θ) > z

)
= P

(
NK(θ̃, θ) > z

)
≤ 2e−z, ∀z > 0.

Remark 2.1. Condition A1 ensures that the Kullback-Leibler divergence K fulfills K(θ′, θ) ≤
I|θ′−θ|2 for any point θ′ in a neighborhood of θ , where I is the maximum of the Fisher

information over this neighborhood. Therefore, the result of Theorem 2.1 guarantees with

a high probability that |θ̃ − θ| ≤ CN−1/2 . In other words, the value N−1 can be used

to measure variability of the estimate θ̃ . Theorem 2.1 can be used for constructing the

confidence interval of the parameter θ . Indeed, under homogeneity, the true parameter

value θ lies with a high probability in the region {θ′ : NK
(
θ̃, θ′

)
≤ z} for a sufficiently

large z .
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Theorem 2.1 can be extended to the case when θi ≈ θ for all Xi with positive weights

wi . In this case the “fitted log-likelihood” L(W, θ̃, θ) = NK(θ̃, θ) with θ := Eθ̃ =

N−1
∑n

i=1 wiθ(Xi) can also be bounded with high probability.

Theorem 2.2. Let W = {wi} be a local model such that maxi wi ≤ 1 . If the family P
satisfies A1, then there is an α ≥ 0 depending on κ only such that for every z > 0

P
(
L(W, θ̃, θ) > z

)
= P

(
NK(θ̃, θ) > z

)
≤ 2e−z/(1+α).

More details and proofs can be found in Section 6.

3 Propagation-separation using adaptive weights

This section describes a new method of locally adaptive estimation, based on the propa-

gation-separation idea. The procedure aims to determine for every point Xi the largest

possible local neighborhood in which the model function θ(·) can be well approximated

using a constant parametric value θ . The procedure starts for every point Xi from a

very small local neighborhood which is then successively increased. A new point Xj

will be included in the neighborhood of Xi only if the hypothesis of local homogeneity

θ(Xi) = θ(Xj) is not rejected, that means, if there is no significant difference in the values

of the estimated parameters obtained at the earlier step of the procedure. Two important

properties of the procedure are propagation (free extension) of every local neighborhood

within the region of local homogeneity and separation of every two regions with different

parameter values.

The formal description of the method is given in terms of weights. For the initial step of

the procedure, the estimate θ̂
(0)
i of θi = θ(Xi) is the local MLE computed from a smallest

local model defined by the kernel weights w
(0)
ij = Kloc

(
l
(0)
ij

)
with l

(0)
ij =

∣∣ρ(Xi, Xj)/h(0)
∣∣2

for a small bandwidth h(0) , cf. (2.1). If Kloc is supported on [0, 1] , then for every point

Xi the weights w
(0)
ij vanish outside the ball U

(0)
i of radius h(0) with center at Xi , that

is, the local model at Xi is concentrated on U
(0)
i . Next, at each iteration k , a ball U

(k)
i

with a larger bandwidth h(k) is considered. Every point Xj from U
(k)
i gets a weight

w
(k)
ij which is defined by testing the hypothesis of homogeneity θ(Xi) = θ(Xj) using the

estimates θ̂
(k−1)
i and θ̂

(k−1)
j obtained in the previous iteration. These weights are then

used to compute new improved estimates θ̂
(k)
i due to (2.1).

The main ingredient of the procedure is the way how the adaptive weights w
(k)
ij are

computed. PS2000 suggested to just take the normalized difference of the estimates
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f̂ (k−1)(Xi) and f̂ (k−1)(Xj) of the regression function f at two different points for checking

the hypothesis of homogeneity f(Xi) = f(Xj) . Here we utilize the result of Theorem 2.2.

The basic idea is to check that the estimate θ̂
(k−1)
j belongs to the confidence interval of

the estimate θ̂
(k−1)
i . More precisely, we apply the quantity

T
(k)
ij = N

(k−1)
i K

(
θ̂
(k−1)
i , θ̂

(k−1)
j

)
(3.1)

as a “test statistic”, that is, when computing the new weight w
(k)
ij at the next iteration

step we check for a large value of T
(k)
ij .

3.1 Definition of weights

For every pair (i, j) , the weight w
(k)
ij at the k th iteration is computed on the base

of two quantities: a location penalty l
(k)
ij = |ρ(Xi, Xj)/h(k)|2 and a statistical penalty

s
(k)
ij = T

(k)
ij /λ , see (3.1). Here λ is a parameter of the procedure which can be treated as

the critical value for the test statistic T
(k)
ij . It is natural to require that each of these two

penalties has an independent influence. This leads to considering the product

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
, (3.2)

where Kloc and Kst are two kernel functions on the positive semiaxis.

During iteration the location penalty for any fixed two points Xi, Xj will be relaxed

because of the growing bandwidth h(k) leading to a free extension under homogeneity.

At the same time, the statistical penalty becomes more and more sensitive as the local

“sample size” N
(k)
i grows leading to separation of regions with different parameter values.

3.2 Control of stability using a “memory” step

The adaptive weights W
(k)
i = {w(k)

ij } defined in (3.2) lead to the local likelihood estimate

θ̃
(k)
i = argmax

θ
L(W

(k)
i , θ).

If the local parametric assumption continues to hold in U
(k)
i then this new estimate im-

proves the previous step estimate θ̂
(k−1)
i because the effective sample size (sum of weights)

increases. At the same time, the adaptive weights procedure attempts to prevent from

including the points Xj into a model W
(k)
i if the assumption of homogeneity θi = θj is

violated. This helps to keep the approximation bias small even when the neighborhoods

U
(k)
i become large. However, in some situations, for instance, when the parameters change
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slowly with location, it may happen that the estimation error decreases at the first few

steps of the procedure and starts to slowly increase from some iteration due to an increas-

ing error of local parametric approximation. To ensure that the quality of estimation will

not be lost during iteration, we introduce a kind of “memory” in the procedure. This

basically means that the new estimate θ̃
(k)
i is compared with the previous one θ̂

(k−1)
i .

If the difference is significant, the new estimate θ̃
(k)
i is forced towards the last estimate

θ̂
(k−1)
i , that is, the estimate θ̂

(k)
i is defined as θ̂

(k)
i = ηiθ̃

(k)
i + (1 − ηi)θ̂

(k−1)
i . The param-

eter ηi measuring the difference between two estimates is again defined by checking the

homogeneity for two local models W
(k)
i and W

(k−1)
i centered at the same point Xi but

defined at two consecutive steps of the procedure:

ηi = Kme(m
(k)
i ), m

(k)
i = τ−1N

(k)
i K

(
θ̃
(k)
i , θ̂

(k−1)
i

)
.

Here Kme is some kernel, N
(k)
i =

∑
j Kloc

(
l
(k)
ij

)
is the “volume” of the scrolled local

neighborhood at the step k . Sometimes it is useful to fix the minimal memory effect

given by some value η0 ∈ (0, 1) . This leads to the definition ηi = (1 − η0)Kme(m
(k)
i ) .

The values η0 , τ are parameters of the procedure.

3.3 The procedure

This section presents a description of the procedure. Important ingredients of the method

are: the kernels Kloc , Kst and Kme , the parameters λ , τ and η0 , the initial bandwidth

h(0) , the factor a > 1 and the maximal bandwidth h∗ . The choice of the parameters is

discussed in Section 3.4. The procedure reads as follows:

1. Initialization: select the parameters λ, τ , η0 h(0) , a and h∗ . Define for all i, j

w
(0)
ij = Kloc(|ρ(Xi, Xj)/h(0)|2) . Compute the initial estimates θ̂

(0)
i = S

(0)
i /N

(0)
i with

S
(0)
i =

∑
j w

(0)
ij Yj and N

(0)
i =

∑
j w

(0)
ij . Set k = 1 , h(1) = ah(0) .

