
Answering Regular PathQueries through Exemplars
Komal Chauhan

Department of CSE, IIT Delhi
New Delhi, India

komalc1612@gmail.com

Kartik Jain
Department of CSE, IIT Delhi

New Delhi, India
jainkartik203@gmail.com

Sayan Ranu
Department of CSE, IIT Delhi

New Delhi, India
sayanranu@cse.iitd.ac.in

Srikanta Bedathur
Department of CSE, IIT Delhi

New Delhi, India
srikanta@cse.iitd.ac.in

Amitabha Bagchi
Department of CSE, IIT Delhi

New Delhi, India
bagchi@cse.iitd.ac.in

ABSTRACT

Regular simple path query (RPQ) is one of the fundamental opera-
tors in graph analytics. In an RPQ, the input is a graph, a source
node and a regular expression. The goal is to identify all nodes
that are connected to the source through a simple path whose
label sequence satisfies the given regular expression. The regular
expression acts as a formal specification of the search space that
is of interest to the user. Although regular expressions have high
expressive power, they act as barrier to non-technical users. Fur-
thermore, to fully realize the power of regular expressions, the
user must be familiar with the domain of the graph dataset. In
this study, we address this bottleneck by bridging RPQs with the
query-by-example paradigm. More specifically, we ask the user for
an exemplar pair that characterizes the paths of interest, and the
regular expression is automatically inferred from this exemplar.
This novel problem introduces several new challenges. How do we
infer the regex? Given that answering RPQs is NP-hard, how do we
scale to large graphs?We address these challenges through a unique
combination of Biermann and Feldman’s algorithmwith NFA-guided

random walks with restarts. Extensive experiments on multiple real,
million-scale datasets establish that RQuBE is at least 3 orders of
magnitude faster than baseline strategies with an average accuracy
in excess of 90%.

PVLDB Reference Format:

Komal Chauhan, Kartik Jain, Sayan Ranu, Srikanta Bedathur,
and Amitabha Bagchi. Answering Regular Path Queries through Exemplars.
PVLDB, 15(2): 299 - 311, 2022.
doi:10.14778/3489496.3489510

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/idea-iitd/RQuBE.

1 INTRODUCTION AND RELATEDWORK

Regular simple path query (RPQ) on labelled graphs is one of the
core operators in graph analytics. In an RPQ, the input is a source
node, a labelled graph, and a regular expression. The goal is to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.
doi:10.14778/3489496.3489510

identify all nodes that are reachable from the source via a path
whose label sequence conforms to the regular expression.

In this work, we only consider simple paths (i.e., acyclic except
the relaxation that the source and the destinations nodes may be
the same). Simplicity is desired since allowing cycles makes the set
of all possible paths infinite, and thus answering both the enumera-
tion and decision versions of RPQs become infeasible. Answering
RPQs under path simplicity is NP-hard [23]. Among graph query
languages, Cypher from Neo4j only considers simple paths [21].
G-Core restricts the search space to only shortest paths [3] to over-
come the computational bottleneck. While shortest paths are simple
by definition, it covers a small and restricted subset of all simple
paths, and therefore, may return incorrect results. For example,
there may be𝑚 paths that have an edge larger than the shortest
path but all satisfy the regex (but the shortest does not). SPARQL
1.1 uses the notion of property paths, which extends RPQ semantics,
but allows cycles [33]. Thus, cycles need to be separately han-
dled and a suitable termination condition needs to be enforced (Ex.
bounding the number of repeated cycles). Without cycle-detection,
property-path evaluation is #𝑃-complete [5]. Similar to SPARQL 1.1,
PGQL by Oracle also allows cycles and hence suffers from the same
limitations [42]. Recent ISO/IEC SC32/WG3:BNE-023 working doc-
ument towards standardizing declarative graph query languages,
GQL (https://www.gqlstandards.org), offers three different path eli-
gibility modifiers – acyclic, simple, trail (only node repetitions are
allowed)– stating that in practice all these modifiers are necessary
in different settings. The methodology we propose in this paper is
easily extensible to both acyclic and trail. Owing to NP-hardness
of (simple) RPQs, several index structures and heuristics have been
proposed in the literature [13, 16, 29, 31, 36, 38, 41, 45, 47]. While
impressive progress has been made on scalability, a hidden assump-
tion across all algorithms for answering RPQs is that the user is
technically knowledgeable enough to formally express a regular
expression. This assumption prohibits democratization of RPQs to
the general public. Even for technical users, a precise formulation
of the regular expression requires prior knowledge of the data set.
This requirement acts as a barrier since real networks often contain
thousands of labels and millions of nodes and edges. In addition,
the meaning of these labels may be opaque. As an example, in the
Wikidata knowledge graph, the edges are labeled with tags such as
“P127” and “P128” [44]. The user needs to separately investigate
the semantic meanings of these labels (“P127” encodes “owned by”,
while “P128” encodes “regulates” from molecular biology). The goal

299

https://doi.org/10.14778/3489496.3489510
https://github.com/idea-iitd/RQuBE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489510
https://www.gqlstandards.org
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Illustration of regular path queries by example. In

this figure,we depict a PPI in the formof a labeled graph [12]

.

of our work is to remove the barrier imposed by regular expressions
without compromising on their expressive power. Towards this end,
we leverage the query-by-example [46] paradigm.

