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ABSTRACT
Association rule mining is known to be computationally intensive,
yet real-time decision-making applications are increasingly intol-
erant to delays. In this paper, we introduce the parameter space
model, called PARAS. PARAS enables efficient rule mining by
compactly maintaining the final rulesets. The PARAS model is
based on the notion of stable region abstractions that form the
coarse granularity ruleset space. Based on new insights on the
redundancy relationships among rules, PARAS establishes a sur-
prisingly compact representation of complex redundancy relation-
ships while enabling efficient redundancy resolution at query-time.
Besides the classical rule mining requests, the PARAS model sup-
ports three novel classes of exploratory queries. Using the pro-
posed PSpace index, these exploratory query classes can all be an-
swered with near real-time responsiveness. Our experimental eval-
uation using several benchmark datasets demonstrates that PARAS
achieves 2 to 5 orders of magnitude improvement over state-of-the-
art approaches in online association rule mining.

1. INTRODUCTION

1.1 Motivation
Data mining is extensively used by analysts in applications from

market basket analysis [2, 9], web usage mining [14], census analy-
sis [5], intrusion detection to bioinformatics [18]. It is well-known
that data mining algorithms are compute-intensive and parameter-
ized. Analysts from diverse domains ranging retail, stock trading
to biology utilize state-of-the-art interactive data visualization and
exploratory systems such as [20] for analyzing data sets and ex-
ploring interesting patterns such as association rules. For exam-
ple, by analyzing online transaction logs a retail analyst at amazon
may identify products that are frequently purchased together. Such
products can be placed together on amazon.com, made into bun-
dled offers or used for recommendations when users search for one
of the products. Another example is a trader who wants to trace
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the live stock market trends to find associations between the ticker
symbols (e.g., GOOG) and volumes of stocks traded in transactions
for the past hour. Below, we discuss three critical properties of an
interactive mining system.

Motivation 1: Fast turnaround times of mining queries. An
analyst submits an association rule mining request with parameters
such as minsupp, minconf or other interestingness measures. Ex-
isting online mining techniques prestore frequent itemsets [1] in an
itemset-based index such as the adjacency lattice (Figure 1). At
query-time, the lattice is leveraged to iteratively generate the asso-
ciation rules. At each iteration, the support and confidence of the
newly generated rule must be compared with the query parameters
minsupp and minconf. Despite utilizing the precomputed interme-
diate itemsets, response times for mining rules for even moderately
sized datasets (∼ 200 MB) tend to take hundreds of seconds or
more [15, 16]. This is not within the response time range expected
for interactive systems - thus risks losing a user’s attention during
the process. In mission critical applications, this delay in decision
making may be detrimental.

Motivation 2: Recommendations for parameter settings. Whi-
le mining queries are parameterized, an analyst may not know the
precise parameter settings that would result in the desired number
and types of interesting rules in a single trial. Numerous successive
trial-and-error interactions using different query parameter values
may be required to get satisfactory results. Unfortunately, existing
mining models tend to be blackboxes that provide no knowledge of
precise parameter settings to match the analyst’s interest. A mining
system capable of making recommendations for parameter tuning
and helping the analysts extract desired associations using signif-
icantly fewer trial-and-error cycles would offer a competitive ad-
vantage to the analysts.

Motivation 3: Support for parameter space exploration. Ex-
isting mining systems simply output the rules satisfying the user’s
requests. However, beyond receiving such output, analysts may
benefit from understanding the relationships among the different
rules (such as rules sharing common items) or the distribution of
these rules in the space of query parameters. Further, if some pa-
rameter settings were to produce a huge number of associations,
this may overwhelm the analyst. Thus knowledge of redundancies
among associations [1] would be useful for reducing the size of the
output. Unfortunately, most existing systems do not provide such
useful insights about a target dataset. Instead, the analysts have to
perform manual inspections to make sense of the results.

1.2 The State-of-the-Art
Online rule mining techniques prestore frequent itemsets [1] to

overcome the prohibitive costs of running the mining algorithm at
query-time. Aggarwal et al. [1] and follow-on work [11, 12] use the
principle of preprocess once−query many (POQM) only partially
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Figure 1: Adjacency Lattice.

Rule Support Confidence
X⇒YZ S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z) / S(X) = 0.125
XY⇒Z S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z) / S(X ∪ Y) = 0.25
XZ⇒Y S(X ∪ Y ∪ Z) = 0.1 S(X ∪ Y ∪ Z) / S(X ∪ Z) = 0.5
X⇒Y S(X ∪ Y) = 0.4 S(X ∪ Y) / S(X) = 0.5
X⇒Z S(X ∪ Z) = 0.2 S(X ∪ Z) / S(X) = 0.25

Figure 2: Redundancy in Rules. Figure 3: Parameter Space.

as they precompute the intermediate itemsets in an itemset-based
index (adjacency lattice in Fig. 1). However, unfortunately rule
generation remains a query-time task. Worst yet, at query-time,
such systems must not only first generate the rules but also filter
out rules that are redundant to produce succinct query results [1].
This combined generate and filter online step tends to render the
turnaround times unacceptable, particularly, for a dataset with mil-
lions of items. While Sahar [17] and Han et al. [19] identify the
importance of analyzing the interestingness measures of rules, they
do not tackle online mining through precomputation. In contrast,
we take the notion of POQM with respect to online rule mining to
the next level by achieving effective materialization offering truly
online performance.
1.3 Research Challenges

For developing an interactive rule mining system, the following
research challenges must be tackled:

Managing large number of rules. In general, for k items in a
dataset D, a total of 2k-1 itemsets can be composed [8]. Clearly,
for a dataset with several hundreds or thousands of items, it is pro-
hibitively expensive to store all rules individually. This raises two
critical requirements for rendering the precomputation of final rule-
sets practical. First, we must design a data structure to compactly
prestore rulesets. Next, we must develop an efficient strategy that
uses this compact storage at query-time for processing online min-
ing requests.

Managing rules for all parameter values. To facilitate a direct
lookup of rulesets given input parameter values, the rules must be
indexed on the two-dimensional space of support and confidence
parameters. Yet minsupp and minconf values input by users are
from a continuous domain [0,1]. For a large dataset, prestoring
rules for all possible parameter settings will be extremely challeng-
ing. On the other hand, some regions of the parameter space may
be stable, such that despite changes in the input parameter settings,
the output ruleset remains unchanged. This raises the need for ef-
fective stable region-aware indexing of rules within the parameter
space.

Resolving rule redundancies at query-time. If too many rules
are returned to the user, including redundant ones (Section 2.2),
this clutter prevents the user’s understanding. Hidden in the clutter,
interesting patterns may go unnoticed. While query-time redun-
dancy resolution [1] must be supported for interactive mining, its
known prohibitive expense must be avoided at run-time. To further
complicate matters, redundancy is a query-time phenomenon (see
Section 5), that is, rules cannot be deemed redundant and thus elim-
inated in an offline step. Instead, redundancies can only be resolved
at query-time based on the context of the complete output ruleset.
Such online redundancy resolution requires O(2n) time where n is
the number of prestored rules.

Avoiding repeated storage of rules during preprocessing. For
prestoring rulesets, we utilize a multi-dimensional parameter space
with support and confidence as its dimensions. If a rule Ri maps
to a location (Ri.supp, Ri.conf ) of this space, then Ri belongs
in the output for every user input (minsupp, minconf ) such that
minsupp ≤ Ri.supp and minconf ≤ Ri.conf . This leads to con-
flicting demands that the compact structure must not store rules re-
peatedly, yet at query-time non-redundant rules may be efficiently
assembled for any setting by collecting all such rules.

1.4 Running Example of Parameter Space
Let us examine the adjacency lattice for a dataset D depicting

100 records and three items X, Y and Z (Fig. 1). Each itemset
node Ni has a support count (e.g., S(X) = 80). To motivate the
use of a two-dimensional parameter space with support on x-axis
and confidence on y-axis for organizing rulesets, Fig. 3 plots the
rules generated from the adjacency lattice (Figure 1). For example,
rule (Y⇒ X) maps to (0.4,0.67) and rules (XZ⇒ Y) and (YZ⇒
X) both map to location (0.1,0.5). Many rules map to the same
(support, confidence) location, leading to a more compact structure
than simply indexing the independent rules.