2. Iteration: for every i = 1, . . . , n

• Calculate the adaptive weights: For every point Xj , compute the penalties

l
(k)
ij =

∣∣∣ρ(Xi, Xj)/h(k)
∣∣∣
2
,

s
(k)
ij = λ−1T

(k)
ij = λ−1N

(k−1)
i K

(
θ̂
(k−1)
i , θ̂

(k−1)
j

)
. (3.3)

Define w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
, w

(k)
ij = Kloc

(
l
(k)
ij

)
.
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• Estimation: Compute for every i

θ̃
(k)
i = S

(k)
i /Ñ

(k)
i

ηi = (1 − η0)Kme

(
τ−1N

(k)
i K

(
θ̃
(k)
i , θ̂

(k−1)
i

))
(3.4)

with Ñ
(k)
i =

∑n
j=1 w

(k)
ij , N

(k)
i =

∑n
j=1 w

(k)
ij and S

(k)
i =

∑n
j=1 w

(k)
ij Yj .

Define the new local MLE estimate θ̂
(k)
i of θi and the value N

(k)
i as:

θ̂
(k)
i = ηiθ̃

(k)
i + (1 − ηi)θ̂

(k−1)
i , N

(k)
i = ηiÑ

(k)
i + (1 − ηi)N

(k−1)
i .

3. Stopping: Stop if ah(k) > h∗ , otherwise increase k by 1, set h(k) = ah(k−1) and

continue with step 2.

Remark 3.1. In some cases, e.g. Bernoulli and Poisson distributions, local MLE can

obtain a value of zero at the border of the parameter space. This may lead to an infinite

Kullback-Leibler distance. To avoid such behavior we replace the Kullback-Leibler dis-

tance K(θ, θ
′

) by K(θ, (1 − ν)θ
′

+ νθ) with ν = 1/(2N i) when estimating in point Xi .

The effect of this modification vanishes as N i tends to ∞ .

3.4 Choice of parameters

This section briefly discusses the impact of every parameter of the procedure.

Kernels Kst , Kloc and Kme : The kernels Kst , Kloc and Kme must be nonnegative

and non-increasing on the positive semiaxis. We propose to use Kst(u) = e−uI{u≤5} .

We recommend to apply a localization kernel Kloc supported on [0, 1] to reduce the

computational effort of the method. As a default we employ Kloc(u) = Kme(u) = (1−u)+ .

Our numerical results indicate that similarly to standard local polynomial smoothing the

particular choice of kernels does not significantly affect the performance of the method.

Initial bandwidth h(0) , parameter a and maximal bandwidth h∗ : The initial

bandwidth h(0) should be reasonably small. We select h(0) such that every ball U
(0)
i

with center Xi and radius h(0) contains only the design point Xi . The parameter a

controls the growth rate of the local neighborhoods for every point Xi . It should be

selected to provide that the mean number of points inside a ball U
(k)
i with radius h(k)

grows exponentially with k with some factor agrow > 1 . If Xi are from IRd , then the

parameter a can be taken as a = a
1/d
grow . Our default choice is agrow = 1.25 .

The maximal bandwidth h∗ can be taken large so that every ball U
(k)
i contains the

whole sample for the last iteration k and the location penalty nearly vanishes. However,
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the parameter h∗ can be used to bound the numerical complexity of the procedure.

The geometric growth of the parameter h ensures that the total number of iterations

is typically bounded by C log(n) for some fixed constant C .

Parameters λ, τ, η0 : The important parameter of the procedure is λ which scales

the statistical penalty sij . A small value of λ leads to overpenalization and therefore

unstable performance of the method in a homogeneous situation. A large value of λ may

result in a loss of sensitivity to discontinuities. A reasonable way to select the parameter

λ for a specific application is based on the condition of free extension, which we also call

the “propagation condition”. We discuss this choice in the next section.

The parameter τ scales the penalty m
(k)
i computed for two models W

(k)
i and W

(k−1)
i

centered at the same point for consecutive iterations. The parameter can be chosen by

the propagation condition after a value of λ is fixed. In the end of the iteration process

the strong overlapping of the models W
(k)
i and W

(k−1)
i causes a high correlation between

the estimates θ̃
(k)
i and θ̂

(k−1)
i . This suggests that the value of τ can be decreased during

iteration. This leads to the following proposal: τ = max{τ1 − τ2 log h(k), τ0} for some

τ0, τ1 and τ2 . The parameter η0 controls the memory effect within the iteration process.

Our default choice is η0 = 0.25 .

3.5 Choice of parameters λ and τ by the “propagation condition”

The “propagation condition” means that in a homogeneous situation, i.e. when the under-

lying parameters for every two local models coincide, the impact of the statistical penalty

in the computed weights wij is negligible. This would result in a free extension of every

local model under homogeneity. In a homogenous situation, provided the value hmax is

sufficiently large, all weights wij will be close to one at the end of the iteration process and

every local model will essentially coincide with the global one. Therefore, the parameter

λ can be selected as the minimal value of λ that, in case of a homogeneous (parametric)

model θ(x) ≡ θ , provides a prescribed probability to obtain the global model at the end

of the iteration process. The value can be adjusted by Monte-Carlo simulations. A the-

oretical justification is given by Theorem 5.1 in Section 5.1, that claims that the choice

λ = C log(n) with a sufficiently large C ensures the “propagation” condition whatever

the parameter θ is.

Our numerical results indicate that an increase of the sample size does not necessarily

require to increase λ . Therefore, we utilize as default the constant value λ = tα(χ2
1) , that
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is, the α -quantile of the χ2 distribution with one degree of freedom that relies on the

asymptotic distribution of every test statistic T
(k)
ij . The value α depends on the specified

exponential family.

4 Application examples

In this section we consider two possible applications of the proposed PS procedure to non-

parametric density estimation and classification. Applications to local constant volatility

estimation are rigorously discussed in Polzehl and Spokoiny (2004). Polzehl and Spokoiny

(2002) explains how a similar procedure can be applied to tail index estimation.

4.1 Application to nonparametric density estimation

Suppose that observations Z1, . . . , ZL are sampled independently from some unknown

distribution P on IRd with density f(x) . The problem of adaptive estimation of f can

be successfully attacked by the PS method. Here we consider a small or moderate d , e.g.

d ≤ 3 . The case d > 3 can be handled as well but requires a different preprocessing.

Without loss of generality we suppose that the observations are located in the cube

[0, 1]d . We do not assume that f is compactly supported or that f is bounded away

from zero on [0, 1]d . As a first step we apply a binning procedure, see e.g. Fan and

Marron (1994) or Fan and Gijbels (1996). Let the interval [0, 1] be split into M equal

disjoint intervals of length δ = 1/M . Then the cube [0, 1]d can be split into n = Md

nonoverlapping small cubes with side length δ , which we denote by J1, . . . , Jn . Let Xi be

the center point of the cube Ji and let Yi be the number of observations lying in the i th

cube Ji . The pairs (Xi, Yi) for i = 1, . . . , n can be viewed as new observations. The joint

distribution of Y1, . . . , Yn is described by the multinomial law. This model can be very

well approximated by the Poisson model with independent observations Yi having Poisson

distribution with intensity parameter θi = Lpi where pi = P (Ji) . If the value θi has

been estimated by θ̂i then the target density f is estimated at Xi as f̂(Xi) = δ−dθ̂i/L

or as f̂(Xi) = δ−dθ̂i

/∑n
j=1 θ̂j .