QBE for RPQs: Instead of providing a source node and a regular
expression (regex), in the QBE paradigm, the user provides an
exemplar source-destination pair. The exemplar pair acts as a proxy
for the regex constraint and communicates to the query evaluation
engine the constraints in a more user-friendly manner. However,
to make sense of this query, the query evaluation engine needs to
execute the following tasks: (1) Infer the regular expression that
characterizes the paths between the source and the destination, and
(2) identify nodes that are connected in a similar manner to the
source as characterized by the regex inferred from the exemplar.

Let us consider a concrete use-case. Fig. 1 shows a protein-protein
interaction network (PPI). Proteins rarely act alone in regulating
biological functions. Rather, multiple proteins act jointly to form the
interactome of an organism [11, 25, 26, 32, 35]. An aberrant protein
may induce a molecular cascade through the protein pathways
and disturb the functioning of other proteins. This, in turn, may
affect higher level biological functions that depend on the affected
proteins. The PPI encodes these pathways. Within this context, let
us assume, a biologist knows that protein 𝑣1 is acting abnormally
and is also affecting the functioning of 𝑣7. The biologist now wishes
to identify other proteins that are connected in a similar manner
to 𝑣1 and, therefore, likely to get similarly affected. To this end the
biologist submits (𝑣1, 𝑣7) as an exemplar pair. There are two simple
paths from 𝑣1 to 𝑣7, which are summarized by the regex (𝐴+𝐵). The
query engine should now identify other nodes that are reachable
from 𝑣1 via (simple) paths satisfying (𝐴+𝐵). With this constraint,
two other candidates emerge; 𝑣8 and 𝑣9. While all paths to 𝑣8 are
accepted by (𝐴+𝐵), two out of the three paths from 𝑣1 to 𝑣9 satisfy
(𝐴+𝐵). The biologist may then further investigate 𝑣8 and 𝑣9.

In this paper, we enable answering of RPQs via exemplars through
a novel technique called RQuBE (Regular path Queries based on
exemplars). Our key contributions are as follows.
• We design a novel mechanism to infer the regex that best fits the
paths between the exemplar pair. This goal is achieved by learn-
ing a tight non-deterministic finite state automaton (NFA) that
accepts the label sequences in the paths between the exemplar.
• Answering RPQs is NP-hard [23]. To overcome this computa-
tional bottleneck, we develop a sampling-based approach to esti-
mate the final answer set. Our sampling algorithm is powered by
the novel concept of NFA-centrality (§ 3.2). We theoretically char-
acterize the proposed sampling strategy and justify its accuracy

qo
A

A

B qfq1

Figure 2: The NFA that accepts 𝐴+𝐵.

(§ 3.3). Owing to a sampling-based strategy, RQuBE is index-free
and hence easily adapts to updates in the underlying network.
• Extensive experiments across several million-scale, real datasets
establish that RQuBE is accurate and at least 3 orders of magni-
tude faster than baseline strategies (§ 4).
Our work is closest in spirit to Bonifati et al. [9], although tech-

nically very different. While in RQuBE we focus on deriving a
compact regular expression that best describes the set of all simple
paths between the source and example target node, [9] is designed
to work with a set of +ve and -ve example nodes such that there
exists at least one regex-satisfying path between each positive pair,
and no regex satisfying path between each negative pair.

2 PROBLEM FORMULATION

Definition 1 (Graph). A labeled graph (directed or undirected)

is a triple G = (V, E,L), whereV is the set of nodes, E ⊆ V ×V is

the set of edges, and L is a finite non-empty set of labels over nodes

and/or edges in the graph.

We use the notations L(𝑣𝑖) and L(𝑒𝑖) to denote the labels in
node 𝑣𝑖 and edge 𝑒𝑖 respectively.

Computational Model: We assume that graph G is stored in

memory in the form of an adjacency list. Each node is assigned an
ID in the range [1, |V|]. Hence, accessing a specific node in the
graph consumes 𝑂 (1) time. Furthermore, the adjacency list stores
the node IDs of each outgoing neighbor and the associated edge
label in the form of a hashmap. Hence, accessing an outgoing edge
or its label also consume 𝑂 (1) time.

