Binary Early Birds

Hagen von Eitzen

June 29, 2009

1 Notation

In the following binary representations are written using bold digits, i.e. as strings over the alphabet $\{0, 1\}$. Let $\text{bin}(n)$ denote the binary representation of n as such a string. For example $\text{bin}(0) = 0$, $\text{bin}(1) = 1$, $\text{bin}(2) = 10$. Let $\text{wt}(n)$ denote the binary weight of n, i.e. the number of $\mathbf{1}'s$ in $\text{bin}(n)$. In describing such strings, parentheses are used for grouping and powers for repetition. Thus for example $1110^4(101)^4$ is short for 1110000101101101101. Let len(α) denote the length of string α .

2 Introduction

In June 2009, Paolo P. Lava and Giorgio Balzarotti submitted [1, sequence A161373] and its complement [1, sequence A161374] to the On-Line Encyclopedia of Integer Sequences: Write all nonnegative integers in binary and concatenate to obtain the infinite string¹ (marks between constituents are inserted for clarity only)

 $S = \text{bin}(0) \text{bin}(1) \text{bin}(2) \text{bin}(3) \text{bin}(4) \text{bin}(5) \cdots$

$= 0.1110111100110111111100011001101011110011101...$

For $i \in \mathbb{N}$ we write ofs (n, i) ("*n* occurs at offset i") if the substring of length len(bin(n)) starting at offset i in S equals bin(n). By the very definition of S, each $n \geq 0$ has its "natural" position in that infinite string: If we define $\nu(0) = 1, \nu(1) = 2$ and recursively $\nu(n+1) = \nu(n) + \text{len}(\text{bin}(n))$, then we have ofs $(n, \nu(n))$. If ofs (n, i) then there is a unique m with $\nu(m) \leq i < \nu(m + 1)$, in which case we write $n \otimes m$.

Clearly, each *n* occurs at infinitely many offsets, e.g. ofs $(n, \nu(2^k n))$ for $k > 0$ if $n > 0$. For some n we observe that it occurs even before $\nu(n)$, e.g. ofs(13, 2), ofs(13, 13) and ofs(13, 26) whereas $\nu(13) = 39$:

$S = {\bf 0} \cdot {\bf 1} \cdot {\bf 1} {\bf 0} \cdot {\bf 1} \cdot {\bf 1} {\bf 1} {\bf 0} \cdot {\bf 0} \cdot {\bf 1} \cdot {\bf 1} {\bf 1} \cdot {\bf 1} \cdot {\bf 1} {\bf 0} {\bf 0} \cdot {\bf 0} \cdot {\bf 1} {\bf 0} {\bf 0} \cdot {\bf 1} \cdot {\bf 0} {\bf 1} \cdot {\bf 1} {\bf 1} {\bf 1} {\bf 0} \cdot {\bf 0} \cdot {\bf 1} \cdot {\bf 1} \cdot {\bf 1} \cdot {\bf 0} \cdot {\bf 1} \cdot {\bf 1} \cdot {\bf 1$

Numbers that occur before their natural occurance at least once are called "early birds", all other numbers are called "punctual".

¹Viewed as a number sequence this is [1, sequence A030190].

 2 For $n > 0$, $\nu(n) = A083652(n-1)+1 = 3+n\lceil \log_2 n \rceil - 2^{\lceil \log_2 n \rceil}$, cf. [1, sequence A083652].

There is a slight ambiguity in the words "occur before". For example, the number $n = 22$ has an early occurance that overlaps with its natural occurance:

\dots '10010'10011'10100'10101'10110' \dots

overlapping occurance $\overline{22}$ $\overline{0}$ 21

One can choose to accept or not accept such overlapping occurances as early.³ In the following we will investigate both options to define the set E resp. \hat{E} of early birds:

$$
E = \{ n \in \mathbb{N}_0 \mid \exists i \le \nu(n) - \text{len}(\text{bin}(n)) : \text{ofs}(n, i) \}
$$

$$
\hat{E} = \{ n \in \mathbb{N}_0 \mid \exists i < \nu(n) : \text{ofs}(n, i) \}.
$$

Clearly, $\hat{E} \subseteq E$ and as indicated above one can verify $22 \in E \setminus \hat{E}$. We will see below that in fact $\hat{E} \setminus E = \{22\}.$

3 Preliminary Results

Lemma 1. If n $@m$ with $m < n$, say of $s(n, i)$ with $\nu(m) \leq i < \nu(m + 1)$, then $\nu(m+1) < i + \text{len}(\text{bin}(n))$. We have $n \in \hat{E}$ if and only if n @m for some $0 \leq m < n$. We have $n \in E$ if and only if $n \otimes m$ for some $0 \leq m < n - 1$.