For estimating the values θi from the “observations” Yi we apply the PS procedure

with the local Poisson family from Example 2.4. In addition to the standard parameter

set, we need to specify the bin length δ . A reasonable choice is δ = c/K where K is the

smallest integer satisfying Kd ≥ L and c ≤ 1 . The procedure applies even if c is small

and many bin counts Yi are zero. Using a small c reduces the discretization error but
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Example 5.2: Pointwise MAE for KDE

Figure 4.1: Density estimation: Estimates for typical realizations and simulation results.

increases the “sample size” n and therefore, the computational effort by factor c−d .

We use two simulated examples to illustrate the performance of the method. For

comparison we also computed kernel density estimates (KDE) with a Gaussian kernel and

the bandwidth minimizing the Mean Absolute Error (MAE).

Example 4.1. We generate n = 200 observations from the univariate distribution with

density f(x) = 1.5 · I{0≤x<0.25} + 1.5 · I{0.75≤x≤1} + 0.5 · I{0.25≤x<0.75}.

In the upper left of Figure 1 we provide one typical realization of density estimates

using PS (solid line) and KDE (dashed line). The PS-estimate was obtained using a regular

grid with interval-length δ = 0.0025 and range (−.2, 1.2) . The true density (dotted line)

is given for comparison. The maximal bandwidth was chosen h∗ = 5 . The parameters

were set to α = .93 and τ0 = 1.5 . The lower left plot shows the pointwise MAE for both

estimates obtained from 500 simulations. The integrated mean absolute error for PS is

0.141 compared to 0.232 for KDE with optimal bandwidth.

Example 4.2. We generate n = 2500 observations from the 2-dimensional density

f(x1, x2) = 7.5 · x1(1 − x2
1 − x2

2)+ I{x1≥0,x2≥0} . This density possesses a discontinuity

along the axis x2 = 0 and discontinuities of the first derivative along the line x1 = 0 and

the boundary of the unit disk. The central upper plot of Figure 1 provides a gray-value

image of the estimated density. Contour lines for both the estimate and the true density



polzehl, j. and spokoiny, v. 15

(dotted) are shown additionally. Results were obtained using a 2-dimensional grid with

140 × 140 cells on (−.2, 1.2) × (−.2, 1.2) , i.e. with a bin width δ = .01 . The maximal

bandwidth was set to h∗ = 0.2 . We employed parameters α = .99 and τ0 = .5 . The

external contour can be interpreted as the estimated support of the density. The qual-

ity of the estimate of the density support is very good along the edge x2 = 0 and only

slightly worse along the axis x1 = 0 and the boundary of the unit circle where the density

is continuous. The central plot in the bottom of Figure 1 provides the pointwise MAE

as obtained from 500 simulations. The left row gives the corresponding information for

the kernel density estimate (KDE) with optimal (for MAE) bandwidth. We observe an

integrated mean absolute error of 0.140 for the PS estimate compared to 0.154 for KDE

with optimal bandwidth. The pointwise MSE plot shows that the PS method does very

well outside of the density support while the KDE oversmooths near the boundary. As

expected, KDE performs slightly better in the region of regularity of the density f .

4.2 Application to classification

Let (Xi, Yi) , i = 1, . . . , n be a training sample, with Xi valued in an Euclidean space

x = IRd with known class assignment Yi ∈ {0, 1} . Our objective is to construct a

discrimination rule assigning every point x ∈ x to one of the two classes. The classification

problem can be naturally treated in the context of a binary response model. It is assumed

that each observation Yi at Xi is a Bernoulli r.v. with parameter p(Xi) , that is, P (Yi =

0) = 1 − p(Xi) and P (Yi = 1) = p(Xi) . The “ideal” Bayes discrimination rule is

ρ(x) = 1 (p(x) ≥ π1) where π1 is the prior probability of the class one. Usually π1 = 1/2 .

Since the function p(x) is typically unknown it is replaced by its estimate p̂ .

Nonparametric methods of estimating the function p are based on local averaging.

Two typical examples are given by the k -nearest neighbors ( k -NN) estimate and the ker-

nel estimate. For a given k , define for every point x in x the subset Dk(x) of the design

X1, . . . , Xn containing the k nearest neighbors of x . Then the k -NN estimate p̃k(x) of

p(x) is defined by averaging the observations Yi over Dk(x) while the kernel estimate

p̃h(x) utilizes the kernel weights K
(
ρ2(x, Xi)/h2

)
with a univariate kernel function K(t)

and the bandwidth h :

p̃k(x) =
1

k

∑

Xi∈Dk(x)

Yi , p̃h(x) =
n∑

i=1

K

(
ρ2(x, Xi)

h2

)
Yi

/ n∑

i=1

K

(
ρ2(x, Xi)

h2

)
.

Both methods require the choice of a smoothing parameter.



16 propagation-separation approach for local likelihood estimation

true density quotient optimal k−NN rule

2 5 10 20 50 100 160

Number k (in k−NN)

0.
20

0.
25

0.
30

0.
35

0.85 0.87 0.89 0.91 0.93

Level  α  (in PS) Bayes rule
k−NN d=2
k−NN d=10
PS−NN d=2
PS−NN d=10

Classification error (NN distance)

PS classifier optimal kernel estimate

0.36 0.5 1 1.5 2 3 4.5

Bandwidth h (in KDE)

0.
20

0.
25

0.
30

0.
35

0.85 0.87 0.89 0.91 0.93

Level  α  (in PS)

Bayes rule
KDE(h) d=2
KDE(h) d=10
PS d=2
PS d=10

Classification error (Euclidean)

Figure 4.2: Classification rules obtained by the optimal Bayes decision, the best k-nearest neighbor

rule, adaptive weights smoothing (PS) and the best rule based on kernel estimation.

The PS method can be viewed as a sophisticated extension of both methods using

the propagation-separation idea. Namely, for estimating the function p at the points

X1, . . . , Xn we can directly apply the PS procedure corresponding to the local Bernoulli

model from Example 2.2. In order to classify additional observations Xn+1, . . . , Xn+m

the function p has to be estimated in these points. This can be easily done by applying

PS to the “extended” sample (Xi, Yi) for i = 1, . . . , n + m , with arbitrary Yi for i > n ,

and specifying all weights w
(k)
ij with j > n as zero within the iterative process.

Example 4.3. To illustrate the behavior of PS in this context we use the data of a

simulated two-dimensional discriminant analysis example from Hastie et.al. (2001, p.

13). The data consist of 200 training observations, 100 from each class. The probability

densities for each class are mixtures of Gaussians, see Hastie et.al. (2001, p. 17) for details.

Figure 2 illustrates the classification rules for the ideal Bayes rule, the k -nearest neighbor

rule with optimal k = 8 , the classification rule obtained by PS with α = .92 , τ0 = 1 and

h∗ = 10 , and the classification rule obtained by the kernel estimate using an Epanechnikov

kernel with optimal bandwidth h = 0.9 . In each case the estimated, or true, function

p(x) are provided together with the 0.5 -contour line defining the classification rule.
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Additionally a 10-dimensional data set has been created adding 8 i.i.d U(−1, 1) nui-

sance components to each point Xi . The right row of Figure 2 shows graphs of error rates

for d = 2 and d = 10 , as functions of the main smoothing parameter for the rules defined

by k-nearest neighbor and PS (based on a Nearest Neighbor distance) (top) and kernel

estimation and PS (using a Euclidean distance) (bottom). Error rates are obtained by

classification of 6831 points in predictor space. Numerical integration with respect to class

probabilities and Monte Carlo integration are used in the 2D- and 10D-case, respectively.

