
Programming interaction
with Types

Marco Carbone (Queen Mary)
Kohei Honda (Queen Mary)

Nobuko Yoshida (Imperial College)

W3C WS-CDL WG London F2F

June 14, 2005

1

Plan

1. A Recap on the π-Calculus

2. Web Service as a Programming Paradigm

3. Two Calculi for Structured Interaction (1)

4. Two Calculi for Structured Interaction (2)

5. Two Calculi for Structured Interaction (3)

6. Further Topics

2

1. A Recap on the π-Calculus

3

π-Calculus as Foundation (1)
ä Offers a precise embedding of programming languages

of all paradigms (functional, OOP, parallel, ...);

ä Offers a huge design space for diverse paradigms as a
stratified mathematical universe.

ä Offers rich theories (type disciplines, equivalences, static
analysis, program logics, ..) that are reflected from, and
onto, concrete languages.

4

π-Calculus as Foundation (2)
Importance of embeddings:

ä Can directly reflect analysis in the π-calculus onto
target languages.

ä Can transfer ideas/results in an object language directly
into the π-calculus.

5

π-Calculus as Foundation (3)
In the context of CDL, the π-calculus and its theories offer:

ä General mathematical framework for representing
interaction behaviours.

ä A rigorous and fertile basis for diverse tools for software
development.

ä Broad and precise linkage with existing programming
models and infrastructure (cf. Java, .Net, C++, etc.).

Today’s talk intends to present a (small) step towards
realising this potential.

6

Essence of CDL
Clarification of the role of the π-calculus in the
present enterprise also clarifies the huge potential of
CDL in WS technologies.

7

2. Web Service as a Programming
Paradigm.

8

Why WS? A Recap (1)
WS’s infrastructural basis:

ä Naming via URI (hence DNS): simple scheme, natural
correspondence with administrative structures.

ä Routing/messaging via HTTP: convenient, ubiquitous.

ä Types as XML schemas: standardised, versatile,
extendible.

Further assisted by service standards such as WSDL.

9

Why WS? A Recap (2)
WS’s holy grails (cf. DS in general and CORBA in particlar):

ä Interoperable, integratable: connect businesses, connect
clients, integrate applications.

ä Distributed, shared and robust: share resources, use
existing services, no single point of failure.

ä Evolvable: long-running applications, incremental
updates as a norm, tension with interoperability.

10

A Coin has Two Sides
The WS has two faces:

1. An advanced form of programming and software
development in the web (cf. SOAP).

2. A tool and infrastructure for Business Process
Management (cf. BPEL4WS).

Observation:

If key software components in businesses all get WS
interface, “integration” means integration of WS’s.

That is, two sides do not contradict, they promote each other.

11

WS as a Programming Paradigm (1)
ä What does WS mean for programming principles?

Communication-centric programming in
the main stream software development.

ä A huge challenge: in fact the current programming
community has sparse (if any!) experience in this
domain.

12

WS as a Programming Paradigm (2)
The central features of Web Service:

ä Main factor of (end-point) software:
Communication behaviour.

ä Main concern:
Interactions among end-points proceed properly.

ä Other new elements:
Complex interface (cf. rpc/rmi);
Open, evolving, intra/inter-organisational;
Whole concurrency issues (e.g. deadlock, interference,..).

13

New Principles Needed!
ä How to describe interaction: elegantly, generally, in a

well-structured fashion?

ä Types for interaction: basic structuring principles for
interaction?

ä Specification/verification for interaction: How can we
guarantee e.g. lack of deadlock? Tools based on static
analyses, dynamic monitoring, program logics, ...?

14

Experience in Sequential Programming
Goto (jump) (60’s):
(1) Expressive, primitive; (2) Reasoning/analysis is very hard.

⇓
Structured Programming (70’–80’s):
(1) Expressive; (2) Reasoning/analysis is OK;
(3) Hard to write exceptions clearly and economically.

⇓
Structured Programming + Structured Exceptions (90’s)
(1) Expressive; (2) Reasoning/analysis is OK;
(3) Clear, economical description of exceptions.

15

Types for Programming (1)
Question:

We have two programs/specifications, P1 and P2.
Does P1|P2 behave all right?

Answer without Types.

...well let’s run P1|P2 and see what happens.

Answer with Types. We put a small tag t1 to P1, t2 to P2.

Let’s check t1|t2 makes sense. If it does, P1|P2
behaves well, and has a new tag t1|t2.