Figure 3 contains the shaded regions S(0.4,0.5)

(0.2,0) and S(0.4,0.67)

(0,0.5) .
No new rules would be produced even if parameter values were
to be adjusted by the users within eac of these regions. We call
them stable regions. An example of repeating rules is (Y ⇒ X)
that appears for the first time in stable region S(0.4,0.67)

(0,0.5) but gets
repeatedly output for all requests with minsupp ≤ 0.4 and minconf
≤ 0.67 as it is valid between (0,0) and (0.4,0.67).

1.5 The PARAS Approach
Based on the above observations, we introduce a parameter space

model, consisting of support and confidence axes1, for support of
online association mining. The intuition is that a parameterized in-
dex can be directly searched for association rules by matching the
query parameters with the index key. Instead of prestoring only the
itemsets as commonly done by [1, 11, 12], we prestore the actual
rules. Thus, the online rule generation step is altogether avoided. In
addition to achieving speedup in online mining, our PARAmeter
Space Model for Association Mining (PARAS)2 framework pro-
vides support for novel exploratory queries (Sec. 3.1). For interac-
tive analytics, such as recommendations for query parameter selec-
tion. PARAS also gives rich insights into the redundancy relation-
ships of association rules within the space. Our PARAS framework

1While support and confidence are popular measures, the parame-
ter space can also use other measures, such as lift and conviction.
2Hindi name for a legendary philosopher’s stone said to be capable
of turning base metals (lead, for example) into gold.
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is complemented by efficient algorithms for both offline prepro-
cessing and online query processing.
1.6 Contributions

The contributions of this work are as follows:
• We propose the parameter space model, called PARAS, that

organizes association rules in a space of query parameters. Instead
of maintaining the huge number of individual rules in an infinite
parameter space, our compact space representation, called PSpace,
abstracts rulesets at a coarse granularity of stable regions (Sec. 2).
•We observe that redundancy is a query-time phenomenon (Sec-

tion 2). To overcome this, we establish a theoretical foundation of
redundancy relationships among associations that allows us to pre-
compute compact abstractions of redundancy. This abstracted re-
dundancy meta-knowledge enables effective redundancy resolution
at query-time. For N rules in the output ruleset, we reduce the com-
plexity of a naive online redundancy resolution [1] from O(2N ) to
online redundancy resolution that takes O(N) time by performing
a O(N2) time offline redundancy abstraction step (Sec. 5).
• Our PARAS framework (Section 3) offers efficient algorithms

for offline PSpace index construction. PARAS provides stable re-
gion-aware indexing where each rule is stored exactly once and
stable regions are compactly stored in a region neighborship graph
(Sec. 4).
• PARAS supports a rich set of novel exploratory mining queries

beyond traditional rule mining. Effective strategies for online pro-
cessing of these novel query types using the PSpace index are also
developed (Sec. 6).
• Our extensive experiments using IBM Quest [2], webdocs [14]

and other benchmark datasets demonstrate that PARAS achieves 2
to 5 orders of magnitude improvement over commonly used tech-
niques in online rule mining (Sec. 7).

2. FOUNDATION OF THE PARAS MODEL
2.1 Parameter Space Model

We use the parameter space as a model for managing, retrieving,
and exploring the association rules of a dataset. For a dataset D,
this space contains the rules of D, denoted by {R}D . Each dimen-
sion pk of the space represents an interestingness measure, such as
support, confidence and lift [19].

Definition 1. Parameter Space: Given a dataset D and the user-
chosen d interestingness parameters each denoted as pi, we use a d-
dimensional parameter space, denoted byP = {p1, . . . , pk, . . . , pd}
for organizing the rules {R}D for D. Each ruleRj is represented
by its parametric location (Rj .value(p1), . . ., Rj .value(pk), . . .,
Rj .value(pd)) where Rj .value(pi) denotes the value of the ith pa-
rameter for ruleRj .

For simplicity, we henceforth work with a two-dimensional pa-
rameter space using support and confidence as dimensions. A para-
metric location `1 is defined by a combination of support and con-
fidence values, denoted by (`1.supp, `1.conf) (Fig. 3). Many asso-
ciation rules may map to the same parametric location, e.g., (XZ
⇒Y) and (YZ ⇒X) both map to (0.1,0.5). Therefore, all rules
mapping to the same parametric location can be compactly indexed
in our parameter space model.

The user specified minsupp and minconf values may range be-
tween 0 and 1, making the number of locations infinitely large.
Yet, the number of distinct parametric locations is typically much
smaller than the actual number of association rules. Thus, if the
association rules are grouped by their parametric locations, there
is a modest number of such locations compared to the number of
actual rules (Section 7.3).

In Figure 3, we observe that certain regions of the parameter
space often either contain no rules or contain the same set across a
large range of parameter settings (e.g., the shaded regions marked
S(0.4,0.5)

(0.2,0) and S(0.4,0.67)

(0,0.5) ). This leads us to the notion of stable
regions, which forms our coarse granularity abstractions for rules.

Definition 2. Stable Region: Given a parameter space P of d in-
terestingness dimensions {p1, . . . , pd} for dataset D, a stable re-
gion S(upper(p1),...,upper(pd))

(lower(p1),...,lower(pd))
is a d-dimensional rectangular hy-

perbox with extreme points (S.lower(p1),. . ., S.lower(pd)) and (
S.upper(p1), . . ., S.upper(pd)) within which no matter how the pa-
rameter values are adjusted, the set of rules generated from D re-
mains unchanged.

In Figure 3, the shaded region S(0.4,0.5)

(0.2,0) is bounded by the para-
metric locations (0.2,0) and (0.4,0.5) as its extreme points. Let us
suppose that a user inputs two separate queries Q1 and Q2 with
the parametric locations `1 and `2, respectively. Then both para-
metric locations lie within S(0.4,0.5)

(0.2,0) . Thus, we can infer that the
outputs for both Q1 and Q2 will be the same, i.e., {R}Q1 = {R}Q2

= {(X⇒ Y), (Y⇒ X)}. However, if the user inputs another query
Q3 with parametric location `3, that lies within region S(0.4,0.67)

(0,0.5) ),
the output would only contain rule (Y⇒ X). Thus, the output re-
mains unchanged as long as parameter values are chosen within
the bounds of a stable region, whereas the output changes when
crossing between stable regions. Next, Lemma 2.1 establishes a
neighborhood relationship among adjacent stable regions.

Lemma 2.1. Consider two stable regions S(usupp1,uconf1)

(lsup1,lconf1) and

S(usupp2,uconf2)

(lsup2,lconf2) such that usupp2≥ usupp1 and uconf2≥ uconf1,

then all association rules valid in stable region S(usupp2,uconf2)

(lsup2,lconf2)

are also valid in region S(usupp1,uconf1)

(lsup1,lconf1) . The reverse is not true.

PROOF. A rule Ri at a parametric location (Ri.supp,Ri.conf )
qualifies to be output for any mining request with minsupp≤R.supp
and minconf ≤Ri.conf. Assuming ruleRi belongs to stable region
S(usupp2,uconf2)

(lsup2,lconf2) , Ri.supp = usupp2 and confidence Ri.conf =

uconf2. Therefore,Ri will also be valid in region S(usupp1,uconf1)

(lsup1,lconf1)

as usupp1 ≤Ri.supp and uconf1 ≤Ri.conf.

Definition 3. Lending Neighbor Stable Region: Consider two
neighbor stable regions S(usupp1,uconf1)

(lsup1,lconf1) and S(usupp2,uconf2)

(lsup2,lconf2) , re-

lated by Lemma 2.1. We then say that S(usupp2,uconf2)

(lsup2,lconf2) is the lend-

ing neighbor stable region for S(usupp1,uconf1)

(lsup1,lconf1) , in short, l-neighbor.

By Def. 3, in Figure 3 S(0.4,0.67)

(0,0.5) is the lending neighbor stable

region for S(0.4,0.5)

(0.2,0) . S(0.4,0.67)

(0,0.5) lends rule (Y⇒X) to S(0.4,0.5)

(0.2,0) , as

(Y⇒ X) first appears in S(0.4,0.67)

(0,0.5) and is also valid for S(0.4,0.5)

(0.2,0) .
We refer to the lending neighbor stable region(s) as l-neighbors in
short.