The ideal Bayes risk is given for a comparison.

The PS procedure produces the lowest classification errors between the three methods.

Low values are obtained over a wide range for α , with our default setting, α = .92 , being

slightly conservative. The choice of a smoothing parameter for the other methods is rather

critical, with optimal values strongly depending on d .

5 Some important properties of the PS estimate

This section discusses some properties of the proposed PS procedure. In particular we

establish the “propagation” and “separation” results. “Propagation” means a free ex-

tension of every local model in a homogeneous situation, leading to a nearly parametric

estimate at the end of the iteration process. This property and the “memory” step of

the procedure ensure the “oracle” quality of the resulting estimate and, as a consequence,

rate optimality over Besov function classes. Finally we show that the procedure separates

every two nearly homogeneous regions with significantly different parameter values. To

simplify the exposition, we assume the value of the parameter η0 describing the minimal

memory effect (see (3.4)) is set to zero. Extension to the case of an arbitrary η0 < 1/2 is

straightforward. We also suppose that the location kernel Kloc is supported on [0, 1] . We

start from the “propagation result” for the homogeneous case with the constant parameter

value θ(x) = θ .

5.1 One step propagation under homogeneity

We proceed by induction. Let the “propagation” condition be fulfilled for the first k

iterations of the algorithm. This means that for every weight w
(k)
ij its statistical component

Kst(s
(k)
ij ) is close to one and w

(k)
ij ≈ w

(k)
ij . We now aim to show that the propagation

condition continues to hold for the next iteration k + 1 .

Before stating the results we formulate the required assumptions. In our study we
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restrict ourselves to the case of the varying coefficient regular exponential family satisfying

A1, which is in agreement with all our examples.

Define for every i by U
(k)
i the ball of radius h(k) with the center at Xi . Let also

N
(k)
i =

∑
j w

(k)
ij =

∑
j Kloc(ρ

2(Xi, Xj)/|h(k)|2) . This quantity can be treated as the

sample size for the local model with nonadaptive kernel weights corresponding to the

bandwidth h(k) . We assume that the values N
(k)
i grow with k but not too fast, and also

some local regularity of the design in the neighborhood U
(k)
i of every point Xi .

(A2) There exist constants ν1 ≤ ν , ν1, ν ∈ (2/3, 1) such that for every i

ν1 ≤ N
(k−1)
i /N

(k)
i ≤ ν.

(A3) There exists a constant ω(k) such that for all Xi, Xj with ρ(Xi, Xj) ≤ h(k)

(N
(k)
i /N

(k)
j )1/2 ≤ ω(k).

Our theoretical results are stated under one more assumption which helps to gradually

simplify the theoretical analysis. The main problem in the theoretical study comes from

the iterative nature of the algorithm. At every step we use the same data to compute the

estimates θ̂
(k)
i and the weights w

(k+1)
ij which will be used to recompute the estimates. As

a result, the weights and observations become dependent. To overcome this problem we

make the following assumption:

(S0) At the step k , the weights {w(k−1)
ij } and {w(k)

ij } are independent of the sample

Y1, . . . , Yn .

Remark 5.1. Assumption S0 can be provided using the standard splitting technique, that

is, by splitting the original samples into few non overlapping subsamples, cf. Bickel et al

(1998, p. 45). However, an application of such a split for practically relevant procedures

is questionable. The proposed algorithm utilizes the same sample at every step of the

algorithm, and this is not completely unjustified: indeed, it is intuitively clear that the

estimates θ̂
(k)
i obtained by local averaging of the observations are only weakly dependent

of the observations Yj . The same applies to the weights w
(k)
ij which are defined via the

estimates θ̂
(k−1)
i . Our numerical results nicely confirm that the “propagation” property

continues to hold even if the same sample is used at every iteration. It is also worth

mentioning that Assumption S0 is only used for proving the “propagation” property.
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Under the above conditions and homogeneity of the function θ(·) , we aim to show by

induction that the statistical penalties s
(k)
ij are uniformly bounded by a small constant.

This yields that the adaptive weights w
(k)
ij are close to the nonadaptive kernel weights

w
(k)
ij and hence, the estimation results are similar to what we would get for the standard

local likelihood estimation scheme.

The initial estimates θ̂
(0)
i are obtained by the standard local likelihood method with

kernel weights w
(0)
ij . By Theorem 2.1 the values N

(0)
i K(θ̂

(0)
i , θ) can with high probability

be uniformly bounded by 2 log(n) . We continue by induction. Assume that after k − 1

iterations, the following conditions are fulfilled with a high probability for every i

N
(k−1)
i ≥ 0.5N

(k−1)
i , N

(k−1)
i K(θ̂

(k−1)
i , θ) ≤ µ log(n), Ñ

(k)
i ≥ νN

(k)
i (5.1)

for µ ≥ 4 . Now we show that the similar result continues to hold for the k th iteration.

Define ρ such that min{Kme(ρ), Kst(ρ)} = ν where ν is shown in A3.

Theorem 5.1. Suppose that θ(·) ≡ θ . Let, for the step k of the procedure, Assumptions

S0 and A1 through A3 be fulfilled and the parameters λ, τ of the procedure are taken in

the form λ = Cλ log(n) and τ = Cτ log(n) with the constants Cτ and Cλ such that

Cτ ≥ 3µκ
2/(ρν1), Cλ ≥ κ

2µ(1 + ω(k))2/ρ (5.2)

with µ ≥ 4 . If the condition (5.1) meets, then there exists a random set A(k) such that

P (A(k)) ≥ 1 − 2/n , and it holds on A(k)

N
(k)
i K(θ̂

(k)
i , θ) ≤ µ log(n), N

(k)
i ≥ N

(k)
i /2. (5.3)

In addition, on A(k) for every i

min
Xj∈U

(k)
i

Kst(s
(k+1)
ij ) ≥ ν, Ñ

(k+1)
i ≥ νN

(k+1)
i . (5.4)

Proof. Define A(k) = {Ñ (k)
i K

(
θ̃
(k)
i , θ

)
≤ 0.5µ log(n), ∀i} . We now apply a general expo-

nential bound from Theorem 2.1: with z = 0.5µ log(n) for every i

P

(
Ñ

(k)
i K

(
θ̃
(k)
i , θ

)
> 0.5µ log(n)

)
≤ 2e−0.5µ log(n).

Therefore P (A(k)) ≥ 1 − 2ne−0.5µ log(n) ≥ 1 − 2/n provided that µ ≥ 4 . We now show

that the assertions of the theorem are fulfilled on the set A(k) .

In the proof we use the following simple lemma.
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Lemma 5.2. Under condition A1 it holds for every θ, θ′, θ′′ ∈ Θ

K1/2(θ′, θ′′) ≤ κK1/2(θ′, θ) + κK1/2(θ′′, θ).

Also, for any sequence θ0, θ1, . . . , θm ,

K1/2(θ0, θm) ≤ κ

m∑

l=1

K1/2(θl−1, θl).

Proof. The reparametrization υ = C(θ) and D(υ) = B(θ) is useful, see the proof of

Theorem 6.1 in the next section for more details. For any υ1 ≤ υ2 it holds

K(υ1, υ2) = D(υ2) − D(υ1) − (υ2 − υ1)D
′(υ1) = 0.5|υ2 − υ1|2D′′(υ̃)

where υ̃ ∈ [υ1, υ2] and D′′(υ) = 1/I(θ) and the results easily follow from A1.