NB. Checking consistency of tags is very efficient.

16

Types for Programming (2)
Types also offer an essential basis for:

ä Specification/verification methods (e.g. Hoare Logic).

ä Security (e.g. JVM/CLR).

This is because types can articulate a deep structure of
language dynamics (Landin, Milner, . . .).

17

Can we do the same for
communication-centric concurrent

programming?

18

3. Two Calculi for Structured
Interaction (1)

19

Technical Elements of CDL
Three bullet points for CDL:

ä Interaction scenarios naturally come out globally:
hence CDL.

ä But these scenarios are realised as communication
among local behaviour: hence end-point projection.

ä Inter-organisational nature and subtlety in concurrent
programming demand rigorous validation: hence type
checking and other analysis tools.

20

Global vs. Local Description (1)
Many buyers, one seller, the same protocol (consider
Amazon.com and its customers).

ä How do you describe this situation in the π-calculus?

ä How do you describe this situation in CDL?

So we conclude ...

21

Global vs. Local Description (1)
Many buyers, one seller, the same protocol (consider
Amazon.com and its customers).

ä How do you describe this situation in the π-calculus?

ä How do you describe this situation in CDL?

So we conclude ...

We need both!

22

Global vs. Local Description (2)
But if so, which comes first?

ä We often envision interaction globally.

ä We often start from existing web services, refine them,
increment them, ... to realise a target service.

So we conclude ..

23

Global vs. Local Description (2)
But if so, which comes first?

ä We often envision interaction globally.

ä We often start from existing web services, refine them,
increment them, ... to realise a target service.

So we conclude ..

Not only do we need two: two forms of descriptions
should be inter-related through and through.

24

Types for Interaction
Drawing on an accumulated study on types for the π-calculus,
we single out three basic demands on types for interaction.

ä We need to structure interactions: session types.

ä We need to constrain sharing: linear types.

ä We need to constrain behaviour: type disciplines for
deadlock/livelock freedom.

We may further consider stronger behavioural constraints on
the top of these type disciplines.

25

Two Calculi for Interactions (1)
Two typed small languages (calculi):

ä A simplification of CDL for global description.

ä An applied π-calculus for local description.

Both calculi are strongly typed:

1. A basic typing for well-structured interaction.

2. A refined typing for deadlock-free interaction.

3. A further refinement for livelock-freedom.

26

Two Calculi for Interactions (2)
And they are related through and through...

ä The Global Calculus ⇒ The Local Calculus
with session types with session types

ä The Global Calculus ⇐ The Local Calculus
with session types with session types

NB. Two maps are mutually inverse.

27

Two Calculi for Interactions (2)
And they are related through and through...

ä The Global Calculus ?⇒ The Local Calculus
with DLF types with DLF types

ä The Global Calculus ?⇐ The Local Calculus
with DLF types with DLF types

NB. Two maps are mutually inverse.

28

Two Calculi for Interactions (2)
And they are related through and through...

ä The Global Calculus ?⇒ The Local Calculus
with LLF types with LLF types

ä The Global Calculus ?⇐ The Local Calculus
with LLF types with LLF types

NB. Two maps are mutually inverse.

29

Two Calculi for Interactions (3)
Engineering implications of two-way embeddings:

ä Write globally, without any concern on their distributed
execution, and with a formal guarantee that its static
analysis is reflected on the real behaviour.

ä Refine your code locally, then obtain its global picture
from a vantage point. Or start from the existing service
and design global behaviours of interest.

ä The two-way embeddings give CDL a high-bandwidth
linkage to and from the π-calculus and its theories.
Behaviours involved in a CDL description can now be
rigorously analysed through translation.

30

Caveat Emptor...
Disclaimer.

1. Restriction by types is essential for obtaining two-way
embeddability.

2. CDL as of now is not (explicitly) based on session,
though it may be realisable using corelation.

3. Extensions to time-out, priotised choices, multi-casting,
roll-backs, etc. need be fully examined.

In spite of these reservations, we are optimistic about the
general applicability of the presented results to CDL.

31

Programming vs. description
The calculi we are going to present have two aspects in one:
description and programming.

ä A high-level descriptive language should enable accurate
description of relevant software behaviours at a high
level of abstraction — the same thing as programming at
a high level of abstraction.

ä Descriptive nature of CDL is retained by having
non-deterministic sums, by which we expect multiple
possible behaviour of interacting parties (can be taken
off from its PL instantiation).