We partition the parameter space P into a finite number of non-
overlapping stable regions, denoted by {S}. The non-overlapping
property among stable regions can be guaranteed due to our ap-
proach of modeling the regions (Section 5.3). Utilizing the concept
of neighbor stable regions (Def. 3), for each such stable region,
we maintain (a.) the rules that are valid within that region and (b.)
the links to its l-neighbors. As we demonstrate in Section 6, this
partitioning of the parameter space into stable regions enables us to
process novel exploratory online queries as well as to recommend
query parameter settings based on user interest (Section 6).
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2.2 Redundancy in Association Rules
Aggarwal et al. [1] define redundancy relationships among rules,

such that redundant rules may be filtered out for presenting succinct
query results to the user. The redundant rules could always be de-
rived on demand, if so desired. We examine how these redundancy
relationships can be identified in the parameter space model. In
particular, redundancy can be of two types [1], as defined below.

Definition 4. Simple Redundancy: Let A⇒ B and C⇒ D be two
rules such that the itemsets A, B, C and D satisfy the condition A ∪
B = C ∪ D. The rule C⇒ D is simply redundant with respect to
the rule A⇒ B, if C ⊃ A.

Definition 5. Strict Redundancy: Let A⇒ B and C⇒ D be two
rules generated from itemsets Xi and Xj such that Xi ⊃ Xj , A ∪
B = Xi, C ∪ D = Xj , and C ⊇ A. Then the rule C⇒ D is strictly
redundant with respect to the rule A⇒ B.

The concept of redundancy can be illustrated using the rules gen-
erated from the lattice (Figure 1) as listed in Figure 2. Based on
Definitions 4 and 5, if a rule R1 is simple or strict redundant with
respect to another ruleR2, thenR2 is said to simple or strict domi-
nateR1, respectively. In Figure 2, the rule (X⇒ YZ) simple dom-
inates the rules (XY⇒ Z) and (XZ⇒ Y) (Def. 4). In Figure 2, the
rule (X⇒ YZ) strict dominates rules (X⇒ Y) and (X⇒ Z) (Def.
5). In general, a rule may be dominated by several dominating rules
and may in turn dominate several other dominated rules.

3. THE PARAS SYSTEM OVERVIEW

3.1 Supported Queries
Our PARAS framework supports a rich variety of classes of an-

alytical queries using the PSpace index P .
Rule Mining (RM) Query: Q1 is a rule mining query that, given

dataset D, finds a set of rules satisfying query parameters (min-
supp,minconf ). The Using clause with a Boolean input REFlag
gives users the option to output only non-redundant rules, while
the default value is FALSE.

Q1: OUTPUT RuleSet {R}(minsupp,minconf)

FROM D
WITH minsupport=minsupp AND minconfidence=minconf

USING REFlag = T/F;

Stable Region (SR) Queries: This query provides meta infor-
mation about the stable regions ofP . Query Q2 identifies the stable
region containing the user-chosen (minsupp,minconf ) input. The
returned region S(usupp,uconf)

(lsupp,lconf) is such that (usupp ≥ minsupp ≥
lsupp) and (uconf ≥ minconf ≥ lconf ). By Definition 2, no change
in the generated ruleset will be achieved by the user as long as dif-
ferent parameter settings are chosen from within this stable region.
For a change in the output ruleset, the user will thus be instructed
to select parameters with either minsupp, minconf, or both outside
the bounds of region S(usupp,uconf)

(lsupp,lconf) , for further exploration.
Example 1: Caught in a large stable region: For a sparse

dataset such as T100k [2], often despite submitting several suc-
cessive mining requests with distinct (minsupp,minconf) input pa-
rameter values, the system repeatedly returns the same set of rules
{R}(minsupp,minconf) due to the sparse population of rules. When
using an existing mining system, the user must progress through
frustrating trial-and-error to finally get a new set of rules. In such
situations, query Q2 saves time and effort by recommending which
next parameter settings will cause a difference in the output.

Q2: OUTPUT Stable Region S(usupp,uconf)
(lsupp,lconf)

FROM P
WITH minsupport=minsupp AND minconfidence=minconf;

Example 2: Unnoticeable change: For a dense dataset such
as Chess [3], each parameter setting produces a large number of
associations. Suppose that using query Q2, a user changes the
query input from (minsuppold,minconfold) to (lsupp,lconf) such that
minsuppold ≥ lsupp and minconfold ≥ lconf. Then the ruleset
{R}(lsupp,lconf) would also contain the rules in the original rule-
set {R}(minsuppold,minconfold) satisfying (minsuppold,minconfold).
The change in the ruleset may be difficult to discern, especially if
the user has to manually inspect the ruleset {R}(lsupp,lconf) to
identify the newly added rules as well as some dominated ones.
Here, a delta output of associations is desirable, as accomplished
by Query Q3.

Q3: OUTPUT RuleSet S(usupp,uconf)
(lsupp,lconf)

.{R}
FROM P
WITH minsupport=minsupp AND minconfidence=minconf;

Query Q3 returns the associations that belong only to the stable
region containing the user-chosen (minsupp,minconf ).

Example 3: Exploring multiple regions: Analysts often com-
pare two or more rules, with possibly different support and/or con-
fidence values. In the mushroom dataset [3], analysts may be in-
terested in comparing different types of mushrooms based on how
the values of their attributes such as odor, cap-color and cap-shape
co-occur. The l-neighborhood query Q4 allows users to retrieve l-
neighbor stable regions such that the corresponding rules may be
compared.

Q4: OUTPUT L-Neighbor Regions S(usupp,uconf)
(lsupp,lconf)

.{S}
FROM P
WITH minsupport=minsupp AND minconfidence=minconf;

Query Q4 finds not only the stable region S(usupp,uconf)

(lsupp,lconf) in
which query parameter (minsupp,minconf ) lies but also all its lend-
ing neighboring stable regions. The output is a set of stable regions
with their respective bounds. The analyst could then further explore
the neighbor regions for rules that they lend to S(usupp,uconf)

(lsupp,lconf) .
Redundancy Relationship (RR) Queries: This new query class

explores redundancy relationships in the context of stable regions.
The user inputs (minsupp,minconf ), with little knowledge about the
stable regions for the dataset. For every rule Ri in the region con-
taining (minsupp,minconf ), query Q5 returns the simple and strict
dominating locations (see Lemmas 5.2 and 5.4 for details).

Q5: OUTPUT Dominating Regions S(usupp,uconf)
(lsupp,lconf)

.{S�}
FROM P
WITH minsupport=minsupp AND minconfidence=minconf;

Query Q5 finds the stable region where (minsupp,minconf ) lies.
Then for the rules valid within the stable region, it finds all stable
regions of their dominating rules. Query Q5 is helpful in determin-
ing for which parameter ranges, the rules within the stable region
S(usupp,uconf)

(lsupp,lconf) , where (minsupp,minconf ) lies, will be dominated
by other rules.

3.2 The PARAS Framework
For efficiently processing the different classes of mining queries

described above, we designed the PARAmeter Space Framework
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Figure 4: PARAS Framework.

for association mining, in short PARAS, as illustrated in Figure 4.
PARAS consists of two phases (a) offline PSpace construction and
(b) online query processing using the PSpace index. In the offline
phase, to construct the PSpace index, we must tackle the following
two challenges:
Challenge 1: constructing and compactly indexing the stable re-
gions along with their association rules, and
Challenge 2: abstracting the redundancy information for each rule
in some compact model.

The Rules&Regions Generator module performs the following
two tasks, (a) generating all association rules and (b) constructing
and populating stable regions. The generated ruleset {R} and the
set of stable regions {S} are produced and passed on for further
processing.

The Neighborhood Miner tackles the problem of repeated as-
sociation rules (Section 1.3). It captures the neighborhood rela-
tionships among stable regions avoiding the need for maintaining
associations repeatedly. The final set of stable regions together with
their l-neighborhood information is called the enriched set of sta-
ble regions, denoted by {S+}. Our approach for stable region con-
struction and neighborhood miner is explained in Section 4.

The Redundancy Abstractor captures the redundancy relation-
ships among rules at the offline phase such that, if desired by the
user, non-redundant association rules can be efficiently generated
upon demand. The set of rules together with redundancy relation-
ships is called the enriched ruleset, denoted as {R+} (Section 5).

The PSpace Index Constructor uses the enriched ruleset {S+}
to create our proposed PSpace index, denoted by {R+} and the
enriched set of stable regions P (Section 5.3).