For every i , the memory penalty m
(k)
i = τ−1N

(k)
i K

(
θ̃
(k)
i , θ̂

(k−1)
i

)
fulfills on A(k) by

Lemma 5.2, Assumption A2, (5.1) and (5.2)

m
(k)
i ≤ τ−1N

(k)
i κ

2
{
K1/2

(
θ̂
(k−1)
i , θ

)
+ K1/2

(
θ̃
(k)
i , θ

)}2

≤ τ−1N
(k)
i κ

2
{(

µ log(n)/N
(k−1)
i

)1/2
+
(
0.5µ log(n)/Ñ

(k)
i

)1/2}2

≤ C−1
τ ν−1

1 µκ
2
(
1 +

√
0.5
)2 ≤ ρ.

This yields ηi = Kme(m
(k)
i ) ≥ ν ≥ 2/3 . By definition θ̂

(k)
i = ηiθ̃

(k)
i + (1 − ηi)θ̂

(k−1)
i .

Convexity of the Kullback-Leibler divergence K(u, v) w.r.t. the first argument implies

K(θ̂
(k)
i , θ) = K(ηiθ̃

(k)
i + (1 − ηi)θ̂

(k−1)
i , θ)

≤ ηiK(θ̃
(k)
i , θ) + (1 − ηi)K(θ̂

(k−1)
i , θ)

≤
(
0.5ηi/Ñ

(k)
i + (1 − ηi)/N

(k−1)
i

)
µ log(n)

≤
(
0.5ηi/ν + (1 − ηi)/ν1

)
µ log(n)

/
N

(k)
i ≤ µ log(n)/N

(k)
i

because of ηi ≥ 2/3 and ν ≥ ν1 ≥ 2/3 . Further, these bounds and (5.1) imply

N
(k)
i = ηiÑ

(k)
i + (1 − ηi)N

(k−1)
i ≥ ηiνN

(k)
i + 0.5(1 − ηi)N

(k−1)
i

≥ (ηi + 0.5(1 − ηi)) ν1N
(k)
i ≥ 0.5N

(k)
i .

Hence, (5.3) is proved.

By definition T
(k+1)
ij = N

(k)
i K(θ̂

(k)
i , θ̂

(k)
j ) . Lemma 5.2, Assumptions A1 and A3, (5.3)

and the inequality N
(k)
i ≤ N

(k)
i yield on the set A(k) for every pair i, j with Xj ∈ U

(k)
i

T
(k+1)
ij ≤ κ

2N
(k)
i

(
K1/2(θ̂

(k)
i , θ) + K1/2(θ̂

(k)
j , θ)

)2

≤ κ
2µ log(n)

(
1 +

(
N

(k)
i /N

(k)
j

)1/2)2 ≤ κ
2µ log(n)(1 + ω(k))2.
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Therefore, on A(k) , it holds for every considered pair i, j in view of (5.2)

s
(k+1)
ij = λ−1T

(k+1)
ij ≤ κ

2µ
(
1 + ω(k)

)2
/Cλ ≤ ρ

and Kst(s
(k+1)
ij ) ≥ ν . This also yields Ñ

(k+1)
i ≥ νN

(k+1)
i for all i and (5.4) follows.

A sequential application of the result of Theorem 5.1 yields the following conclusion

for the last step estimate θ̂i under homogeneity:

Corollary 5.3. Let the conditions of Theorem 5.1 be fulfilled for every iteration k with

µ ≥ 4 . Then the last step estimate θ̂i = θ̂
(k∗)
i fulfills

P
(
N

(k∗)
i K(θ̂i, θ) > µ log(n)

)
≤ 2k∗/n.

If hmax is sufficiently large then, the sizes N
(k∗)
i of the local neighborhoods at the final

step k = k∗ are of order of the global sample size n . Since also K(θ′, θ) ≈ I(θ)|θ′−θ|2/2 ,

this result claims the root-n consistency of the estimate θ̂i .

5.2 One step propagation under local homogeneity of θ(·)

Here we extend the propagation result to the case when θ(·) is not constant but can be

well approximated by a constant in some vicinity of a fixed design point Xi . This would

imply a free extension (propagation) of the local model centered at Xi provided that the

local neighborhoods U
(k)
i remain restricted to this region of local homogeneity. Due to

Theorem 5.1 the estimate θ̂
(k)
i under homogeneity of θ(·) satisfies with a high probability

the condition N
(k)
i K(θ̂

(k)
i , θi) ≤ µ log(n) which means the accuracy of estimation of order

(
log(n)/N

(k)
i

)1/2
. We aim to show that if the error of local approximation of the function

θ(·) in the neighborhood U
(k)
i of Xi is smaller in order than (N

(k)
i )−1/2 , then the result

continues to hold.

In the contrary to the previous section where the assertion of Theorem 5.1 applies

uniformly to all the points in the design space, we state now a local result in some region

U (k) . The reason is that local smoothness properties of θ(·) and hence the rate of esti-

mation may vary from point to point. For every Xi ∈ U (k) , we measure the variability of

the function θ in a neighborhood U
(k)
i by the maximum of K1/2(θj , θi) over Xj ∈ U

(k)
i .

Our “local homogeneity” condition means that this variability is not larger in order than

the variability of the estimate θ̂
(k)
i .

(A4) For every Xi ∈ U (k) and every Xj ∈ U
(k)
i , it holds with a constant δ

(k)
i ≥ 0

K1/2(θj , θi) ≤ δ
(k)
i

(
log(n)/N

(k)
i

)1/2
.
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Denote U (k)
=
⋃

Xi∈U(k) U
(k)
i . Similarly to the homogeneous case we assume that after

k − 1 iterations, the following conditions are fulfilled with a high probability:

N
(k−1)
i ≥ 0.5N

(k−1)
i , N

(k−1)
i K(θ̂

(k−1)
i , θ) ≤ µ log(n) Ñ

(k)
i ≥ νN

(k)
i , (5.5)

for all Xi ∈ U (k)
. Here ν is from Assumption A3 and µ is some fixed value satisfying

√
0.5µ ≥ κ

√
2(1 + α)/ν + κδ

(k)
i (5.6)

with the constant α from Theorem 2.2 which depends on κ only.

Theorem 5.4. Let, for the step k of the procedure, Assumptions A1 through A4, S0 be

fulfilled and let the parameters λ, τ of the procedure fulfill λ = Cλ log(n) , τ = Cτ log(n)

with the constants Cτ and Cλ such that

Cτ ≥ 3µκ
2/(ρν1), Cλ ≥ κ

(
δ
(k)
i +

√
µ(1 + ω(k))

)2
/ρ. (5.7)

where µ fulfills (5.6). If (5.5) meets for this µ , then there exists a random set A(k) such

that P (A(k)) ≥ 1 − 2/n , and it holds on A(k) for every Xi ∈ U (k)

N
(k)
i K(θ̂

(k)
i , θi) ≤ µ log(n), N

(k)
i ≥ N

(k)
i /2. (5.8)

In addition, on A(k) for every Xi ∈ U (k)

min
Xj∈U

(k)
i

Kst(s
(k+1)
ij ) ≥ ν, Ñ

(k+1)
i ≥ νN

(k+1)
i . (5.9)

Proof. Define

A(k) = {Ñ (k)
i K(θ̃

(k)
i , Eθ̃

(k)
i ) ≤ 2(1 + α) log(n), ∀Xi ∈ U (k)}.

Here Eθ̃
(k)
i stands for

∑
j w

(k)
ij θj/

∑
j w

(k)
ij and α is shown in Theorem 2.2. This theorem

yields for every i

P

(
Ñ

(k)
i K(θ̃

(k)
i , Eθ̃

(k)
i ) > 2(1 + α) log(n)

)
≤ 2e−2 log(n) = 2n−2.