32

4. Two Calculi for Structured
Interaction (2)

33

Global Calculus
ä Syntax and examples.

ä Reduction (operational semantics)

ä Basic ideas of typing:
1. Session types
2. Deadlock-free types
3. Livelock-free types (with termination proofs)

34

A Brief History
To our knowledge, the first general language for describing global
interaction flow is CDL, whose original form was conceived by
Nicholas Kavantzas at Oracle and which has been developed by
(past and present) members of W3C CDL WG, chaired by Steve
Ross-Talbot and Martin Chapman. The CDL calculus in its present
form, including formal operational semantics, is due to Marco
Carbone, in collaboration with Kohei Honda (a similar calculus
without formal semantics was discussed by Kavantzas in 2004:
Carbone’s key contribution is introduction of distributed local
states which enabled formulation of precise operational semantics).
The session/deadlock-free typing is based on the ideas of Nobuko
Yoshida, and is being developed by her, Carbone and Honda.

35

A CDL Calculus: Syntax (1)

A→ B : [ch(S),op〈~e〉,(~y)] initial interaction
A→ B : [S,op〈~e〉,(~y)] interaction
I1 ; I2 sequencing
I1 | I2 parallel
I1 + I2 choice
if e@A then I1 else I2 conditional
while e@A do I loop
0 inaction/skip
x := e@A assignment
mutex{ I }@A lock-unlock

36

A CDL Calculus: Syntax (2)
Comments on syntax (1):

ä A,B, . . . are participants (or principals).

ä ch,ch′, . . . are channels.

ä e,e′, . . . are expressions (incl. numeric and boolean
constants/functions).

ä S,S′, . . . are session contexts (communicated initially and
used throughout interactions in that session).

ä A predicate-driven conditional:

when e@A do I def
= while ¬e@A do 0 ; I.

37

A CDL Calculus: Syntax (3)
Comments on syntax (2):

ä By introducing assignment and locks, the calculus has a
full expressive power as a concurrent language.

ä We omit request-reply which a session can express.

ä A session context may be realised by a pair of channels
with a common co-relation.

ä Sequencing/loop can be replaced by prefix/recursion.

ä We may add: local time-out, priorities, co-relations,
refined locks, multi-casting, etc.

38

A CDL Calculus: Example (1)

Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;

Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;

Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;

Seller→ Shipper : [p(SP),ShipReq〈prod, adr〉,(prod, adr)] ;

Shipper→ Seller : [SP,ShipConf] ;

Seller→ Buyer : [BS,OrderConf]

39

A CDL Calculus: Example (2)

Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;
Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;
choice {

Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;
Seller→ Shipper : [p(SP),ShipReq〈prod, adr〉,(prod, adr)] ;
· · · (as before) · · ·

+
Buyer→ Seller : [BS,QuoteNoGood]

}

40

A CDL Calculus: Example (3)

Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;
Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;
if (reasonable〈quote〉)@Buyer then

Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;
Seller→ Shipper : [p(SP),ShipReq〈prod, adr〉,(prod, adr)] ;
. . . (as before) · · ·

else
Buyer→ Seller : [BS,QuoteNoGood]

end

41

A CDL Calculus: Example (4)
Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;
Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;
if (reasonable〈quote〉)@Buyer then

Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;
Seller→ CCA : [a(SC),Check!〈cred〉,(cred)] ;
if (cleared〈cred〉)@CCA then

CCA→ Seller : [SC,credOK] ;
Seller→ Shipper : [p(SP),ShipReq〈prod, adr〉,(prod, adr)] ;

else
CCA→ Seller : [SC,credNotOK] ;
Seller→ Buyer : [BS,OrderRefused]

end
else

Buyer→ Seller : [BS,QuoteNoGood]
end

42

A CDL Calculus: Example (5)

Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;
Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;
while (expensive〈quote〉)@Buyer do

Buyer→ Seller : [BS,QuoteNoGood] ;
quote := quote−10 @ Seller ;
Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)]

end ;
Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;
· · · (as before) · · ·

43

A CDL Calculus: Example (6)

Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;
mutex {

Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;
Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;
Seller→ Shipper : [p(SP),ShipReq〈prod, adr〉,(prod, adr)] ;
Shipper→ Seller : [SP,ShipConf] ;
Seller→ Buyer : [BS,OrderConf]

}@ Seller

44

A CDL Calculus: Example (7)
Deadlock!

Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;
mutex {

Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)] ;
Buyer→ Seller : [BS,QuoteAcc〈cred, adr〉,(cred, adr)] ;
Seller→ Shipper : [p(SP),ShipReq〈prod, adr〉,(prod, adr)] ;
Shipper→ Seller : [s(PS),Question!] ;
Seller→ Buyer : [BS,OrderConf]

}@ Seller

45

A CDL Calculus: Examples (8)
Concurrently compose:

Buyer→ SellerA : [sa,QuoteReq〈prod〉,(prod)] ;
SellerA→ Buyer : [b,QuoteRes〈quote, T〉,(quoteA, A-ok)] ;
and

Buyer→ SellerB : [sb,QuoteReq〈prod〉,(prod)] ;

SellerB→ Buyer : [b,QuoteRes〈quote, T〉,(quoteB, B-ok)] ;
and

when (A-ok or B-ok) do
{ use one of them }

46

A CDL Calculus: Semantics (1)
The reduction has the form:

(I, σ) −→ (I′, σ′)

which we read:

An interaction I in the initial state σ one-step
reduces to the resulting interaction I ′ and state σ′.

σ is a collection of distributed states: for each participant
(principal) Ai, there is its state σ@Ai in σ, which maps
variables in Ai to their values.

47

A CDL Calculus: Semantics (2)
As an example, let:

I1
def
= Buyer→ Seller : [s(BS),QuoteReq〈prod〉,(prod)] ;

I2
def
= Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)]

Further let:

σ def
= [prod : “book′′,quote :?]@Buyer,

[prod : “book′′,quote : 30]@Seller

Then we have:

(I1; I2, σ) −→ (Seller→ Buyer : [BS,QuoteRes〈quote〉,(quote)], σ)

−→ (0, σ[quote := 30@Buyer]

48

A CDL Calculus: Semantics (3)
As another example, let:

σ def
= [quote : 30]@Buyer, [quote : 20]@Seller

Then we have:

(if (quote≤20)@Buyer then I1 else I2, σ) −→ (I2, σ)

NB: The quote value looked up is that of Buyer.

49

A CDL Calculus: Semantics (4)
An example of mutex. Let:

Ii
def
= Ai→ B : [b(Si),dec]

Ji
def
= mutex x := x−1 @ B ; B→ Ai : [Si,ack] @ B

Then we have:

(I1;J1|I2;J2, [x : 30]@B) −→ (J1|I2;J2, [x : 30]@B)

−→ (J1|J2, [x : 30]@B)

−→2 (J2, [x : 29]@B)

−→2 (0, [x : 28]@B)

NB: J1 and J2 do not interleave thanks to mutex.

50

A CDL Calculus: Semantics (5)
As an example of a choice, let:

I1
def
= B→ S : [S,OK〈cred〉,(cred)];

I2
def
= S→ B : [S,Conf]

J def
= B→ S : [S,NotOK]

Then we have, with σ to be any state, either:

((I1; I2)+ J, σ)−→ (I1; I2, σ)−→ (I2, σ) −→ (0, σ)

or
((I1; I2)+ J, σ)−→ (J, σ) −→ (0, σ)

51

Connectedness (1)
A fundamental principle for the global calculus, originally
observed by Steve Ross-Talbot in the context of CDL:

Causality in actions should always be local.

For example,

B→ S : [s(S),ReqQuote] ; S→ B : [S,ResQuote]

is connected, but

B→ S : [s(S),ReqQuote] ; P→ C : [S,CreditCheck]

is not.

52

Connectedness (2)
More examples: with

I1
def
= S→ B : [b,Quote] I4

def
= P→ E : [e,Deliver]

I2
def
= B→ S : [s,Conf] I5

def
= E→ B : [b,HereItIs]

I3
def
= S→ P : [p,ReqShip]

Then:

ä I1; I2, I2; I3, I3; I4 and I4; I5 are all connected.

ä I1; I4 is not connected. Neither is I1; I5, since I1 involves
S and B, whereas I5 is (actively) initiated only by E.

53

Connectedness (3)
An example of a loop:

I′ def
= while e@A do I

I def
= A→ B : [b, run] ; B→ C : [c, run].

I′ starts from evaluation by A, does communication from A

to B, followed by another from B to C. By unfolding:

I′ ≡ if e@A then I ; I′ else 0

Focussing on the underlined part, we see I ends with an
action by B and C while I ′ starts from an action by A, so that
I′ as a whole is not connected.