Definition 2 (Path). A path 𝑃 in a graph G is a sequence of

distinct vertices ⟨𝑣1, 𝑣2, · · · , 𝑣𝑛⟩ such that∀𝑖, 1 ≤ 𝑖 ≤ 𝑛−1, (𝑣𝑖 , 𝑣𝑖+1) ∈
E . Note that paths with no vertex repeated are also referred to as

simple paths. In this paper, we only consider simple paths.

We use the notation 𝑃 .𝑣𝑖 and 𝑃 .𝑒𝑖 to denote the 𝑖𝑡ℎ node and edge
in path 𝑃 respectively. 𝑃 ⊆ 𝑃 ′ denotes that path 𝑃 is a sub-path of
another path 𝑃 ′. The label sequence of a path 𝑃 is defined as L(𝑃) =
⟨L(𝑃 .𝑣1),L(𝑃 .𝑒1),L(𝑃 .𝑣2), · · · ,L(𝑃 .𝑣𝑘−1),L(𝑃 .𝑒𝑘−1),L(𝑃 .𝑣𝑘)⟩.

Definition 3 (Regular Expression (Regex)). Let L be a set

of labels not containing the symbols {(,), ∅} and let 𝜖 be a special

symbol not in L denoting the empty string. A regular expression C
over L is defined as follows:

• 𝜖 , ∅ (the empty set), and each label 𝑙 ∈ L are regular expressions.

• If 𝐴 and 𝐵 are regular expressions, then (𝐴|𝐵), (𝐴𝐵) and (𝐴∗) are
regular expressions.

• Nothing else is a regular expression.

Definition 4 (Non-deterministic Finite State Automaton
(NFA)). An NFAM is a five-tuple (𝑄, Σ, 𝑓 ,𝑄𝑜 , 𝐹) where:
• 𝑄 is a finite non-empty set of states

• Σ is a finite non-empty set of input symbols

• 𝑓 is a mapping Q × Σ→ 2𝑄 (the transition function)

300

• 𝑄𝑜 ⊆ 𝑄 is the set of initial states

• 𝐹 ⊆ 𝑄 is the set of final states

Any regular expression C can be converted into an equivalent
NFAM [39]. For example, the NFA of 𝐴+𝐵 is shown in Fig. 2.

A label sequence 𝑆 is accepted byM if we reach a final state
inM through transitions on the labels of 𝑆 . We use this idea to
formally define path acceptance.

Definition 5 (Path Acceptance). A path 𝑃 is accepted by

NFAM = (𝑄,L, 𝑓 ,𝑄𝑜 , 𝐹) if L(𝑃) is accepted byM.M accepts

label sequence L(𝑃) = ⟨𝑎1, · · · , 𝑎𝑘 ⟩ if there exists a sequence of states
⟨𝑞0, · · · , 𝑞𝑘 ⟩ such that:

(1) 𝑞0 ∈ 𝑄𝑜

(2) 𝑞𝑖+1 ∈ 𝑓 (𝑞𝑖 , 𝑎𝑖+1) ∀i, 0 ≤ 𝑖 < 𝑘

(3) 𝑞𝑘 ∈ 𝐹

Definition 6 (Node pair acceptance). Let P be the set of all
simple paths from 𝑢 to 𝑣 . We say the pair 𝑢, 𝑣 is accepted byM if

every path from 𝑢 to 𝑣 is accepted by M, i.e., 𝐴(M, 𝑢, 𝑣) = 1 iff

∀𝑃 ∈ P, 𝐴(M, 𝑃) = 1.

As discussed in § 1, there may be multiple NFAs that accept the
same set of paths. At this juncture, we assume there is an oracle

that constructs the optimal NFAM∗ with respect to a pair (𝑢, 𝑣).
The definition and algorithm to construct the optimal NFA will be
discussed in § 3.1.

Given any pair of nodes (𝑢, 𝑣) and an NFAM, we also define
the notions of support and confidence.

Definition 7 (Support). Let P be the set of all simple paths

from 𝑢 to 𝑣 . The support of (𝑢, 𝑣) with respect to an NFAM is the

number of connecting paths accepted byM. Mathematically,

𝑆𝑢𝑝 (M, 𝑢, 𝑣) = |{𝑃 | 𝑃 ∈ P, 𝐴(M, 𝑃) = 1}| (1)

Definition 8 (Confidence). The confidence of (𝑢, 𝑣) with re-

spect toM is the proportion of connecting paths accepted byM.