The online query processing phase is performed by the Query
Executor. The Query Parser interprets the query to identify the
query class and type as well as capture the query parameter val-
ues. The PSpace Access offers the API for accessing the index
P . A direct search on the PSpace index can be performed using
the (minsupp,minconf ) parameters to quickly retrieve the desired
stable regions. Neighbor Collector uses the enriched set of sta-
ble regions {S+} for a given region to iteratively find all lending
neighboring stable regions. If the user desires non-redundant asso-
ciations, the Redundancy Resolver module is employed. It uses
the redundancy information prestored in {R+}. The Output Gen-
erator module presents the final output to the user. The description
of online query processing is in Section 6.

4. OFFLINE PSPACE CONSTRUCTION
Our proposed offline PSpace construction (Algorithm 1) is com-

posed of three tasks, task 1: generate all associations; task 2: com-
pute stable regions; and task 3: determine neighborhoods among

regions. To perform the above tasks we adapt the algorithms Con-
structLattice and GenerateRules from [1]. For a datasetD, an adja-
cency lattice L (Figure 1) is constructed using the ConstructLattice
algorithm (explained in [1]). This lattice L is then utilized to per-
form the first two tasks below:

Task 1: Generate all associations. The original GenerateRules
algorithm [1] utilizes a lattice L to generate non-redundant rules.
This is achieved by a subroutine FindBoundary that, for a given
itemset node Ni in lattice L, returns only the boundaryListNi [1]
of parent nodes. However, PARAS needs to pre-store all associ-
ations for dataset D. By replacing FindBoundary with FindFull-
ParentList, the list of all parent itemsets is produced, denoted by
parentListNi . This modified GenerateRules generates all rules.

Task 2: Compute stable regions. We further modify the Gen-
erateRules algorithm such that the stable regions are constructed in
parallel with rule generation, as described in subroutine Rules &
Regions Generator (Algo. 1.A). To partition the parameter space
into stable regions, we first compute the cut locations. A cut lo-
cation is identified by the upper location of a stable region. For
S(0.4,0.5)

(0.2,0) the cut location is (0.4,0.5). Therefore, while generating
rules using lattice L, for itemset nodes {Ni} with identical support
count (denoted by S(Ni)) in L, the support for the cut location for
Ni = S(Ni)

|D| , where |D| (of L in Figure 1 = 100) is the total number
of records. Similarly, forNi and a parent nodeNP

j ε parentListNi ,
the confidence value for the corresponding cut location is given by
S(Ni)

S(NP
j )

. In other words, the cut location for S(0.4,0.5)

(0.2,0) is the lo-

cation of association (X⇒ Y) in the parameter space. Therefore,
each stable region is constructed in parallel during rule generation
process as described in Algo. 1.A.

Figure 5: Stable Regions.

Task 3: Determine neighborhood relationships among re-
gions. For each stable region S, the Neighborhood Miner sub-
routine (Algorithm 1.B) adds the minimum parameter values. It
also determines the list of lending neighbor stable regions. The fi-
nal parameter space partitioned into its stable regions is depicted in
Figure 5. Figure 6 lists all stable regions along with their associa-
tions and their l-neighbor stable regions.

In our example space, region S(0.4,0.5)

(0.2,0) contains rule {(X⇒Y)}
and has the region S(0.4,0.67)

(0,0.5) as its lending neighbor. The com-
plete list of associations for a particular stable region is given by
the associations within the region plus the associations recursively
collected from its l-neighbors. This way, a compact representation
of stable regions along with the associations valid within them is
achieved such that no association rule is stored repeatedly. The
collection of regions enriched with neighbors is denoted by {S+}.

197



S. Regions Neighbors Associations
S(0.4,0.67)

(0,0.5)
∅ {(Y⇒X)}

S(0.4,0.5)

(0.2,0)
S(0.4,0.67)

(0,0.5)
{(X⇒Y)}

S(0.2,0.5)

(0.1,0.33)
S(0.4,0.5)

(0.2,0)
{(Z⇒X),(Z⇒Y)}

S(0.2,0.33)

(0.1,0.25)
S(0.2,0.5)

(0.1,0.33)
{(Y⇒Z)}

S(0.2,0.25)

(0.1,0)
S(0.2,0.33)

(0.1,0.25)
{(X⇒Z)}

S(0.1,0.5)

(0,0.33)
S(0.2,0.5)

(0.1,0.33)
{(XZ⇒Y),(YZ⇒X)}

S(0.1,0.33)

(0,0.25)
S(0.1,0.5)

(0,0.33)
+S(0.2,0.33)

(0.1,0.25)
{∅}

S(0.1,0.25)

(0,0.16)
S(0.1,0.33)

(0,0.25)
+S(0.2,0.25)

(0.1,0)
{(XY⇒Z),(Z⇒XY)}

S(0.1,0.16)

(0,0.125)
S(0.1,0.25)

(0,0.16)
{(Y⇒XZ)}

S(0.1,0.125)

(0,0)
S(0.1,0.16)

(0,0.125)
{(X⇒YZ)}

Figure 6: Enriched Stable Regions. Figure 7: Dominating Rules. Figure 8: Dominating Locations.

5. REDUNDANCY RELATIONSHIPS
The rules produced using the stable regions constructed above

may contain redundancies. In the parameter space model, our anal-
ysis derives certain properties of redundancy relationships that en-
able us to abstract redundancy information compactly as an offline
step. When the user desires to retrieve non-redundant associations,
PARAS can thus generate them efficiently at query-time.

5.1 Abstracting Redundancy Relationships
As a key observation we note that the redundancy relation-

ship is a query-time phenomenon. In other words, the redun-
dancy among rules depends on query-time input parameters ren-
dering it impossible to eliminate a rule as redundant at an offline
step. Instead, the redundancy relationships can be established only
at query-time. For the parameter space in Figure 3, suppose that
the user inputs (0.1,0.1) as query parameters. Here, the dominating
rule R� = (X ⇒ YZ) located at (0.1,0.125) qualifies as output.
Then, to produce only non-redundant rules, the dominated rules
{R�} = { (XY⇒ Z), (XZ⇒ Y), (X⇒ Y) and (X⇒ Z) } must
be eliminated. However, if the user inputs (0.1,0.2) instead, then
(X ⇒ YZ) would not qualify for output and the rules previously
deemed redundant are no longer redundant for this query. Thus, as
the query parameters are supplied by the user at query-time, the de-
cision about rule elimination can only be determined at query-time.

While elimination of the dominated rules can only be performed
at query-time, our goal is to isolate as much as possible the redun-
dancy relationships among rules inside the parameter space model
in the preprocessing phase. This leads to the challenge that we
must design a corresponding query-time strategy to produce non-
redundant associations by utilizing this predetermined redundancy
model. A straightforward yet expensive approach may proceed as
follows. In the offline phase, for each ruleRj , store the set of rules
that dominate Rj , denoted by {R�}j . At query-time, if the rule
Rj is included in the set of rules for the stable region containing
query parameters (minsupp,minconf ), then test if any of the rules
dominating Rj , denoted by R�i ε {R�}j , qualify the query pa-
rameters. If yes, then ruleRj is eliminated, elseRj is output.

Simple Dominating Rules and Location. Unfortunately, a rule
R�sim

j may be simple dominated by multiple rules (Def. 4). For
example, (XY⇒ Z) is simple dominated by two rules, namely, (X
⇒ YZ) and (Y ⇒ XZ). Therefore, (XY ⇒ Z) can only qualify
for output if neither of its simple dominating rules qualify. We
call them the set of simple dominating rules of rule R�sim

j as we
described in Def. 6. Here, the simple dominating ruleset is denoted
by {R�sim}j = {(X⇒ YZ),(Y⇒ XZ)}.
Definition 6. Simple Dominating Rule Set: For a rule R�sim

j ,
its simple dominating rule set, denoted by {R�sim}j , is the set of
all the rules that simple dominateR�sim

j .