Therefore P (A(k)) ≥ 1 − 2n · n−2 ≥ 1 − 2/n .

Now we check that the assertions of the theorem are satisfied on A(k) . First we bound

the estimation error of θ̃
(k)
i for Xi ∈ U (k) . Since Eθ̃

(k)
i is a convex combination of θj

for Xj ∈ U
(k)
i ⊆ U (k)

and K(θ, θ′) is a convex function w.r.t. θ , it holds on the set A(k)

by Lemma 5.2 and Assumption A4 in view of (5.6)

N
(k)
i K

(
θ̃
(k)
i , θi

)
≤ N

(k)
i κ

2
(
K1/2

(
θ̃
(k)
i , Eθ̃

(k)
i

)
+ K1/2

(
Eθ̃

(k)
i , θi

))2

≤ N
(k)
i κ

2
{(

2(1 + α) log(n)/Ñ
(k)
i

)1/2
+ δ

(k)
i

(
log(n)/N

(k)
i

)1/2
}2

≤ κ
2 log(n)

(√
2(1 + α)/ν + δ

(k)
i

)2
≤ 0.5µ log(n).
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Now (5.8) follows in the same line as (5.3) in the proof of Theorem 5.1.

For every Xi ∈ U (k) and Xj ∈ U
(k)
i , by Lemma 5.2, (5.7) on A(k) holds

T
(k+1)
ij ≤ κ

2N
(k)
i

(
K1/2(θ̂

(k)
i , θi) + K1/2(θ̂

(k)
j , θj) + K1/2(θj , θi)

)2

≤ κ
2N

(k)
i

{(
µ log(n)/N

(k)
i

)1/2
+
(
µ log(n)/N

(k)
j

)1/2
+ δ

(k)
i

(
log(n)/N

(k)
i

)1/2
}2

≤ κ
2 log(n)

(√
µ + ω(k)√µ + δ

(k)
i

)2 ≤ Cλ log(n)ρ.

Thus, on A(k) holds s
(k+1)
ij = λ−1T

(k+1)
ij ≤ ρ and Kst(s

(k+1)
ij ) ≥ ν . This yields (5.9) and

also Ñ
(k+1)
i ≥ νN

(k+1)
i for all Xi ∈ U (k) .

We present one corollary of Theorem 5.4.

Corollary 5.5. Let, with a fixed k , Assumptions S0 and A1 through A4, (5.6) and (5.7)

be fulfilled for every k′ ≤ k with sets U (k′) satisfying U (k′+1) ⊆ U (k′) , k′ < k . Then the

k -step estimate θ̂
(k)
i fulfills

P

(
max

Xi∈U(k)

∣∣N (k)
i K(θ̂

(k)
i , θi)

∣∣ > µ log(n)
)
≤ 2k/n.

5.3 Control of stability by the memory step

Due to Theorem 5.4, a small error of the local constant approximation of θ(·) in a vicin-

ity of a point Xi ensures the propagation condition for the local models W
(k)
i . This

particularly means that the k step estimate θ̂
(k)
i delivers the accuracy of estimation of

order
(
log(n)/N

(k)
i

)1/2
. Now we consider the situation when the local neighborhoods

U
(k)
i become too large during the iteration process and A4 is not fulfilled any more. Of

course, propagation cannot be stated in this case and is not what we long for when the

assumption of local homogeneity is violated. A desirable property of the procedure is that

the quality of estimation gained at the “propagation” phase will not be lost afterwards.

This key property is almost a direct consequence of the construction of the “memory”

step. Namely, the following proposition holds.

Proposition 5.6. Under A1, for every i and every k , it holds

N
(k)
i K

(
θ̂
(k)
i , θ̂

(k−1)
i

)
≤ τ. (5.10)

Moreover, under A1 and A2, it holds for every k′ > k with c1 = κ
2ν
(
1 −√

ν
)−2

:

N
(k)
i K

(
θ̂
(k′)
i , θ̂

(k)
i

)
≤ c1τ. (5.11)
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Remark 5.2. An interesting feature of this result is that it is fulfilled with probability

one. In fact, it follows just from the construction of the procedure. Assumption S0 is not

required for the proof.

Proof. By definition of θ̂
(k)
i = ηiθ̃

(k)
i +(1−ηi)θ̂

(k−1)
i with ηi = Kme

(
τ−1N

(k)
i K(θ̃

(k)
i , θ̂

(k−1)
i )

)
.

Convexity of the Kullback-Leibler divergence K(u, v) w.r.t. the first argument implies

K
(
θ̂
(k)
i , θ̂

(k−1)
i

)
≤ ηiK

(
θ̃
(k)
i , θ̂

(k−1)
i

)
.

If K
(
θ̃
(k)
i , θ̂

(k−1)
i

)
≥ τ/N

(k)
i , then ηi = 0 and (5.10) follows.

Now, Assumption A1, Lemma 5.2 and Proposition 5.6 yield

K1/2
(
θ̂k

′

i , θ̂
(k)
i

)
≤ κ

k
′

∑

l=k+1

K1/2
(
θ̂
(l)
i , θ̂

(l−1)
i

)
≤ κ

k
′

∑

l=k+1

(
τ/N

(l)
i

)1/2
.

The use of Assumption A2 leads to the bound

K1/2
(
θ̂
(k′)
i , θ̂

(k)
i

)
≤ κ

(
τ/N

(k)
i

)1/2
(ν1/2 + . . . + ν(k′−k)/2) ≤ κ

√
ν
(
1 −√

ν
)−1(

τ/N
(k)
i

)1/2

which proves (5.11).

The next theorem states the desirable “stability” property of the procedure. It follows

directly from Proposition 5.6 with the use of Lemma 5.2.

Theorem 5.7. Let A1 and A2 hold for all k . Let, for some k and some i ,

N
(k)
i K

(
θ̂
(k)
i , θi

)
≤ µ log(n)

for some constant µ . Then it holds for the final estimate θ̂i

N
(k)
i K

(
θ̂i, θi

)
≤ c log(n)

with c = κ
2
(√

c1Cτ +
√

µ
)2

, Cτ = τ/ log(n) and c1 from Proposition 5.6.

Remark 5.3. Corollary 5.5 and Theorem 5.7 imply the “oracle” property of the procedure.

Indeed, if local homogeneity holds in a neighborhood of radius h(k) around Xi , then the

local likelihood estimate with such “oracle” bandwidth delivers the accuracy of order
(
log(n)/N

(k)
i

)1/2
, and a similar results holds for the adaptive estimate θ̂i .

5.4 Rate of estimation under smoothness conditions on θ(·)

Here we consider the case when θ(·) satisfies some smoothness conditions in a neighbor-

hood of a fixed point x . This means that the error of the local constant approximation
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of θ(·) by θ(x) is sufficiently small. In addition we require some design regularity in the

neighborhood of x . We show that the result of Theorems 5.4 and 5.7 lead in such a situ-

ation to the classical nonparametric rate of estimation n−1/(2+d) (up to a log multiplier)

corresponding to the smoothness degree one.

Let a point x = Xi be fixed. Define h
(k)

= h(1) + . . . + h(k) for k ≥ 1 and denote

by B(k)
i the ball with the center at Xi and the radius h

(k)
. By definition of h(k) , it

holds h
(k) ≤ h(k)/(1 − a−1) . To ensure the quality of estimation of the function θ(·) at

the point Xi we assume some smoothness of θ(·) and also some design regularity in the

neighborhood B(k)
i for some sufficiently large k .

(A4s) It holds K1/2(θj , θj′) ≤ Lh(k) for all Xj , Xj′ ∈ B(k)
i such that |Xj − Xj′ | ≤ h(k) .