54

Connectedness (4)
Definition. I is connected iff:

1. In each I1; I2, we have final(I1)∩ init(I2) 6= /0.

2. In each if e@A then I1 else I2, we have
A ∈ init(I1)∩ init(I2).

3. In each while e@A do I′, we have A ∈ init(I′)∩final(I′).

where init(I) (resp. final(I)) is the set of initial active (resp.
final) participants of I, both defined in the next slide.

55

Connectedness (5)
ä init(I) is the set of participants involved in any initiating

action of I except as a receiver.

ä final(I) is the set of participants involved in any
finalising action of I.

ä Special cases:
init(if e@A then I1 else I2) = {A}.

final(if e@A then I1 else I2) = final(I1)∩final(I2)

init(while e@A do I) = final(while e@A do I) = {A}.

56

Connectedness (6)
Proposition.
If I is connected and (I,σ)−→ (I ′,σ′), then I′ is also
connected.

NB. This holds intuitively because connectedness is a
postfix-closed property.

57

Session Types (1)
Types for the simple Buyer-Seller:

s@Buyer : ↑QuoteReq(qreq.xsd) ;
↓QuoteRes(quote.xsd) ;
↑QuoteAcc(address.xsd)

s@Seller : ↓QuoteReq(areq.xsd) ;
↑QuoteRes(quote.xsd) ;
↓QuoteAcc(address.xsd)

58

Session Types (2)
Types for the Buyer-Seller with choice/conditional.

s@Buyer : ↑QuoteReq(qreq.xsd) ;
↓QuoteRes(quote.xsd) ;
↑QuoteAcc(address.xsd)⊕ ↑QuoteRef()

s@Seller : ↓QuoteReq(qreq.xsd) ;
↑QuoteRes(quote.xsd) ;
↓QuoteAcc(address.xsd)& ↓QuoteRef()

59

Session Types (3)
Types for the Buyer-Seller with loop.

s@Buyer : ↑QReq(qreq.xsd) ;

µX. ↓QuoteRes(quote.xsd) ;
↑QAcc(address.xsd) ⊕
↑QAnother(qreq.xsd) ; X ⊕
↑QRefuse()

s@Seller : ↓QReq(qreq.xsd) ;

µX. ↑QuoteRes(quote.xsd) ;
↓QAcc(address.xsd) &
↓QAnother(qreq.xsd) ; X &
↓QRefuse()

60

Types for Deadlock-Freedom (1)
Types for Seller with mutex (no deadlock).

Seller : s(BS) :↓QuoteReq(qreq.xsd) ;

mutex 〈〈〈
BS :↑QuoteRes(quote.xsd) ;

BS :↓QuoteAcc(address.xsd) ;

p(SP) :↑ShipReq(shipping.xsd) ;

SP :↓ShipConf() ;

BS :↑OrderConf()

〉〉〉@ Seller

NB: All consecutive actions are included in the type.

61

Types for Deadlock-Freedom (2)
Types for Seller with mutex (with deadlock).

Seller : s(BS) :↓QuoteReq(qreq.xsd) ;

mutex 〈〈〈
BS :↑QuoteRes(quote.xsd) ;

BS :↓QuoteAcc(address.xsd) ;

p(SP) :↓ShipReq(shipping.xsd) ;

s(PS) :↓Question!() ;

. . .

〉〉〉@ Seller

NB: Circularity occurs because s is Seller’s channel.

62

Types for Livelock Freedom
To prevent livelock, we verify lack of behavioural circularity
on the basis of deadlock freedom. The lack of circularity can
be checked statically in many interesting cases.

63

Tips for Session-based Description (1)
ä In session-based communication, crucial information is

distinction between session-initiating communication
and ordinary ones.

ä This information leads to effective detection of
deadlock/livelock in interactions.

ä Usually an interaction scenario naturally divides into
distinct sessions (e.g. travel agents, brokerage, . . .).

64

Tips for Session-based Description (2)
In WS, a session may be realised by:

ä A pair of channels of conversants (e.g. Buyer’s channel
and Seller’s channel in a relationship), and:

ä A session co-relation freshly generated at each instance
of a session.

How does this translate to CDL syntax?

65

Tips for Session-based Description (3)
A possible machinery to realise session in CDL (we do not
consider session passing):

ä Declare a special session co-relation (freshly generated
at each run) with an associated pair of channels.