Algorithm 1 Offline PSpace Construction
Input: DatasetD
Output: PSpace Index P
begin
L ←− ConstructLattice(D);
{S}, {R} ←− Rules&RegionsGenerator(L);
{S+} ←− NeighborhoodMiner({S});
{R+} ←− RedundancyAbstractor({R});
P ←− PSpaceIndexConstructor({S+},{R+});
return P ;

1.A: Rules&RegionsGenerator(L)
begin
{S} ←− ∅;
/* Get Parent List all k-itemsets in L, k>1. */
for eachNi ∈ L do

parentListNi ←− FindFullParentList(Ni);

/* Generate rules and regions. */
for eachNi ∈ L do
{R} ←− ∅;
for eachNP

j ∈ parentListNi do
Ri,j ←− {I(NP

j )⇒ I(Ni)− I(NP
j )};

/* I(Ni) = itemset for Ni */

{R} ←− {R} ∪ Ri,j ;
supp←− S(Ni)

|D| ; conf ←− S(Ni)

S(NP
j

)
;

if (Sold ←− getRegion({S},(supp, conf )) 6= ∅) then
Sold.addToRuleList(Ri,j );

else
Create New Region Snew ;
Snew .addUpperParameters(supp, conf );
Snew .addToRuleList(Ri,j );
{S} ←− {S}∪ Snew ;

return {S}, {R};

1.B: NeighborhoodMiner({S})
begin

for each Si ∈ {S} do
Si.findLowerParameters();
Si.findClosestHigherNeighbors();

return {S+};

1.C: RedundancyAbstractor({R})
begin

for eachRj ∈ {R} do
{R�sim}j ←− CollectTopSimpleDomRules(Rj );
`
�sim
j ←− FindMaxDomLocation({R�sim}j );
{R�str}j ←− CollectTopStrictDomRules(Rj );
`
�str
j ←− FindMaxDomLocation({R�str}j );

Rj .AddDominatingLocations(`�sim
j ,`�str

j );

return {R+};
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For each simple dominated ruleR�sim
j ≡ ((A1:An)⇒ (C1:Cm)),

all rules that potentially simple dominate it conform to the template
(((A1:An)-(Av:Aw))⇒ ((Av:Aw) ∪ (C1:Cm))). For the rule (XY
⇒ Z) having two items X and Y in the antecedent, there are two
simple dominating rules, considering all subsets of XY in the an-
tecedent, namely, X and Y. Our observation is further generalized
as in Lemma 5.1 below.
Lemma 5.1. For a simple dominated rule R�sim

j ≡ ((A1:An)⇒
(C1:Cm)) with n antecedent items, the number of simple dominat-
ing rules, denoted by |{R�sim}j | is 2n-2. 3

We further observe in Figure 7, that all rules in the set of simple
dominating rules {R�sim}j have the same support value as rule
R�sim

j . Thus it is possible to uniquely identify one single location
containing one or more rules that is closest toR�sim

j as described
in Lemma 5.2.

Lemma 5.2. Simple Dominating Location: For each simple dom-
inated ruleR�sim

j , the set of simple dominating rules {R�sim}j
contains a ruleR�sim

i closest to the dominated ruleR�sim
j , such

that ∀R�sim
k ε {R�sim}j and (k6=i),R�sim

i .conf≥R�sim
k .conf.

The location of ruleR�sim
i is called the simple dominating loca-

tion4 ofR�sim
j , denoted by `�sim

j .

Strict Dominating Rules and Location. Similar to the above
case of simple dominating rules, a strict dominated rule R�str

j

can be dominated by several strict dominating rules {R�str}j .
We call them the set of strict dominating rules of rule R�str

j as
defined below. In the example in Figure 1, for a rule R�str

j = (X
⇒ Y), the strict dominating rule set {R�str}j = {(X⇒ YZ)}.

Definition 7. For a rule R�str
j , its strict dominating rule set,

denoted by {R�str}j , is the set of all the rules that strict dominate
R�str

j .

For a ruleR�str
j , the number of such strict dominating rules can

also be estimated as in Lemma 5.3.

Lemma 5.3. For a strict dominated ruleR�str
j having n antecedent

items ((A1:An)⇒ (C1:Cm)), the strict dominating rules {R�str}j
conform to the template (((A1:An)-(At:Au)) ⇒ ((At:Au) ∪ (C1:
Cm+e))). The cardinality of strict dominating rules, denoted by
|{R�str}j |, is 2n+e, where e is the number of additional conse-
quents in the dominating rules within the set {R�str}j .

Using Lemma 5.3, for a dominated rule R�str
j , the number of

strict dominating rules can be determined. We further observe in
Figure 7, that all rules in the set of strict dominating rules {R�str}j
must have both their support and confidence values less than or
equal to those of the rule R�str

j . Thus it is possible to uniquely
identify one single rule location closest to R�str

j as described in
Lemma 5.4.

Lemma 5.4. Strict Dominating Location: For each strict dom-
inated rule R�str

j , the set of strict dominating rules {R�str}j
contains one or more rulesR�str

i (in the same location) closest to
the dominated rule R�str

j , such that ∀R�str
k ε {R�str}j where

(i6=k),R�str
i .supp≥R�str

k .supp ANDR�str
i .conf≥R�str

k .conf.
The location of rule R�str

i is called the strict dominating loca-
tion4, denoted by `�str

j .
3Proofs of the lemmas and the theorems are omitted due to space
restriction and can be found in [13].
4Multiple rules may map to the simple / strict dominating location
that collectively represents them.

Lemmas 5.2 and 5.4 now lead us to a key insight, namely, they
allow us to compactly store the association rules along with re-
spective redundancy relationships. For each rule Rj , only its two
locations, namely, the simple dominating location `�sim

j and the
strict dominating location `�str

j must be captured by the offline
step. At the online query processing phase, these two locations are
sufficient to determine the redundancy relationship for rule Rj , as
described in Theorem 1.

Theorem 1. Constant time criteria for online redundancy deter-
mination: Given an online mining query with parameter values
(minsup, minconf), for each rule Rj in the result set {Rj}, only
two parameter space locations, namely, the simple dominating lo-
cation `�sim

j and the strict dominating location `�str
j are suf-

ficient for determining whether the rule Rj is redundant. In the
case of (minsupp≤ `�sim

j .supp AND minconf≤ `�sim
j .conf)

OR (minsupp≤ `�str
j .supp ANDminconf≤ `�str

j .conf) is true,
the ruleRj is redundant. Otherwise, the ruleRj is not redundant.

As illustrated in Figure 8, the online algorithm for redundancy
resolution requires checking the three cases of where the user input
(minsupp,minconf ) lies with respect to each rule in the result set
and their dual dominating locations.

5.2 Optimized Location Computation
The Redundancy Abstractor subroutine (Algorithm 1.C) captures

redundancies for each ruleRj . SupposeRj is of the form ((A1:An)
⇒ (C1:Cm)) as in Figure 7. One straightforward approach for com-
puting the simple dominating location for ruleRj is as follows: (a.)
collect all simple dominating associations and (b.) find the simple
dominating rule with the maximum (supp,conf ) value pairs. The
location of that rule is the simple dominating location `�sim

j for
rule Rj . Clearly, the same process could be employed to find the
strict dominating location `�str

j .
However, this process of finding the dominating location by search-

ing through the set {R�sim}j of k rules is equivalent to finding
the largest of k numbers. It requires O(k) time. From Lemma 5.1,
the total number of simple dominating rules for a rule ((A1:An)
⇒ (C1:Cm)) having n antecedents is 2n-2. Therefore, finding the
simple and strict dominating locations using the complete set of
dominating rules (here k = 2n-2) is very computationally intensive.
Below, we instead demonstrate that a much smaller subset of dom-
inating association rules is sufficient for computing the dominating
locations, as stated in Theorem 2.

Theorem 2. Top Simple Dominating Rules: For a rule ((A1:An)
⇒ (C1:Cm)) having n antecedents, to find the simple dominating
location, it is necessary and sufficient to search only the (n-1)-
antecedent simple dominating rules with format (((A1:An)- Ai)⇒
(Ai∪ (C1:Cm))), called the top simple dominating rules.

Lemma 5.5. The total number of top simple dominating rules is
given by (nn−1) = n.

Theorem 3. Top Strict Dominating Rules: For a rule ((A1:An)⇒
(C1:Cm)) to find the strict dominating location, it is is necessary
and sufficient to search only the e dominating rules with format
(((A1:An)) ⇒ ((C1:Cm) ∪ Ch)), where e is the number of conse-
quent items in the dominating rules but not in (C1:Cm) and Ch is a
single item out of the set (Cm+1:Cm+e). We call them the top strict
dominating rules.

Using Theorem 2, only the top n simple dominating rules must
be collected using CollectTopSimpleDomRules method, instead of
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Figure 9: The PSpace Index.

all the 2n-2 simple dominating rules. Similarly, using Theorem 3,
only the top e strict dominating rules must be collected using the
CollectTopStrictDomRules method, where e is the number of addi-
tional consequent items in the dominating rules but not in (C1:Cm).
The overall approach is given in Algorithm 1.C. The optimizations
achieved by Theorems 2 and 3 result in significant improvements
as the offline redundancy abstraction now requires O(n2) time op-
posed to the approach utilizing all dominating rules that would re-
quire O(2n). The collection of rules enriched with redundancy in-
formation is denoted by {R+}.