Proof. Assume of $s(n, i)$ with $\nu(m) \leq i \leq \nu(m+1)$. If $\nu(m+1) \geq i + \text{len}(\text{bin}(n))$, then $\sin(n)$ is a substring of $\sin(m)$ and hence $m \geq n$. This is the first claim. Since ν is strictly increasing, we see that $i < \nu(n) \iff m + 1 \leq n$, hence the second claim follows. For the last claim observe that $\nu(n-1) \leq i \leq \nu(n)$ implies $i + \text{len}(bin(n)) \geq i + \text{len}(bin(n-1)) \geq \nu(n-1) + \text{len}(bin(n-1)) = \nu(n).$ \Box

Corollary 1. If $k \geq 0$ then $2^k \notin \hat{E}$. If $k \geq 1$ then $2^{2k+1} + 2^k \notin \hat{E}$.

Proof. By lemma 1, $n \in \hat{E}$ implies $i < \nu(m+1) < i + \text{len}(\text{bin}(n))$ for some $0 \leq m < n$ and i with ofs (n, i) . That is, the leading digit 1 of $\text{bin}(m + 1)$ must correspond to a non-leading digit of $\text{bin}(n)$. If $n = 2^k$, all non-leading digits are 0, hence the first claim.

If on the other hand $n = 2^{2k+1} + 2^k$, i.e. $\text{bin}(n) = 10^k 10^k$, then the first half of that string must be the least significant $k + 1$ digits of bin (m) and hence the least significant $k + 1$ digits of bin $(m + 1)$ are $10^{k-1}1$. Since there is no third 1 in bin(n), the second half must be the most significant $k+1$ digits of bin($m+1$). The strings 10^k and $10^{k-1}1$ cannot overlap, hence $\text{bin}(m+1) = 10^k \alpha 10^{k-1}1$ for some string α , which implies $m + 1 > n$ in contradiction to $m < n$. Hence the second claim. \Box

Lemma 2. If $n = 2^j + 2^k$ with $j > k \ge 0$ and $j \ne 2k + 1$, then $n \in E$.

 3 The author first considered 22 an early bird because calling it punctual felt strange. However, one of the original submitters has clarified in [2] that 22 is not an early bird in their intended interpretation, i.e. only an early occurance of n in A that does not even overlap the natural one should count.

There were also two other discrepancies in the original submission: It contained 20 as punctual, but that is definitely an early bird in both interpretations; and it started with an offset of 0, even though the OEIS usually uses offset 1 for sequences like this that describe a list or a subset of \mathbb{N}_0 (as opposed to more "function-like" sequences), see [1, FAQ "What does the 'offset' mean?"].

Proof. Let $r = j - k - 1$. Then by assumption, $r \ge 0$ and $r \ne k$. The binary representation of *n* is $\text{bin}(n) = 10^r 10^k$. We distinguish three cases:

• $k < r$: Then $r - k - 1 \geq 0$ and $n \t m$ with $m = 2^r = \frac{n-2^k}{2^{k+1}}$ $\frac{n-2^n}{2^{k+1}} < n-1$:

$$
\cdots \underbrace{!10^{r}!10^{k}}_{n}0^{r-k-1}1^{n} \cdots
$$

• $r = 0$: Then $k \ge 1$ and $n \otimes m$ with $m = 2^k - 1 = n - 2^j - 1 < n - 1$:

$$
\cdots 1^{k-1} \underbrace{1 \, 10^{k}}_n \cdots
$$

• $k > r > 0$: Then $n \text{ @ } m$ with $m = 2^j + 2^r = n - 2^r(2^{k-r} - 1) < n - 1$:

$$
\dots 10^k \underbrace{10^r \cdot 10^k}_{n} 10^{r-1} 1^{\scriptscriptstyle \top} \dots
$$

In all cases we thus find $n \in E$ by lemma 1.