𝐶𝑜𝑛𝑓 (M, 𝑢, 𝑣) = 𝑆𝑢𝑝 (M, 𝑢, 𝑣)
| P | (2)

Problem 1 (RPQ based on exemplars (RQuBE)). Given a

graph G = (V, E,L), an exemplar source-destination node pair

(𝑠, 𝑡), a support threshold 𝜃 , and 𝑘 , identify the top-𝑘 node pairs of the

form (𝑠, 𝑣), 𝑣 ∈ V , with the highest confidence values 𝑐𝑜𝑛𝑓 (M∗, 𝑠, 𝑣),
such that 𝑆𝑢𝑝 (M∗, 𝑠, 𝑣) ≥ 𝜃 . Here,M∗ denotes the optimal accepting

NFA for exemplar pair (𝑠, 𝑡).

3 RQUBE

As discussed earlier, RQuBE processes the input in a two-phases:
(1) Infer the optimal NFA corresponding to the exemplar and (2)
Rank nodes based on their confidence with respect to the inferred
NFA. For scalability, we split the second phase into two subphases:
2a) Reduce the search space by identifying promising candidate
nodes and 2b) Rank the candidates.

3.1 Phase 1: Inferring the optimal NFAM∗
Let P be the set of all paths from node 𝑠 to node 𝑡 in the input
graph G , where (𝑠, 𝑡) is the exemplar pair. To construct an NFA
that accepts all paths in P, we use the Biermann and Feldman’s (BF)

Table 1: Illustrates

the concept of ℓ-

tails with respect

to the example de-

picted in Fig. 1. Here,

𝑆 = {𝐴𝐵,𝐴𝐴𝐵 }.

Prefix 1-Tail 2-Tail

𝜆 ∅ {𝐴𝐵 }
𝐴 {𝐵 } {𝐵,𝐴𝐵 }
𝐴𝐴 {𝐵 } {𝐵 }
𝐴𝐵 {𝜆} {𝜆}
𝐴𝐴𝐵 {𝜆} {𝜆}

M(S,1)

{B}A

A
B

M(S,2)

 {B, AB}A

A

{AB}

{B}
A B

B

(a) (b) Trie

Figure 3: (a)M(𝑆, 1) and M(𝑆, 2) as
formed by BF. (b) Trie constructed

for 𝑆 = {𝐴𝐵,𝐴𝐴𝐵} at ℓ = 1.

algorithm [7]. In order to make the paper self-contained we present
the BF algorithm here.

The BF algorithm takes a set of finite strings (sequences) 𝑆 ⊆ Σ∗

as input, where Σ is the alphabet set. Additionally, it requires an
integer parameter ℓ ≥ 0. BF returns an NFA,M(𝑆, ℓ) that accepts
all strings in 𝑆 . When applied to our problem, 𝑆 = {L(𝑃) | 𝑃 ∈ P},
and Σ = L. From 𝑆 , BF computes the the set of ℓ-suffixes.

Definition 9 (ℓ-suffix). The ℓ-suffix, 𝑆ℓ , of 𝑆 is the set of the

suffixes of strings in 𝑆 that are at most ℓ in length. More formally,

𝑆ℓ = {𝑤 ∈ L∗ | ∃𝑥 ∈ 𝑆 : 𝑤 is a suffix of 𝑥, |𝑤 | ≤ ℓ}.

Note that 𝑆ℓ includes the empty string 𝜆.

Example 1. Revisiting the example in Fig. 1, 𝑆 = {𝐴𝐵,𝐴𝐴𝐵}.
Hence, 𝑆1 = {𝜆, 𝐵}.

Let 𝑆𝑝 denote the set of all prefixes of strings in 𝑆 . BF next
computes the ℓ-tails of each string in 𝑆𝑝 .

Definition 10 (ℓ-tail). For any string 𝑥 ∈ L∗, its ℓ-tail w.r.t. 𝑆 ,
denoted 𝑡𝑎𝑖𝑙 (𝑥, 𝑆, ℓ), is the set of strings𝑤 ∈ 𝑆ℓ such that 𝑥 ⊕𝑤 ∈ 𝑆 .
⊕ denotes the concatenation of two strings.

Note that, for each 𝑥 ∈ 𝑆𝑝 , 𝑡𝑎𝑖𝑙 (𝑥, 𝑆, ℓ) ⊆ 𝑆ℓ . Further, 𝑡𝑎𝑖𝑙 (𝑥, 𝑆, ℓ)
could also be the empty set.

Example 2. The 1-tail and 2-tail of each prefix corresponding to

𝑆 = {𝐴𝐵,𝐴𝐴𝐵} of Fig. 1 is shown in Table 1.

We are now ready to defineM(𝑆, ℓ) on alphabet L.
(1) The set of states: 𝑄 = {𝑡𝑎𝑖𝑙 (𝑥, 𝑆, ℓ) | 𝑥 ∈ 𝑆𝑝 } is the set of ℓ-tails

of the prefixes of the strings in 𝑆 . Note that for a 𝑞 ∈ 𝑄 , there
may be more than one 𝑥 whose ℓ-tail is 𝑞.