ä Each Interaction belonging to that session (which should
use associated channels) should mention this co-relation.

ä Mark the initiating Interaction(s) of each session.

Adding explicit support for session greatly expands the
potential for static analyses on CDL.

66

5. Two Calculi for Structured
Interaction (3)

67

End-Point Calculus: Syntax (1)
Syntax:

P ::= x(w). [&i li(~yi).Pi] | x(w)/ l〈~y〉.P |
x. [&i li(~yi).Pi] | x/ l〈~y〉.P |
mBegin.P | mEnd.P |

(νx)P | P|Q | P⊕Q | !P | 0

N ::= A[P]σ | (νx)N | N1||N2 | 0

68

End-Point Calculus: Syntax (2)
Comments on syntax.

ä P,Q, . . . are processes, A,B, . . . are participant names,
A[P]σ is a participant (where σ is a local store of A, a
finite map from variables to their values), and N, . . .
denote interacting participants.

ä x(w). [&i li(~yi).Pi] and x(w)/ l〈~y〉.P are for initial
interaction (which establish session). In input, (w) binds,
while (~y) do not. In examples we often ajoin (w) with
(~yi) for brevity.

ä x. [&i li(~yi).Pi] and x/ l〈~y〉.P are for communication
inside a session. Again in input (~yi) do not bind.

69

End-Point Calculus: Semantics
Dynamics of the end-point calculus is standard except for an
update of local states as a result of communication.

A[x(w). [&i li(~yi).Pi]|R]σ || B[x(w)/ li〈~v〉.Q|R′]σ′
→ (νw)(A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′)

A[x. [&i li(~yi).Pi]|R]σ || B[x/ li〈~v〉.Q|R′]σ′
→ A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′

We also use the standard structural equality ≡.

70

End-Point Calculus: Semantics
Dynamics of the end-point calculus is standard except an
update of local states as a result of communication.

A[x(w). [&i li(~yi).Pi]|R]σ || B[x(w)/ li〈~v〉.Q|R′]σ′
→ (νw)(A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′)

A[x. [&i li(~yi).Pi]|R]σ || B[x/ li〈~v〉.Q|R′]σ′
→ A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′

We also use the standard structural equality ≡.

71

End-Point Calculus: Semantics
Dynamics of the end-point calculus is standard except an
update of local states as a result of communication.

A[x(w). [&i li(~yi).Pi]|R]σ || B[x(w)/ li〈~v〉.Q|R′]σ′
→ (νw)(A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′)

A[x. [&i li(~yi).Pi]|R]σ || B[x/ li〈~v〉.Q|R′]σ′
→ A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′

We also use the standard structural equality ≡.

72

End-Point Calculus: Semantics
Dynamics of the end-point calculus is standard except an
update of local states as a result of communication.

A[x(w). [&i li(~yi).Pi]|R]σ || B[x(w)/ li〈~v〉.Q|R′]σ′
→ (νw)(A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′)

A[x. [&i li(~yi).Pi]|R]σ || B[x/ li〈~v〉.Q|R′]σ′
→ A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′

We also use the standard structural equality ≡.

73

End-Point Calculus: Semantics
Dynamics of the end-point calculus is standard except an
update of local states as a result of communication.

A[x(w). [&i li(~yi).Pi]|R]σ || B[x(w)/ li〈~v〉.Q|R′]σ′
→ (νw)(A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′)

A[x. [&i li(~yi).Pi]|R]σ || B[x/ li〈~v〉.Q|R′]σ′
→ A[Pi|R]σ[~yi:=~v] || B[Q|R′]σ′

We also use the standard structural equality ≡.

74

Process Representation: Buyer (1)
A concrete Buyer.

Buyer[

(νc)s/qReq〈c,prod〉.c.qRes(x,quote).

if quote< 1000 then
c/qAccept〈cred,adr〉.adr .receive(y).P

else
c/qRefuse〈〉

end]

75

Process Representation: Buyer (2)
Generic Buyer.

Buyer[

(νc)s/qReq〈c,prod〉.c.qRes(x,quote).

{
c/qAccept〈cred,adr〉.adr .receive(y).P

⊕
c/qRefuse〈〉

}]

76

Process Representation: Seller (1)

Seller[

!s.qReq(c,prod). · · · (find price) · · · .c/qRes〈quote〉.

c. [qAccept(cred,adr).shipper /ship〈prod,adr〉.0

&qRefuse().0]

]

77

Process Representation: Seller (2)

Seller[

!s.qReq(c,prod). · · · (find price) · · · .c/qRes〈quote〉.
c. [qAccept(cred,adr).