Lemma 3. If $wt(n) > 3$ and $n \neq 22$ then $n \in E$.

Proof. Assume wt(n) \geq 3. Then the binary representation of n can be written as bin(n) = $10^a 1\beta 10^c$ with $a \geq 0$, $c \geq 0$ and a possibly empty string β . Let $b = \text{len}(\beta) > 0$. Clearly wt $(n) \leq b + 3$. To show the existence of $m < n - 1$ with $n \mathfrak{a}$ m we distinguish several cases:

- wt(n) **: Then** β **contains at least one 0**. Write $\beta = \gamma \mathbf{0} \mathbf{1}^t$ with $t \geq 0$ and a string γ and let $\delta = \gamma 10^t$. Then $\text{bin}(m) = \alpha \beta$ implies $\sin(m+1) = \alpha \delta$. We distinguish two subcases:
	- $-c > a$: Let m be the number with $\text{bin}(m) = 10^c 10^a 1 \beta$. Then $\text{bin}(m + 1)$ $1) = 10^{c}10^{a}1\delta$. Since len(bin $(m + 1)$) = len(bin (n)), comparing the c leading digits yields $m + 1 < n$. Then $n \otimes m$:

$$
\dots 10^c \underbrace{10^a 1 \beta^i 10^c 10^a 1 \delta^i \dots}_{n}
$$

 $-c \le a$: Let m be the number with $\sin(m) = 10^a 1\beta$. Then $\sin(m+1) =$ **10^a1** δ . Since this has less digits than n, we see that $m+1 < n$. Then $n \t@ m$:

$$
\cdots \underbrace{! 10^a 1 \beta^i 10^c 0^{a-c} 1 \delta^i \ldots}_{n}
$$

- wt $(n) = b+3$. Then $\beta = 1^b$ and $\text{bin}(n) = 10^a 1^{b+2} 0^c$. Again we distinguish subcases:
	- $-c \ge a > 0$: Let m be the number with $\text{bin}(m) = 10^c 10^a 1^{b+1}$. Then $\overline{\text{bin}}(m+1) = 10^{c} 10^{a-1} 10^{b+1}$ and $n \text{ Q } m$:

$$
\cdots 10^c \underbrace{10^a 1\beta^i 10^c}^{10a-1} 10^{b+1} \cdots
$$

Note that $len(bin(m + 1)) = len(bin(n))$. If $c > a$ or $a > 1$ or $b > 0$, then one finds $m + 1 < n$ by comparing digitwise from left to right. Hence the only case where this fails to prove $n \in E$ is $c = a = 1$ and $b = 0$, i.e. $n = 22$.

 \Box

$$
- c \ge a = 0: \text{ Then } \sin(n) = 1^{b+3} 0^c, \text{ i.e. } n = 2^{b+c+3} - 2^c.
$$

$$
* b + 2 \ge c: \text{ Then } n \text{ @ } m \text{ with } m = 2^{b+2} - 1 = \frac{n-2^c}{2^{c+1}} < n - 1.
$$

$$
\cdots \underbrace{1^{b+2} \cdot 10^{c}}_{n} 0^{b+2-c} \cdots
$$

*
$$
b + 2 < c
$$
: Then $n \t Q m$ with $m = 2^c - 1 < n - 1$:

$$
\cdots 1^{c-b-2} \underbrace{1^{b+2}10^a}_{n} \cdots
$$

– $c < a$: Then $n \t Qm$ with $m = 2^{a+b+1} + 2^{b+1} - 1 = \frac{n-2^c}{2^{c+1}}$ $\frac{n-2^c}{2^{c+1}} < n-1$:

$$
\cdots \underbrace{10^a 1^{b+1} 10^c 0^{a-c-1} 10^{b+1}}_n \cdots
$$

 \Box

4 Main results

We can summarize the above results as

Theorem 1.