(2) Transitions: For a symbol 𝛼 ∈ Σ, we place a transition between
two states 𝑞 and 𝑞′ if there is a string𝑤 such that 𝑞 is the ℓ-tail
of𝑤 and 𝑞′ is the ℓ-tail of𝑤 ⊕ 𝛼 .

(3) Initial state: The initial state is 𝑞𝑜 = 𝑡𝑎𝑖𝑙 (𝜆, 𝑆, ℓ), i.e., the ℓ-tail
of the empty string.

(4) Final states: 𝐹 = {𝑞 ∈ 𝑄 | 𝜆 ∈ 𝑞}, i.e., a state 𝑞 is final if it
contains the empty string 𝜆.

Example 3. We will continue from Ex. 2. Fig. 3a shows the struc-

tures ofM(𝑆, 1) andM(𝑆, 2). As visible in Table 1, there are three

unique 1-tails and hence, we have three states inM(𝑆, 1). Note that
M(𝑆, 1) is identical to Fig. 2 and accepts the regex 𝐴+𝐵.

A rigorous proof of correctness is available in [7].

301

Theorem 1 ([7]). The language accepted byM(𝑆, ℓ + 1)) is a
subset of the language accepted byM(𝑆, ℓ).

Theorem 2 ([7]). If we set ℓ ≥ max∀𝑠∈𝑆 |𝑠 |, i.e., the length of

the longest string in 𝑆 , thenM(𝑆, ℓ) accepts exactly 𝑆 . On the other

hand, ℓ = 0 degenerates to the regex L∗, i.e., it accepts all strings.

The following corollary follows from Thm. 2.

Corollary 1. Let 𝑆M(𝑆,ℓ) = {𝑤 ∈ Σ∗ | 𝐴(M(𝑆, ℓ),𝑤) = 1} be
the set of all strings accepted byM(𝑆, ℓ). If ℓ ≤ max∀𝑠∈𝑆 |𝑠 |, then
𝑆M(𝑆,ℓ) ⊇ 𝑆 .

More simply, ℓ has an effect that is similar to a regularizer in
supervised model learning. When ℓ is high, it may learn an NFA
that overfits the paths between the exemplar pair. On the other
hand, a low value of ℓ may be too generic that accepts almost all
paths in L∗. Therefore, to learn the optimal value of ℓ , and in turn
build the optimal NFA, we borrow the cross-validation paradigm.

We first partition the set of all paths P between the exemplar into
𝑓 folds. 𝑓 −1 of these folds are used as the train set. The held-out fold
is used for validation. We use the notations 𝑆𝑇 and 𝑆𝑉 to denote the
strings in the train and validation set respectively.We first construct
M(𝑆𝑇 , ℓ) for each ℓ ∈ [1, ℓ𝑚𝑎𝑥], where ℓ𝑚𝑎𝑥 = max∀𝑠∈𝑆𝑇 |𝑠 |. The
optimal ℓ is defined as:

ℓ∗ = arg max
ℓ∈[1,ℓ𝑚𝑎𝑥]

{
|{𝑠 ∈ 𝑆𝑉 | 𝐴(M(𝑆𝑇 , ℓ), 𝑠) = 1}|

|𝑆𝑉 |
≥ 𝜔

}
(3)

Here, 𝜔 ∈ [0, 1] is a hyper-parameter. More simply, we identify
the largest ℓ such that proportion of strings accepted from the
validation set is at least 𝜔 . The rationale behind this choice stems
from the property that as ℓ increases, the likelihood of a validation
string being accepted reduces. We, however, need to avoid being too
generic by lowering ℓ . Hence, we choose the most discriminative ℓ
that achieves an acceptable level of quality on the validation set.

As typical in cross-validation, the above process is repeated
taking each fold as the validation set. We next compute the mean
ℓ∗ across all folds. The optimal NFA M∗ is finally set to M∗ =

M
(
P, 𝑓 𝑙𝑜𝑜𝑟

(
ℓ∗𝑚𝑒𝑎𝑛

))
.

3.1.1 BF Implementation. We maintain a hashmap 𝑇 whose keys
are the strings of 𝑆𝑝 . The entries in the hashmap are their ℓ-tails.
We note that the size of 𝑆ℓ is at most

∑ℓ
𝑖=0 |L|ℓ ≤ |L|ℓ+1 = 𝜃 (|L|ℓ).

(1) Pre-processing: We store all the strings of 𝑆 in a trie S. Each
node in this trie represents a prefix of some string(s) of 𝑆 , so the
size of this trie is at most |𝑆𝑝 |. In case a complete string of 𝑆 is
stored in an internal node of S, we associate an “End-of-word”
(EoW) tag with it.