(νe)cca/check〈cred,e〉.
e. [credOk.c/orderConf〈〉.

shipper /ship〈prod,adr〉
&credNotOk().c/orderRefused〈〉]

& qRefuse().0]

]

78

Process Representation: CCA

!cca.check(cred,e).

if Ok(cred)then
e/credOk

else
e/credNotOk〈〉.0.

“CCA” stands for CreditCheckAgency.

79

Process Representation: Shipper

!shipper(prod,adr).adr /deliver〈Goods(prod)〉

80

Session Types (1): Buyer and Seller
. . . haven’t we seen these types before?

s@Buyer : ↑QuoteReq(qreq.xsd) ;
↓QuoteRes(quote.xsd) ;
↑QuoteAcc(address.xsd)⊕ ↑QuoteRef()

s@Seller : ↓QuoteReq(qreq.xsd) ;
↑QuoteRes(quote.xsd) ;
↓QuoteAcc(address.xsd)& ↓QuoteRef()

81

Session Types (2): Seller and CCA
. . . well these look new.

cca@CCA : ↓check(credit.xsd) ;
↑credOk() ⊕ ↑credNotOk()

cca@Seller : ↑check(credit.xsd) ;
↑credOk() & ↑credNotOk()

82

Session Types (3): The Rest
For Shipper and Seller:

shipper @Shipper : ↓ship(shipping.xsd)

shipper @Seller : ↑ship(shipping.xsd)

For Shipper and Buyer:

address@Shipper : ↑deliver(DVD.xsd)

address@Buyer : ↓deliver(DVD.xsd)

83

Session Types: summary
ä Session types offer clean abstraction of communication

behaviour of processes, and prevents communication
error (“well-typed processes do not go wrong”).

ä They become a basis of more refined behavioural typing,
such as deadlock freedom.

ä Session types can also be incorporated into other
languages: for example, we recently studied session
types in Java [Dezani et al. 2005].

84

Types for Deadlock-Freedom (1)
A Seller with mutex.

Seller[

!s.qReq(c,prod).mBegin. · · · (find price) · · · .c/qRes〈quote〉.
c. [qAccept(cred,adr).

(νe)cca/check〈cred,e〉.
e. [credOk.c/orderConf〈〉.

shipper /ship〈prod,adr〉.mEnd.0
&credNotOk().c/orderRefused〈〉.mEnd.0]

& qRefuse().mEnd.0]]

85

Types for Deadlock-Freedom (2)
The following CCA lets the system deadlock:

!cca.check(cred,e).

if Ok(cred)then
e/credOk

else
s/quoteReq〈prod〉 . . .e/credNotOk〈〉.0

because, when s is invoked, Seller’s state is locked.

86

Types for Deadlock-Freedom (3)
This deadlock can be detected by composing:

Seller : s(c) :↓QuoteReq(qreq.xsd) ;
mutex 〈〈〈 BS :↑QuoteRes(quote.xsd) ;

BS :↓QuoteAcc(address.xsd) ;
cca(e) :↓check(creddata.xsd) ;
. . .

〉〉〉@ Seller

CCA : cca(e) :↓check(creddata.xsd) ;
s(c) :↑QuoteReq(qreq.xsd) ;
. . .

NB: The red part induces circularity within the mutex block.

87

Guarantee of Livelock-Freedom
Prevention of livelock is built on the basis of deadlock-free
typing. While general verification demands a termination
proof, we can often use simpler circularity detection as for
the deadlock freedom.

88

Two-Way Embeddings (1)
We now have two calculi, which can be related by:

ä End-point projection (EPP), which maps a global
description to communicating processes.

ä Global-view extraction (GVE), which maps processes in
the end-point calculus to a global description.

Details of technical results will be published later: here we
discuss general aspects of our ongoing study on EPP and
GVE.

89

Two-Way Embeddings (2)
A crucial requirement for effective engineering:

ä EPP and GVE should be, under a suitable constraint,
inverse to each other.
1. If you EPP a global description to get local processes

and then GVE them, you get the original description.
2. If you GVE local processes to get a global view and

apply EPP to them, you get the original processes.

ä Another related engineering requirement: both EPP and
GVE should result in concise, understandable, and
effective descriptions.