(A5) For a fixed k and every Xi ∈ B(k) , it holds for some constants ν2 ≤ ν3

ν2 ≤ N
(k)
i /
(
n|h(k)|d

)
≤ ν3.

Theorem 5.8. Define ȟ =
(
L2n/ log(n)

)−1/(2+d)
and fix a constant δ > 0 . Let h(k) = cȟ

for some iteration number k and a sufficiently small constant c depending on a, δ and

ν3 only. Assume that Assumptions A4s and A5 hold for this k and, in addition, S0, A1

through A3, (5.6) and (5.7) are satisfied for every k′ ≤ k with δ
(k′)
i = δ . Then

P

(
K1/2

(
θ̂i, θi

)
> C1L

d/(2+d)(log(n)/n)1/(2+d)
)
≤ 2k∗/n (5.12)

where C1 depends on c and the constants in Assumptions A1 through A4s and A5 only.

Proof. Set c0 =
(
δ2/ν3

)1/(2+d)
and take k such that h(k) is the largest bandwidth that

fulfills h(k) ≤ c0ȟ . Denote c = h(k)/ȟ , h
(k)

= h(1) + . . . + h(k) . Recall that B(k)
i is

defined as the ball with the center at x = Xi and radius h
(k)

. For any two points

Xj , Xj′ ∈ B(k)
i with |Xj − Xj′ | ≤ h(k) , the smoothness condition A4s clearly implies

K1/2(θj , θj′) ≤ Lh(k) . The use of h(k) = cȟ with c ≤ c0 yields

N jK
(
θj , θj′

)
≤ L2ν3|h(k)|2+dn = L2ν3c

2+dȟ2+dn = ν3c
2+d log(n) ≤ δ2 log(n)

and A4 holds true for the step k with δ
(k)
i = δ and U (k) = {Xi} . Obviously A4 also

holds for all k′ < k with the same δ and U (k′) being the ball centered at Xi of radius

h(k′+1) + . . . + h(k) . Therefore, Theorem 5.4 applies yielding with a high probability the

following accuracy of estimating θi by θ̂
(k)
i under A4s and A5:

K
(
θ̂
(k)
i , θi

)
≤ µ log(n)

/
N

(k)
i ≤ µ log(n)

ν2n|h(k)|d ≤ C1L
2d/(2+d)

(
log(n)/n

)2/(2+d)
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with some fixed constant C1 depending on c and the other constants from Assumptions

A2–A5. By Theorem 5.7, the same rate of estimation holds for the final estimate θ̂i .

Remark 5.4. The rate of estimation given in Theorem 5.8 coincides with the optimal

rate of estimation for the considered smoothness class up to a log-factor. Moreover, the

rate is optimal for the problem of adaptive estimation at a point, cf. Lepski, Mammen

and Spokoiny (1997). It was also shown in that paper that this property automatically

leads to rate optimality in the Sobolev and Besov function classes B1
p,q .

5.5 Separation property

All results presented earlier discussed the propagation property and its consequences on the

quality of estimation. In this section we state one more result indicating some benefits of

the adaptive weights scheme. We show that the propagation stops when the local constant

approximation does not provide a reasonable accuracy. More precisely, we consider the

case of two different nearly homogeneous regions, and fixed two points Xi1 and Xi2 , one

from every region. We assume that for both points the propagation holds until some step

k which leads to the accuracy of estimation K(θ̂
(k)
im

, θim) ≤ µm log(n)
/
N

(k)
im for m = 1, 2 .

We show that if K(θi1 , θi2) > C log(n)/N
(k)
i1 for a sufficiently large C then the procedure

assigns a zero weight w
(k′)
i1i2

for all k′ ≥ k .

Theorem 5.9. Let the statistical kernel Kst have a compact support on [0, A] for some

A > 0 . Let, at step k , A1 and A3 be fulfilled and for two points Xi1 and Xi2 hold

N
(k)
im K

(
θ̂
(k)
im

, θim

)
≤ µm log(n) with some constants µm for m = 1, 2 . Let also N

(k)
i1

≥
bN

(k)
i1 for some b > 0 . If

N
(k)
i1 K

(
θi1 , θi2

)
> κ

2
(√

µ1 +

√
ω(k)µ2 +

√
CλA/b

)2
log(n)

then w
(k+1)
i1i2

= 0 . Moreover, if K(θi1 , θi2) > C log(n)/N
(k)
i1 for some fixed C , then for

every k′ > k the condition N
(k′)
i1

≥ bN
(k′)
i1 implies also w

(k′)
i1i2

= 0 .

Proof. It suffices to show that s
(k)
i1i2

= λ−1N
(k)
i K(θ̂

(k)
i1

, θ̂
(k)
i2

) > A . By Lemma 5.2

K1/2
(
θ̂
(k)
i1

, θ̂
(k)
i2

)
≥ κ

−1K1/2
(
θi1 , θi2

)
−K1/2

(
θ̂
(k)
i1

, θi1

)
−K1/2

(
θ̂
(k)
i2

, θi2

)

≥ κ
−1K1/2

(
θi1 , θi2

)
−
√

µ1 log(n)/N
(k)
i1 −

√
µ2 log(n)/N

(k)
i2

≥ κ
−1K1/2

(
θi1 , θi2

)
−
√

µ1 log(n)/N
(k)
i1 −

√
µ2 log(n)ω(k)/N

(k)
i1 .

This and the inequality N
(k)
i1

≥ bN
(k)
i1 yield

λ−1N
(k)
i1

K
(
θ̂
(k)
i1

, θ̂
(k)
i2

)
≥ bC−1

λ

(
κ
−1

√
N

(k)
i1 K

(
θi1 , θi2

)
/ log(n) −√

µ1 −
√

ω(k)µ2

)2
≥ A
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and the first assertion follows. The second one can be easily shown by involving the result

of Proposition 5.6.

6 Some exponential bounds for exponential families

We present some general results for the local exponential family model. The considered

exponential family P = (Pθ , θ ∈ Θ ⊆ IR) is described by the functions C(θ) and B(θ) ,

with p(y, θ) = dPθ/dP (y) = p(y) exp (C(θ)y − B(θ)) and EθY =
∫

yp(y, θ)dP (y) = θ for

all θ ∈ Θ , see Section 2.1.

We assume the observation Yi to be Pθi
-distributed with θi depending on location

Xi . Let also a local model W be described by the weights wi ∈ [0, 1] for i = 1, . . . , n . The

corresponding log-likelihood is defined by L(W, θ) =
∑

i log p(Yi, θ)wi . We also denote

L(W, θ, θ′) = L(W, θ) − L(W, θ′) for every pair θ, θ′ . The local MLE θ̃ is given as

θ̃ =
∑n

i=1 wiYi

/∑n
i=1 wi . We use the representation θ̃ = S/N with S =

∑n
i=1 wiYi ,

N =
∑n

i=1 wi and denote θ = N−1
∑n

i=1 wiθi .

It is convenient to introduce the parameter υ = C(θ) and define υ = C(θ) and

D(υ) = B(θ) = B(C−1(υ)) . Since C ′(θ) > 0 , the new parameter υ is uniquely defined.

By simple analysis D′(υ) = θ = C−1(υ) and D′′(υ) = 1/C ′(θ) = 1/I(θ) = 1/I(C−1(υ)) .

Moreover, K(υ1, υ2) = D(υ2) − D(υ1) − (υ2 − υ1)D
′(υ1) is the Kullback-Leibler distance

between two parametric distributions corresponding to the parameters υ1 and υ2 . In

what follows we use the notation q(u|υ) = K(υ, υ + u) = D(υ + u) − D(υ) − uD′(υ) .