(2) Constructing the ℓ-tails: We traverse S bottom-up computing
ℓ-tails as follows:
(a) For each string 𝑥 corresponding to a leaf of S we set its

ℓ-tail to {𝜆} and update hashmap 𝑇 (𝑥) accordingly.
(b) If 𝑥 is a string corresponding to an internal node, we form

its ℓ-tail from the ℓ-tails of its children. Specifically, let 𝑥⊕𝛼
be a child of 𝑥 , where 𝛼 ∈ L. Now, if 𝑤 is in the ℓ-tail of
𝑥 ⊕ 𝛼 and |𝑤 | < ℓ , then we put 𝛼 ⊕ 𝑤 into the ℓ-tail of 𝑥 .
Further, if the node storing 𝑥 has an EoW tag, we add 𝜆 to
its ℓ-tail. Once the ℓ-tail is computed we update 𝑇 (𝑥).

We prove the correctness of this step in Proposition 1.

(3) Adding the transitions: For each 𝑦 ∈ 𝑆𝑝 if ∃𝑦 ⊕ 𝛼 ∈ 𝑆𝑝 , we place
a transition labeled 𝛼 from 𝑇 (𝑦) to 𝑇 (𝑦 ⊕ 𝛼). If this transition
already exists, we do nothing.

(4) Initial and final states: We set the state 𝑇 (𝜆) as the initial state.
For each 𝑥 ∈ 𝑆 (i.e. each leaf of S or node with an EoW tag) we
set 𝑇 (𝑥) as a final state.

Example 4. Fig. 3b shows the trie created for set 𝑆 = {𝐴𝐵,𝐴𝐴𝐵}
at ℓ = 1. The shaded nodes have their EoW tag set to 1 and the ℓ-tail

of every node is written outside in brackets. Note that at the root node

of S, the prefix is 𝜆.

Proposition 1. Step (2) above correctly computes the ℓ-tails of

all the prefixes of 𝑆𝑝 from S.

Proof. By the property of tries any string 𝑥 represented by a
leaf of S is clearly a string of 𝑆 . Hence, 𝜆 must be part of its ℓ-tail.
Let us assume there is some other non-empty string𝑤 = 𝛼1 · · ·𝛼ℓ
that is also part of the ℓ-tail of 𝑥 . Then 𝑥 ⊕ 𝑤 ∈ 𝑆 and hence the
node containing 𝑥 in S must have at least one child corresponding
to symbol 𝛼1, which contradicts the assumption that it is a leaf.

Now let us consider an internal node corresponding to string
𝑥 ∈ 𝑆𝑝 . There exists at least one symbol 𝛼 ∈ L such that S contains
a node corresponding to 𝑥 ⊕ 𝛼 . Now, if 𝑤 is in the ℓ-tail of 𝑥 ⊕ 𝛼
then 𝑥 ⊕ 𝛼 ⊕𝑤 ∈ 𝑆 . |𝑤 | < ℓ implies that |𝛼 ⊕𝑤 | ≤ ℓ and so 𝛼 ⊕𝑤
is part of the ℓ-tail of 𝑥 . This argument holds for all symbols 𝛼 such
that 𝑥 ⊕ 𝛼 ∈ 𝑆𝑝 . Further, if 𝑥 ∈ 𝑆 then this node contains an EoW
tag and we place 𝜆 in 𝑥 ’s ℓ-tail. □

3.1.2 Optimizations. We next discuss some optimization strategies.
Computing optimal ℓ∗: FromThm. 1, we know that with lowering
of ℓ , the acceptance likelihood of validation strings monotonically
increases. Thus, instead of pre-computing the NFA for each value
of ℓ ∈ [1, ℓ𝑚𝑎𝑥], we perform a binary search starting from ℓ𝑚𝑎𝑥 .
Consequently, we compute 𝑂 (𝑓 log(ℓ𝑚𝑎𝑥)) NFAs to identify the
optimal one in 𝑓 -fold cross-validation.
Path enumeration: The number of paths between two nodes can
be exponential and hence not tractable. Furthermore, as established
in Cor. 1, the inferred NFA generalizes to more paths (strings) than
the enumerated set. Hence, enumerating all paths may not even
be necessary. To obtain a good balance between computational
tractability and path coverage, we enumerate all paths of length till
the diameter of the graph. Consequently, given any exemplar pair
that is reachable, we enumerate at least one path between them.