90

Two-Way Embeddings (3)
A tension between global and local descriptions:

ä In global description, one may wish to be as neutral as
possible (e.g. as to the choice of branches).

ä In contrast, executable end-point processes demand
specialised interaction scenarios (e.g. your application
may not use all possible options a service provides).

ä Which engineering settings prefer which methods (e.g.
monitoring)? How can we unify different views? Is there
a principled way to reach a conceivably most general
interaction scenario?

91

Two-Way Embeddings (4)
Scenes which use the EPP-GVE pair in different ways (1).

ä Describing/programming individual services from
scratch, both a service and a (prototype) client.

ä Using existing services to realise a global scenario.

ä Provide a template for generic service descriptions,
perhaps in different executable languages.

ä Validation: check your particular interaction scenario
against a given general one (conformance).

ä Creating monitoring tools, both a uniform one and a
tailor-made one.

92

Two-Way Embeddings (5)
Scenes which use the EPP-GVE pair in different ways (2).

ä Combine different requirements/designs/scenarios into a
most global design.

ä Stipulate legitimate interaction scenarios within/between
organisations as a set of protocols (this can even be part
of a law!).

ä Refine/evolve existing application scenarios to conform
to change in technologies, demands, etc. How can we
ensure compatibility? Is there any way to “gracefully”
break compatibility?

93

Two-Way Embeddings (6)
Integration with security concerns is important in real-world
engineering. Possibly useful sources are:

ä Guttman’s Strand Space offers a promising general and
pragmatic method which will work well with the present
framework.

ä Secrecy (confidentiality) is studied in detail by Myers,
Yoshida, Honda, Kobayashi and others. Access control is
studied by Yoshida and others.

ä Studies on an applied version of the π-calculus by Abadi,
Gordon and Fornet also offer a useful source.

94

Another Remark
CDL or its future version can have an end-point protocol
description language which precisely corresponds to the
global language in the same way the end-point calculus
corresponds to the CDL calculus.

And this pair of descriptive languages can become a basic
programming tool for the web...

95

Related Work
ä Kavantzas’s calculus.

ä Lucci et al.’s calculus.

ä Strand Space (two-way embeddings).

ä All work on communication-centric programming
languages, including Occam, Pict and Occam-Pi.

ä All work on types (ML, Java, ..) and, in particular,
deadlock/livelock-free typing.

ä All work on concurrent programming.

96

6. Further Topics

97

π-Calculus and CDL
ä CDL offers an expressive language for describing global

interactions: π-calculus offers a rigorous notion of
behaviour, which can be reasoned, composed and
controlled on the basis of its rich theories.

ä We can analyse CDL and CDL descriptions through
π-calculus theories; We may also directly reflect
π-calculus theories onto CDL and its tools.

ä Exploring rich possibilities of this relationship will lead
to distinguishing competitive edges of CDL and
associated tools, services, and other products.

98

A CDL Workflow
1. Understand requirement. [→ 2].

2. Describe/edit (+static checking) [→ 1,3].

3-a. Fill end-point business logic (+verification).

3-b. Build executable end-points (+verification). [→ 1,2,4].

4. Validate/test compatibility, conformance, etc.
[→ 1,2,3,5].

5. Ship/install/bind/compose/run (+monitoring).
[→ 1,2,3,4].

99

Theories and CDL Workflow
1. Requirement: graphical/textual syntax for describing

organisational interaction.

2. Editing: IDE with graphical/syntactic editors, internal
representation, type/model checking.

3. End-point logic: various verification tools (in combination
with tools in other layers).

4. Validation/testing: type/model checking, verification
engines, assertions,

5. Deployment/execution: monitoring, managerial
documentation, error handling,

100

Futher Notes on the Use of Theories
ä The presented theory is intended to be a basis upon

which known static/dynamic checking techniques can be
effectively exploited.

ä Inter-organisational nature of web services makes their
theoretical underpinning all the more essential.

ä Another possible uses of theories include the
understanding on (often unexpected) effects of
combination of diverse language constructs;

101

Action Plan
Under the auspice of W3C, CDL’s formal analysis phase will
start soon. Anticipating that phase, we shall embark on full
examination of the potential applicability of the presented
theory and its ramifications. Activities in this phase will
involve not only theoretical inquiries but also understanding
on requirement for software tools for CDL, and their
development and experiment. We hope we can join force in
making this language and its future versions a true foundation
for high-level description of present and future web-services.

102