$$
\hat{E} = \{n \in \mathbb{N} \mid \text{wt}(n) \ge 2\} \setminus \{2^{2k+1} + 2^k \mid k \ge 1\}
$$

$$
E = \hat{E} \setminus \{22\}
$$

Proof. For $n \in \{0, 3, 22\}$ one directly verifies $0 \notin \hat{E}$, $3 \in E$, $22 \notin E$, $22 \in \hat{E}$. All other cases are treated by lemmas 1, 2 and 3 together with the fact $E \subseteq \hat{E}$. \Box

Corollary 2. For $n \in \mathbb{N}$ let $a(n)$ denote the nth element of $\mathbb{N}_0 \setminus E$ in order and let $\hat{a}(n)$ denote the nth element of $\mathbb{N}_0 \setminus \hat{E}$ in order. Write $n = 3q + r$ with integers q, r and $0 \le r < 3$. Then for $n > 8$ we have

$$
a(n) = \begin{cases} 2^{2q-1} & \text{if } r = 0, \\ 2^{2q-1} + 2^{q-1} & \text{if } r = 1, \\ 2^{2q} & \text{if } r = 2. \end{cases}
$$
 (1)

and for $n > 3$ we have

$$
\hat{a}(n) = \begin{cases}\n2^{2q-1} + 2^{q-1} & \text{if } r = 0, \\
2^{2q} & \text{if } r = 1, \\
2^{2q+1} & \text{if } r = 2.\n\end{cases}
$$
\n(2)

Proof. For $s \geq 1$, one quickly checks that the numbers of the form $n = 2^k$ with $2^{2q-1} \leq n < 2^{2(q+1)-1}$ are exactly 2^{2q-1} and 2^{2q} and the only number $n = 2^{2k+1} + 2^k$ with $2^{2q-1} \leq n < 2^{2(q+1)-1}$ is exactly $2^{2q-1} + 2^{q-1}$. Since $2^{2q-1} < 2^{2q-1} + 2^{q-1} < 2^{2q}$, we conclude from theorem 1 that the right hand side of (1) for $n \geq 9$ indeed runs through the punctual numbers $\geq 2^{2 \cdot 3 - 1} = 32$ in order.

Using theorem 1 again, we see that the first terms of the sequence are $a(1) = 0$, $a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 8, a(6) = 10, a(7) = 16, a(8) = 22.$ Since this is followed by $a(9) = 32$, the first claim of the corollary follows.

Sine $\hat{E} = E \cup \{22\}$ we have $\hat{a}(n) = a(n+1)$ for $n > 7$. Therefore (2) holds at least for $n > 7$. It is also directly verified for $n \in \{4, 5, 6, 7\}$. \Box

Corollary 3. The generating functions of the sequences a, \hat{a} are given by

$$
A(x) = \sum_{n=1}^{\infty} a(n)x^n
$$

= $\frac{1+x+2x^2}{2(1-4x^3)} + \frac{x}{2(1-2x^3)} - \frac{1}{2} - x + x^4 + 4x^5 + 2x^6 + 6x^7 + 6x^8,$

$$
\hat{A}(x) = \sum_{n=1}^{\infty} \hat{a}(n)x^n = \frac{1+2x+4x^2}{2(1-4x^3)} + \frac{1}{2(1-2x^3)} - \frac{1-x^4}{1-x}.
$$

Proof. One can use corollary 2 to investigate each residue class modulo 3 separately. Per residue class, the generating function is essentially constructed from

$$
(1 - 4x^3)^{-1} = \sum_{k=0}^{\infty} 4^k x^{3k}
$$

for the weight-one numbers and additionally

$$
(1 - 2x^3)^{-1} = \sum_{k=0}^{\infty} 2^k x^{3k}
$$

for the weight-two numbers. By combining these subresults and a few exceptional terms at the beginnig of the sequence, one straightforwardly obtains the claims. \Box

References

- [1] N. J. A. Sloane, Ed. (2008), The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/
- [2] P. Lava (2009), [seqfan] Re: SImplified description of $A161373$ and $A161374$, http://list.seqfan.eu/pipermail/seqfan/2009-June/001673.html