5.3 The Compact PSpace Index
Using the enriched stable regions {S+} and the enriched ruleset
{R+}, the PSpace is created using the subroutine ConstructIn-
dex (Algorithm 1) and indexed by a two-layered index, called the
PSpace Index. The top level of the PSpace index facilitates the
search to locate a particular stable region given input parameters.
As such, any spatial indexing method could be utilized. In our im-
plementation, grid-based spatial indexing is utilized to partition the
PSpace into equal sized grid cells and allocate the stable regions
to their respective positions in the grid. A stable region may span
over one or more grid cells, while a grid cell is allocated at least
one stable region. The stable regions in each cell point to the core-
sponding nodes in the next level of the PSpace index. In Figure 9,
we partition PSpace into 0.1× 0.125 sized grid cells. S8 and S9 are
in the same grid cell, while S6 spans over two grid cells. For op-
timization, we reduce the number of grid cells by marking the up-
perbounds for support and confidence and indicating that no stable
region exist beyond the upperbound in PSpace. For online query
processing using the grid see Section 6. Using the proposed grid
structure, the online search for a stable region can be performed in
near constant time as shown in Section 6.

The next level of the PSpace index, namely, the region neighbor-
ship graph (R.H.S. of Figure 9), expedites the collection of rules
from neighbor regions. Each stable region forms a node in the
graph and each node is linked to its lending neighbors. As each
region may have at most two such neighbors, these links result in
a sparse directed graph of stable regions. The region neighbor-
ship graph enables us to not only locate lending neighbor regions
in near constant time, but also to produce complete rule sets in time
linear to the number of rules involved. Inside the region neigh-
borship graph, each region node consists of the enriched ruleset
unique to the region (Figure 6) along with their respective simple
and strict dominating locations. For example, node S1 in Figure
9 stores rule R1 ≡ (Y ⇒ X) as well as its dominating locations
`�sim
R1

and `�str
R1

. The PSpace index is used to efficiently process
a rich variety of online exploratory queries as shown in Section 6.

6. ONLINE QUERY PROCESSING
We now explain how the different classes of online mining queries

(Section 3.1) are processed by PARAS (Algorithm 2). The PSpace
Access module is employed to load the PSpace index P (see Sec-
tion 5.3 for index details). Depending on the query class, inter-
preted by the Query Parser, the apropriate subroutine for the query
class is invoked. If the query class is RM (or SR or RR), then the
subroutine RuleMiningQ (or StableRegionQ or RedundancyQ) is
invoked with appropriate parameter values.

Algorithm 2 Online Query Processing
Input: QueryQ
Output: RuleSet {R} or RegionSet{S}
begin
P ←− PAccess.GetIndex();
if QParser.GetQClass(Q) == RM then

RuleMiningQ(QParser.GetQRE(Q),(minsupp,minconf ),P);

else if QParser.GetQClass(Q) == SR then
StableRegionQ(qType,(minsupp,minconf ),P);

else if QParser.GetQClass(Q) == RR then
RedundancyQ(qType,(minsupp,minconf ),P);

2.A: RuleMiningQ(REFlag,(minsupp,minconf ),P)
begin
{R} ←− ∅; S ←− P .LocSearchRegion(minsupp,minconf );
{R} ←− {R} ∪ S.GetRuleSet();
neighborList←− NeighborCollector(S); /* Get all neighbors. */
for each Si ∈ neighborList do
{R} ←− {R} ∪ Si.GetRuleSet(); /* Collect RuleSets. */

if REFlag.IsTrue() then
{R} ←− RedundancyResolver({R},(minsupp,minconf ));

return {R};

2.B: StableRegionQ(qType,(minsupp,minconf ),P)
begin

if qType == Q2 then
return P .LocSearchRegion(minsupp,minconf );

else if qType == Q3 then
S ←− P .LocSearchRegion(minsupp,minconf );
return S.GetRuleSet();

else if qType == Q4 then
S ←− P .LocSearchRegion(minsupp,minconf );
return S.GetNeighborList();

return false;

2.C: RedundancyQ(qType,(minsupp,minconf ),P)
begin
{L�} ←− ∅; {R} ←− ∅;
{R} ←− StableRegionQ(Q3, (minsupp,minconf),P);
/* Iterate over rules. */
for eachRj ∈ {R} do

/* Collect Simple Dom Loc. */

L�sim ←− copyLocation(Rj .`
�sim .supp,Rj .`

�sim .conf );
{L�} ←− {L�} ∪ L�sim ;

/* Collect Strict Dom Loc. */

L�str ←− copyLocation(Rj .`
�str .supp,Rj .`

�str .conf );
{L�} ←− {L�} ∪ L�str ;

return {L�};

RuleMiningQ. Algorithm 2.A describes how the rule mining
query is processed. The LocSearchRegion method performs a loca-
tion search on the PSpace index using (minsupp,minconf ) as input
to retrieve the stable region S that contains (minsupp,minconf ). S
is enriched with its ruleset and neighbors. The NeighborCollec-
tor module recursively collects all the neighbor stable regions. The
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output ruleset {R} consists of the ruleset of region S and the rule-
sets of the lending neighbors. If REFlag is set to TRUE, the Redun-
dancyResolver (Algorithm 3) performs the inexpensive checks, as
illustrated in Figure 8, to reduce the output ruleset.

Algorithm 3 Redundancy Resolver
Input: RuleSet {R}, (minsupp,minconf )
Output: Redundancy Eliminated RuleSet {R}RE

begin
{R}RE ←− emptyset;
for eachRi ∈ {R} do

simDL←− Ri.GetSimDomLoc();
strDL←− Ri.GetStrDomLoc();
/* Ri qualifies by failing Case 1. Case 2: */
if (((minsupp ≤ simDL.supp)AND(minconf ≤
simDL.conf ))OR ((minsupp ≤ strDL.supp) AND
(minconf ≤ strDL.conf ))) then

PRINT (Ri is dominated.);

else
/* Case 3 */

{R}RE ←− {R}RE ∪Ri;

return {R}RE ;

The response time for the rule mining query consists of three
components, namely, Cost(LocSearchRegion) + Cost(Neighbor Col-
lection) + Cost(Redundancy Resolution). Our PSpace index is an
in-memory structure that compactly represents all the stable re-
gions enriched with rulesets and neighbors. In case the data ex-
ceeds the memory, disk space is utilized for extra storage. The
cost for a location search on the grid structure of the PSpace index
is given as Cost(LocSearchRegion) = O(1).As illustrated in Fig-
ure 9, by converting input parameters (0.15,0.2) into offsets, the
appropriate cell can be found in constant time and the stable re-
gion (here, S5) is retrieved. For neighbor collection on the sparse
directed graph of stable regions a depth first search (DFS) is re-
quired starting at the node containing (minsupp,minconf ). The time
complexity of DFS is O(|V| + |E|). In our case, E ≤ (2 × V) as
each vertex has a fanout of at most two edges, thus, Cost(Neighbor
Collection) =O(|V|). Further, assuming uniform distribution of re-
gions in the 2-D space, the number of stable regions that lie above
(minsupp,minconf ) is denoted by V = {NS× (1 - minsupp) × (1 -
minconf )}, where NS is the number of stable regions. For very low
(minsupp,minconf ) input, all NS stable regions must be collected.
If the Intermediate set of Rules {R} input to the redundancy res-
olution method contains a total of NIR rules, the time required for
redundancy resolution is [NIR× CRR], where CRR is the constant
cost of redundancy checking over a single candidate rule (Algo. 3).
If the PSpace index requires secondary storage such that both grid
cells and stable regions are stored on disk, additional costs for disk
access are added into the costs of location search and neighbor col-
lection. Redundancy resolution can still be performed in-memory
over the retrieved stable regions.

StableRegionQ. Algorithm 2.B describes how the three stable
region queries are processed. All three stable region query types
invoke the LocSearchRegion method to retrieve the stable region
containing (minsupp,minconf ). Query type Q2 simply returns sta-
ble region S as output. As each stable region S is enriched with
its ruleset, the GetRuleSet method in Q3 returns the ruleset of S.
Similarly, for Q4, GetNeighborList returns the neighbor list for S.