Theorem 6.1. Let the Fisher information I(θ) = C ′(θ) be positive on Θ . For a given

z ≥ 0 , let U(W, z) be the set of solutions u of equation q(u|υ) =
∫ u
0 xD′′(υ+x)dx = z/N .

If there is some α > 0 such that for all µ ∈ (0, 1] and all u ∈ U(W, z)

q(±wℓ µu|υℓ) ≤ (1 + α)wℓ µ2q(u|υ), ℓ = 1, . . . , n, (6.1)

then

P
(
L(W, θ̃, θ) > z

)
= P

(
NK(θ̃, θ) > z

)
≤ 2e−z/(1+α).

Remark 6.1. The condition (6.1) can be easily checked in many particular situations.

We give two typical examples. The first one corresponds to the homogeneous case when

all υi coincide with their mean υ . Then (6.1) is fulfilled automatically with α = 0 .

Indeed the function q(·|υ) satisfies q′(u|υ) = D′(υ + u) − D′(υ) and q′′(u|υ) = D′′(υ +

u) = 1/I(C−1(υ + u)) > 0 and thus, it is convex. Since also q(0|υ) = 0 , it holds
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q(wa|υ) ≤ wq(a|υ) for every w ∈ [0, 1] and every a implying (6.1) with α = 0 and

arbitrary u . This special case was already stated as a separate result in Theorem 2.1.

The second special case was mentioned in Theorem 2.2. Assume A1. The Taylor

expansion yields that q(wu|υ) = D(υ + wu) − D(υ) − wuD′(υ) = 1/2 w2u2D′′(υ + τwu)

for some τ ∈ [0, 1] . Under condition A1 κ
−2 ≤ D′′(υ)/D′′(υ) ≤ κ

2 for all υ and one

easily obtains u2 ≤ 2zI∗/N for every u ∈ U(W, z) .Therefore, the condition (6.1) is easy

to check for 1+α = κ
2 which yields Theorem 2.2 as corollary of Theorem 6.1. Moreover,

only the local variability of the Fisher information I(θ) on the support of the local model

W is important so the value α is typically close to zero.

Proof of Theorem 6.1 The log-likelihood ratio can be rewritten for the new pa-

rameter υ as

L(W, θ, θ) = L(W, υ, υ) = (υ − υ)S − N
(
D(υ) − D(υ)

)
.

The MLE υ̂ of the parameter υ is defined by maximizing L(W, υ, υ) , that is, υ̂ =

argsupυ L(W, υ, υ) .

Lemma 6.2. For given z , there exist two values υ∗ > υ and υ∗ < υ such that

{L(W, υ̂, υ) > z} ⊆ {L(W, υ∗, υ) > z} ∪ {L(W, υ∗, υ) > z}.

Proof. It holds

{L(W, υ̂, υ) > z} =

{
sup

υ

[
S(υ − υ) − N

(
D(υ) − D(υ)

)]
> z

}

⊆
{

S > inf
υ>υ

z + N
(
D(υ) − D(υ)

)

υ − υ

}
∪
{
−S > inf

υ<υ

z + N
(
D(υ) − D(υ)

)

υ − υ

}
.

The function f(u) =
[
z + N

(
D(υ + u) − D(υ)

)]
/u attains its minimum at some point

u satisfying the equation

z + N
(
D(υ + u) − D(υ)

)
− NuD′(υ + u) = 0

or, equivalently,

∫ u

0
xD′′(υ + x)dx = z/N.

Therefore

{
S > inf

υ>υ

z + N
(
D(υ) − D(υ)

)

υ − υ

}
=

{
S >

z + N
(
D(υ∗) − D(υ)

)

υ − υ

}
⊆ {L(W, υ∗, υ) > z}
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with υ∗ = υ + u . Similarly
{
−S > inf

υ<υ

z + N
(
D(υ) − D(υ)

)

υ − υ

}
⊆ {L(W, υ∗, υ) > z}

for some υ∗ < υ .

Now we bound the probability P (L(W, υ, υ) > z) for every υ . Note that the equality

θ = D′(υ) implies for u = υ − υ

L(W, υ, υ) = u(S − Nθ) − N
[
D(υ + u) − D(υ) − uD′(υ)

]
= u(S − Nθ) − Nq(u|υ).

Now the result of the theorem is a direct corollary of the following general assertion.

Lemma 6.3. For every u and every z

r(u, z) := log P (L(W, υ + u, υ) > z) ≤ −µz − µNq(u|υ) +
n∑

ℓ=1

q(uµwℓ|υℓ),

r1(u, z) := log P (L(W, υ + u, υ) < −z − 2Nq(u|υ))

≤ −µz − µNq(u|υ) +
n∑

ℓ=1

q(−uµwℓ|υℓ).

Moreover, if u fulfills (6.1) then

r(u, z) ≤ −z/(1 + α), r1(u, z) ≤ −z/(1 + α).

Proof. We apply the Tchebychev exponential inequality: for every positive µ

r(u, z) ≤ −µz − µNq(u|υ) + log E exp
(
uµ(S − Nθ)

)
.

The independence of the Yℓ ’s implies

log E exp
(
uµ(S − Nθ)

)
= log E exp

(
n∑

ℓ=1

uµwℓ(Yℓ − θℓ)

)
=

n∑

ℓ=1

log Eeuµwℓ(Yℓ−θℓ) .

The equalities log
∫

eυℓy−D(υℓ)P (dy) = 0 and θℓ = D′(υℓ) yield

log Eea(Yℓ−θℓ) = −aθℓ + log

∫
e(a+υℓ)y−D(υℓ)P (dy)

= −aD′(υℓ) + D(υℓ + a) − D(υℓ) = q(a|υℓ).

for every a ≥ 0 and every ℓ ≤ n . Therefore

r(u, z) ≤ −µz − µNq(u|υ) +
n∑

ℓ=1

q(uµwℓ|υℓ).

This inequality applied with µ = (1 + α)−1 and (6.1) imply

r(u, z) ≤ −µz − µNq(u|υ) + (1 + α)µ2
n∑

ℓ=1

wℓq(u|υ) ≤ −z/(1 + α).
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Similarly

r1(u, z) = P
(
−u(S − Nθ) + Nq(u|υ) > z + 2Nq(u|υ)

)

≤ −µz − µNq(u|υ) +

n∑

ℓ=1

q(−uµwℓ|υℓ).

and the lemma follows.

7 Conclusion and outlook

This paper presents a new method of adaptive nonparametric estimation based on the

idea of propagation and separation using adaptive weights. An important feature of the

proposed PS procedure is that it applies to many different statistical problems in a unified

way. In many cases its adjustment to the particular situation is trivial. For all the exam-

ples in this paper, we essentially applied the same procedure. Sometimes, a preliminary

model (data) transformation is required, as in density estimation. The procedure can au-

tomatically handle jumps and discontinuities of the underlying function. The procedure

allows for arbitrary dimensionality of X . This makes it feasible to apply the procedure

to e.g. image denoising or estimation of a multivariate density and to use it in case of a

multidimensional explanatory vector Xi . The PS procedure is computationally straight-

forward and the numerical complexity can be easily controlled by restricting the largest

bandwidth h∗ , see PS2000 for details.

We also establish some remarkable theoretical results about the properties of the re-

sulting estimate. In particular, it is spatially adaptive and achieves the optimal rate of

convergence over Besov function classes. The results are stated and proved in a precise

nonasymptotic form and they apply for a broad class of nonparametric statistical models.

Our results heavily rely on the general exponential bound for exponential families, see

Theorem 6.1 and its corollary which seem to be of independent interest.
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