3.1.3 Complexity Analysis. To derive the complexity, we divide it
into two sub-tasks: (1) Enumerating paths 𝑆 from source to destina-
tion, and (2) NFA construction over 𝑆 .
Path Enumeration: As mentioned above, we enumerate paths of
length up to the diameter of the graph. Accordingly, |𝑆 | is bounded
by 𝑑𝑑𝑖𝑎𝑚G , where 𝑑𝑖𝑎𝑚 denotes the diameter and 𝑑G is the maxi-
mum degree of a node in G. Many real-world networks display
small-world properties [37], under which 𝑑𝑖𝑎𝑚 = 𝜃 (log(|V|)) [27].
Thus, |𝑆 | ≤ 𝑑

𝜃 (log(|𝑉 |))
G . Owing to constant time edge access in our

computational model (Recall from § 2), the complexity reduces to
𝑂 (𝑑𝑖𝑎𝑚 |𝑆 |) = 𝑂

(
log(|𝑉 |)𝑑 log(|𝑉 |)G

)
.

NFA Construction: Constructing the trie S takes time |𝑆𝑝 |. The
time taken to process each node of the trie is 𝜃

(
|L|ℓ

)
since the

302

Algorithm 1 Baseline
Require Graph G(E,V, L) , exemplar pair (𝑠, 𝑡) , 𝑘 , 𝜃
1: M∗ ← optimal NFA for (𝑠, 𝑡) constructed using BF algorithm
2: PQ← Priority Queue
3: for each node 𝑣 ∈ V \ {𝑡 } do
4: P← all paths from 𝑠 to 𝑣
5: if 𝑆𝑢𝑝 (M∗, 𝑠, 𝑣) ≥ 𝜃 then

6: 𝑐 ← 𝐶𝑜𝑛𝑓 (M∗, 𝑠, 𝑣)
7: if 𝑐 > 𝑃𝑄.𝑡𝑜𝑝 () or 𝑃𝑄.𝑠𝑖𝑧𝑒 () < 𝑘 then

8: 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (⟨𝑣, 𝑐 ⟩)
9: if 𝑃𝑄.𝑠𝑖𝑧𝑒 () > 𝑘 then

10: 𝑃𝑄.𝑝𝑜𝑝 ()
11: return PQ

ℓ-tail of each child can have size at most ℓ and there are at most |L|
children. Hence the total time for ℓ-tail construction is 𝜃

(
|𝑆𝑝 | |L|ℓ

)
since the number of nodes in S is at most |𝑆𝑝 |. Computing the
transitions can be done along with the process of building the ℓ-
tails and contributes another 𝜃

(
|𝑆𝑝 | |L|

)
steps. Similarly, the initial

and final states can be marked along with the ℓ-tail construction
and contribute only one extra check per node of S. Overall the time
complexity of the algorithm is bounded by 𝜃

(
|𝑆𝑝 | |L|ℓmax

)
, which

is 𝑂
(
ℓmax |𝑆 | |L|ℓmax

)
. Since, ℓmax ≤ 𝑑𝑖𝑎𝑚 ≤ 𝜃 (log(|𝑉 |)) and |𝑆 | ≤

𝑑
𝜃 (log(|𝑉 |))
G , the complexity is 𝑂

(
log(|𝑉 |)𝑑 log(|𝑉 |)G |L|log(|𝑉 |)

)
.

Overall time complexity: Combining both factors, and under
the assumption of constant label set size and bounded degree, the
complexity is 𝑂 (log(|𝑉 |)𝐶 log(|𝑉 |)), where 𝐶 is a constant. Thus,
the complexity is polynomial with |𝑉 | in small-world graphs.
Space Complexity: The space complexity is bounded by the size
of the trie, which is 𝑂 (|𝑆𝑝 |) = 𝑂 (|𝑆 |) = 𝑂

(
𝑑
log(|𝑉 |)
G

)
.

3.1.4 Discussion: Other algorithms for NFA construction. There are
a number of different approaches to constructing an NFA to fit a
set of strings [4, 7, 10, 15, 17, 18, 24, 34, 43]. Several algorithms
require negative examples [4, 15, 17, 28]. Hence, they are not rel-
evant since we only have positive examples, i.e., strings that we
want recognised. Among algorithms that only work with positive
examples, the general approach is to begin by exhaustively building
an NFA, possibly with a large number of states, that recognizes
all the positive examples. In the next phase, this NFA is reduced
by merging states that are equivalent in some way [7, 18, 24, 43].
Typically, both phases are merged in the actual algorithm. The BF
algorithm we use [7] is a prominent example of this approach. A
second class of algorithms merge states with a view to minimize
an information theoretic criterion, the minimum message length

(MML), which trades off the size of the NFA with the encoding
length of the positive examples given an NFA [10, 30, 34].