Similar to query Q1, each of the stable region queries incurs
the location search cost (Cost(LocSearchRegion)). The ruleset for
Q3 and the neighbor list for Q4 can be retrieved in near constant
time as each stable region is enriched with that information. Thus,
Cost(Q2)=Cost(Q3)=Cost(Q4)= Cost(LocSearchRegion) + CSRQ,

where CSRQ is the constant cost of accessing the rules and/or neigh-
bors of a stable region.

RedundancyQ. Algorithm 2.C describes how the redundancy
query is processed. The dominating stable regions are desired. For
this query the StableRegionQ subroutine is invoked with query type
Q3, (minsupp,minconf ) and P as input. For each rule Rj in the
returned ruleset {R}, the simple and strict dominating locations of
Rj are retrieved to collect the output stable regions {S�}.

The response time of redundancy query Q5 is given by Cost(Q5)
= [ Cost(LocSearchRegion) + NR ] =O(NR). Here, NR denotes the
number of rules in the stable region containing (minsupp,minconf ).
For each rule Rj , its simple and strict dominating locations are
retrieved in near constant time.

7. EXPERIMENTAL EVALUATION
Experimental Setup. We conducted experiments on a Windows

7 machine with Intel(R) Xeon(R) CPU X3440@2.53 GHz proces-
sor and 8 GB of RAM. All algorithms were coded in C++ using
Visual Studio 2010.

Experimental Datasets. We evaluated the performance of the
PARAS system and its competitors using synthetic and real dataset
benchmarks. We used two synthetic datasets generated by the IBM
Quest data generator [2] modeling transactions in a retail store,
T10I4D100k (T100k) and T10I4D5000k(T5000k). T5000k has 5
million transactions with 1000 items. On average, each transaction
has 10 items. The data file size is about 200 MB. We also tested the
Webdocs dataset from FIMI Repository [14]. The webdocs dataset
captures real data of spidered web html documents. Webdocs has
1.7 million transactions with 5,267,656 distinct items. The maxi-
mal length of a transaction is 71472. The data file size is about 1.5
GB. The results for two additional real datasets from the UC Irvine
Machine Learning Repository [3], namely, chess and mushroom are
available in the technical report [13] due to space constraints in this
paper. Thus, these diverse datasets are suitable for evaluating the
scalability of PARAS and its competitors.

Alternate State-of-the-art Techniques. While we had difficulty
in executing the original rule mining algorithms in Apriori [2],
Eclat [21] and FP-growth [10] on the large data sets, improved C++
implementations of these algorithms available in [4] run success-
fully. We evaluated the performance of online mining queries with
and without redundancy resolution. For mining requests without
redundancy resolution, the performance of PARAS is compared
against the original Apriori, Eclat, FP-growth from [4]. For re-
quests with redundancy resolution, we compared PARAS (which
produces non-redundant rules) against the above three online min-
ing algorithms by adding online redundancy resolution code such
that the results produced by all algorithms are comparable (iden-
tical). The algorithms enhanced with redundancy resolution (RR)
are henceforth referred to as AprioriRR, EclatRR and FPgrowthRR.
Next, we also compared PARAS against the POQM solution [1].
As it involves an offline step to generate and pre-store frequent
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Figure 10: Preprocessing Times for All Three Datasets.
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(a) minconf = 0.60 (b) minsupp = 0.0004 (c) minconf = 0.60 (d) minsupp = 0.0004
Figure 11: Avg. Online Query Processing Times (T100k) [Rules w Redundancy Resolution in (a),(b) and w/o in (c),(d)].

Dataset AdjLatticeRR PARAS
(supp) (supp, conf)

T100k (0.0001) (0.0001, 0.1)
T5000k (0.0003) (0.0003, 0.15)
Webdocs (0.08) (0.08, 0.30)

Table 1: Thresholds for Indexes

Dataset Varying minsupp Varying minconf
({minsupp},minconf ) (minsupp,{minconf})

T100k ({0.0004, 0.0006, 0.0008, 0.0010}, 0.60) (0.0004. {0.20, 0.40, 0.60, 0.80})
T5000k ({0.0005, 0.0010, 0.0015, 0.0020}, 0.60) (0.0010, {0.20, 0.40, 0.60, 0.80})
Webdocs ({0.10, 0.15, 0.20, 0.25}, 0.60) (0.15, {0.45, 0.60, 0.75, 0.90})

Table 2: Online Query Settings

itemsets within an adjacency lattice (Sec. 1.2), we call it AdjLat-
ticeRR. The online step generates the rules with redundancy reso-
lution (pseudocode in [1]). As PARAS and the other mining tech-
niques adopt the redundancy definitions in AdjLatticeRR [1], for
each mining request, all five approaches produce identical results.

Experimental Methodologies. Performance measures are:
• Offline Preprocessing Times. We measure the total offline pre-
processing times for AdjLatticeRR and PARAS. As AprioriRR,
EclatRR and FPgrowthRR do not involve any preprocessing, they
are excluded.
• Mean Online Processing Times. We measure the online pro-
cessing time for a query averaged over several runs, for all five
methods. We varied the minsupp and minconf query input parame-
ters in the range [0,1].
• Index Sizes. We compare the sizes of the preprocessed informa-
tion. AprioriRR, EclatRR, and FPgrowthRR are fully online tech-
niques without any preprocessing involved. Thus, we compared
the size of the adjacency lattice in AdjLatticeRR (i.e., # of frequent
itemsets) and the PSpace index size in PARAS (i.e., # of stable
regions) against the # of associations. We studied the impact of
varying the primary support threshold on these index sizes.

7.1 Evaluation of Preprocessing Times
We first compare the preprocessing times for PARAS and Ad-

jLatticeRR. AdjLatticeRR generates the frequent itemsets offline,
whereas offline preprocessing in PARAS involves the four steps of
frequent itemset generation, rule&region generation, redundancy
abstraction and PSpace index creation. Among these, for each
dataset, frequent itemset generation takes the longest preprocessing
time for both PARAS and AdjLatticeRR (Fig. 10). This confirms
prior works [1, 10, 15] that rule generation is more efficient com-
pared to frequent itemset generation. However, we now show that
if redundancy resolution is required, the overall online processing
time becomes significantly higher. In PARAS, while redundancy
abstraction at the offline step adds offline overhead, it significantly
reduces the online redundancy resolution costs (as we will see in
Sec. 7.2). In Fig. 10, T100k and T5000k datasets (left y axis),
redundancy abstraction has higher overhead than rule&region gen-
eration and PSpace index creation. However, for Webdocs (right y
axis), compared with the cost of frequent itemset generation (60k+
seconds), the costs of the other steps, namely, rule&region genera-
tion, redundancy abstraction and PSpace index creation are negli-
gible. Overall the three additional preprocessing steps in PARAS
require no more than 10% extra time than AdjLatticeRR. Since they
are done only once offline, acceptable in practice.

7.2 Evaluation of Online Processing Time
Next, we varied parameters minsupp or minconf (x-axis) and

compared the online processing times (y-axis in log scale) of the
alternative techniques. Table 1 (column two) lists for each tested
dataset, the primary support threshold used to prestore frequent
itemsets in the adjacency lattice. Column three lists the primary
support and confidence thresholds used for populating the PSpace
index of PARAS. We performed two sets of experiments.

7.2.1. Evaluation Involving Redundancy Resolution. First,
we compare AprioriRR, AdjLatticeRR, EclatRR, FPgrowthRR and
PARAS for user queries involving redundancy resolution. For query
Q1 in PARAS, we set REFlag = TRUE. The query processing times
are averaged over several runs of each query. To determine the ef-
fect of varying minsupp, we conducted several experiments by fix-
ing minconf to a constant value and varying just the minsupp value.

7.2.1.A. Impact of Varying minsupp. Table 2 (column one) lists
the fixed minconf and different minsupp values used for the three
datasets. Figs. 11(a), 12(a) and 13(a) illustrate the query processing
times for T100k, T5000k and Webdocs datasets, respectively. For
all five techniques, the query processing time decreased with in-
crease in the minsupp. As minsupp increases more rules get filtered
- producing fewer rules as output. For AprioriRR, EclatRR, FP-
growthRR and AdjLatticeRR, a smaller number of frequent item-
sets are processed for rule generation. For PARAS fewer stable
regions are considered for composing the output ruleset and fewer
rules require redundancy resolution.

Overall, PARAS consistently performed several orders of mag-
nitude better than the four competitors. In particular, PARAS out-
performed AprioriRR by 4, 5 and 5 orders, AdjLatticeRR by 4, 4
and 5 orders, EclatRR by 4, 4 and 4 orders and FPgrowthRR by 4, 5
and 5 orders for T100k, T5000k and Webdocs datasets, respectively.

7.2.1.B Impact of Varying minconf. Next, we fixed the min-
supp to a constant value and measured query processing times by
varying minconf values (Table 2, column two). Figs. 11(b), 12(b)
and 13(b) depict the processing times for T100k, T5000k and Web-
docs datasets, respectively. The trend of the five alternate algo-
rithms is similar as before. PARAS outperformes the four com-
petitor approaches by several orders of magnitude.

Overall, PARAS consistently outperformed AprioriRR by 3, 4
and 5 orders, AdjLatticeRR by 3, 4 and 5 orders, EclatRR by 4,
3 and 4 orders and FPgrowthRR by 4, 4 and 5 orders for T100k,
T5000k and Webdocs datasets, respectively. We note that the rate
of decrease (slope) of the query processing times with the increase
in minconf is not as steep as the slope with increase in minsupp.
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(a) minconf = 0.60 (b) minsupp = 0.0010 (c) minconf = 0.60 (d) minsupp = 0.0010
Figure 12: Avg. Online Query Processing Times (T5000k) [Rules w Redundancy Resolution in (a),(b) and w/o in (c),(d)].
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(a) minconf = 0.60 (b) minsupp = 0.0004 (c) minconf = 0.60 (d) minsupp = 0.0004
Figure 13: Avg. Online Query Processing Times (Webdocs) [Rules w Redundancy Resolution in (a),(b) and w/o in (c),(d)].

7.2.1.C Evaluation of Handling Multiple Queries. We now
compare the processing times for multiple successive queries. Fig.
14 depicts the chart for the Webdocs dataset with a number of suc-
cessive 2, 10, 20 and 50 queries (x-axis). The total processing time
is show on y-axis. A diversity of queries are generated by randomly
selecting minsupp values between 0.10 and 0.30 and minconf val-
ues between 0.10 and 0.90, respectively. AprioriRR performs all
steps at query-time. AdjLatticeRR only performs rule generation
with redundancy resolution at query-time. Thus it outperforms
AprioriRR. PARAS only requires a look-up in the PSpace index
and performs the inexpensive redundancy resolution using the dom-
inating locations prestored within the PSpace index. Thus, PARAS
delivers instantaneous responses even for large workloads with 50
queries or more. In Figure 14, for the case of two successive queries,
all five approaches performed reasonably well. As the number of
queries increases, the gains of using PARAS became more ap-
parent. For 50 successive queries, PARAS took less than 1 sec-
ond whereas AprioriRR, AdjLatticeRR, EclatRR and FPgrowthRR
used approximately 38, 21, 2 and 26 hours, respectively.

7.2.2. Evaluation of Queries without Redundancy Resolu-
tion. Next, we considered user requests without redundancy reso-
lution. We compared Apriori, Eclat and FPgrowth against PARAS
by setting the Boolean REFlag to FALSE. AdjLatticeRR cannot
be compared as it only produces non-redundant association rules.
Similar as above, we conducted separate experiments by fixing one
of the query parameters and varying the other as discussed below.

7.2.2.A. Impact of Varying minsupp. Figures 11(c), 12(c) and
13(c) depict charts for the three tested datasets. PARAS outper-
formed Apriori by 4, 5 and 5 orders, Eclat by 3, 4 and 3 orders,
FPgrowth by 4, 4 and 5 orders for T100k, T5000k and Webdocs
datasets, respectively.

7.2.2.B. Impact of Varying minconf. Figures 11(d), 12(d) and
13(d) depict charts for the three tested datasets. PARAS outper-
formed Apriori by 3, 4 and 5 orders, Eclat by 2, 3 and 3 orders,
FPgrowth by 3, 4 and 5 orders for T100k, T5000k and Webdocs
datasets, respectively.

7.3 Evaluation of Index Sizes
We compare the sizes of the prestored index structures used in

AdjLatticeRR and PARAS. AprioriRR, EclatRR and FPgrowthRR
are skipped as they are entirely online. For AdjLatticeRR, the ad-
jacency lattice size is determined by the number of frequent item-

sets, while PSpace index size by the number of stable regions. The
actual index sizes (in say, MB) can be estimated by multiplying
the number of instances (itemsets or stable regions) with the av-
erage space required per instance. The lower the primary support
threshold, the larger the number of frequent itemsets stored in the
adjacency lattice. Similarly, the choices of primary support and
confidence thresholds determine the number of stable regions and
rules stored within the PSpace index.

In Figs. 15.(a),(b),(c), for the three datasets, we examine how
the numbers (y-axis) of frequent itemsets, stable regions and asso-
ciation rules change with respect to changes in the primary support
[1] threshold values (x-axis). The primary support thresholds are in
reverse order to show how the index sizes increase as the primary
support threshold is relaxed to lower values.

For T100k (Fig. 15(a)), as the primary support changes from
0.0010 to 0.0004, the numbers of stable regions remain unchanged
or at best increase slightly whereas the numbers of frequent item-
sets and rules increase gradually. For T5000k (Figure 15(b)), the
numbers of frequent itemsets, stable regions and rules increase when
primary support changes from 0.0020 to 0.0005. For Webdocs (Fig-
ure 15(c)), the primary confidence is fixed at 0.30. the numbers of
frequent itemsets, stable regions and rules increase gradually with
the relaxation in primary support from 0.25 to 0.15, whereas the
change is rapid for primary support 0.15 and 0.10. Overall, our
PSpace index is slightly larger than the lattice of AdjLatticeRR.

Experimental Conclusions. The main findings are:
• PARAS requires about 10% extra offline preprocessing time com-
pared with AdjLatticeRR, which is acceptable.
• For a large diversity of online queries, PARAS consistently out-
performs the state-of-the-art competitors from the literature by 2 to
5 orders of magnitude over the tested datasets.
• The benefits of PARAS are more apparent when multiple succes-
sive queries are processed. As PARAS processes several queries
within a second, thus staying within the needs of human attention
span for interactive exploration. On the other hand, the competitors
take several hours for the same.
• The PSpace index size of PARAS is on average 3.3× the adja-
cency lattice of AdjLatticeRR. The modern costs of memory makes
this tradeoff practical given the huge CPU savings.
• Overall, the gains of several orders of magnitude when using
PARAS for online processing outweigh the one-time minimal of-
fline preprocessing time and storage requirements.
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Figure 14: Multi-Query Costs.
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Figure 15: Size of the PSpace Index.

8. RELATED WORK
Association Rule Mining. Online mining techniques, [1, 11, 12]

apply the principles of POQM only partially such that they prestore
only intermediate values, namely, the frequent itemsets, and not fi-
nal results, namely, the rules. Adjacency lattice [1] and FP-tree [10]
are two commonly used structures for prestoring itemsets. Aggar-
wal et al. [1] also introduce the concept of redundancy among rules
to reduce the number of rules in the query output. They avoid the
prohibitive costs of frequent itemset generation by prestoring item-
sets. At query-time, they perform rule generation with redundancy
resolution. This combined online step can significantly increase the
query response time. In contrast, we explore the space of the query
parameters to capture the distribution of rules within the space, in-
stead of prestoring the itemsets.

Interestingness Measures as Parameters. [17, 19] identify the
importance of analyzing the interestingness measures of rules. Han
et al. [19] compare different null-invariant measures and provide
insights into similarities and differences among them. The interest-
ingness preprocessing step [17] reduces the number of potentially
interesting rules that must undergo interestingness checks. Nei-
ther of these works tackle online mining through precomputation.
In contrast, we explore the space of interestingness parameters for
prestoring data mining results to facilitate fast online mining.

Parameter Space Exploration. Prior works have explored the
space of parameters for handling parameterized database queries
[6] and tuning database configuration parameters [7]. Most data
mining queries are compute-intensive and parameterized. Thus, we
explore the parameter space for data mining, i.e., in particular, for
online association mining.

9. CONCLUSION
We present our PARAS framework for fast online association

mining. We propose a novel parameter space model for prestor-
ing rules such that a near real-time performance is guaranteed for
online mining queries. In the context of the parameter space, we
achieve surprisingly compact redundancy abstraction at preprocess-
ing time, such that both space complexity of our proposed PSpace
index and the online query processing cost are greatly reduced. In
a variety of tested cases, PARAS outperforms the four competitor
techniques, each by several orders of magnitude.
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