In theory, any of the NFA-inference algorithms that work only
with positive samples can be used. We choose BF due to two rea-
sons: (1) The class of algorithms based on MML is computationally
expensive since we need to compute the change in MML before
making each merging decision. (2) MML-based algorithms do not
allow a supervised mode of NFA-construction, wherein the balance
between generalizability and specificity can be controlled (As in
§ 3.1.2). This may affect the quality of the inference task.

3.2 Phase 2a: Reducing the Search Space

Once the query NFAM∗ is inferred from the exemplar, our next
task is to identify the top-𝑘 nodes based on 𝐶𝑜𝑛𝑓 (M∗, 𝑠, 𝑣) as long
as 𝑆𝑢𝑝 (M∗, 𝑠, 𝑣) ≥ 𝜃 .

3.2.1 Baseline and bottlenecks. Alg. 1 outlines the pseudocode. The
most expensive step in Alg. 1 lies in the path enumeration compu-
tation (line 4). The number of paths in a graph can be exponential
with respect to the size of the node set and this property lies at the
core of why answering RPQs is NP-hard [23]. We overcome this
scalability bottleneck through sampling.
(1) Identify a set of candidate nodes C ⊆ V , such that with a high

likelihood the answer set A ⊆ C and |C| ≪ |V|.
(2) For each node 𝑣 ∈ C, sample a set of paths P′from 𝑠 to 𝑣 such that

the confidence computed from P′ is close to the true confidence,
i.e., 𝐶𝑜𝑛𝑓P′ (M, 𝑠, 𝑣) ≈ 𝐶𝑜𝑛𝑓 (M, 𝑠, 𝑣). Note that |P′ | must be at
least as large as the support threshold 𝜃 .

3.2.2 Motivating our sampling strategy. To streamline our search
process, we first note the following:
• Scale-free graphs: Many real-world graphs display the scale-
free property [2]. In a scale-free graph, the degree distribution
follows a power law. Consequently, these graphs contain a small
number of “hub” nodes that have high degree and act as bridges
between large number of nodes. Consequently, if a hub cannot be
part of an NFA-accepting path, then nodes that are only reachable
through this hub cannot be part of the answer set.
• Homophily: Real graphs often display homophily [22]. In ho-
mophily, neighboring nodes/edges have a higher likelihood of
sharing labels than nodes further away. Thus, nodes that are part
of the answer set may be clustered in similar regions of the graph.
Consequently, limiting the search process to only these clusters
may provide a good accuracy-efficiency trade-off.

We take inspiration from the above observations and formalize the
idea through NFA-guided random walks with restarts.

3.2.3 NFA-guided Random Walks with Restarts (NRWR). Given
graph G = (V, E,L) and NFAM∗ = (𝑄, Σ, 𝑓 , {𝑞0}, 𝐹) with Σ ⊆ L,
we define the product spaceV ×𝑄 . In this space, the random walk
unfolds in discrete time steps. At 𝑡 = 0, the walk starts from the
initial state (𝑣, 𝑞) = (𝑠, 𝑞0). A transition from (𝑣, 𝑞) to (𝑣 ′, 𝑞′) is
allowed if:
(1) (𝑣, 𝑣 ′) ∈ E
(2) One of the below conditions are met depending on whether the

graph is node labeled, edge labeled, or both.
(i) Edge labelled case: L((𝑣, 𝑣 ′)) = 𝛼 and 𝑞′ ∈ 𝑓 (𝑞, 𝛼)
(ii) Node labelled case: L(𝑣 ′) = 𝛼 and 𝑞′ ∈ 𝑓 (𝑞, 𝛼).

In addition, a transition is also allowed from (𝑣, 𝑞) to (𝑠, 𝑞0) if
(1) 𝑞 ∈ 𝐹 , i.e., 𝑞 is an accepting state.
(2) �(𝑣 ′, 𝑞′), 𝑞′ ∉ 𝐹 , such that (𝑣, 𝑞) to (𝑣 ′, 𝑞′) is an allowed tran-

sition as per the rules defined above. In other words, (𝑣, 𝑞) is
a dead-end. Dead-ends occur when either 𝑣 has no outgoing
edge, or there are no outgoing labels from 𝑣 that is allows a
valid state transition inM∗.
NRWR is a Markov Chain with transition matrixW, where

W
[
(𝑣, 𝑞) →

(
𝑣 ′, 𝑞′

)]
=

{
1

𝑑𝑒𝑔 ((𝑣,𝑞)) if the transition is allowed
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

303

Here, 𝑑𝑒𝑔((𝑣, 𝑞)) represents the total number of allowed transitions
from (𝑣, 𝑞). In addition to the transitions allowed by W, the walker
may decide to return to the initial state (𝑠, 𝑞0) with probability 𝛽

from its current state. The 𝑡-step probability vector of NRWR is
𝝅𝑡 , i.e., 𝝅𝑡 (𝑣, 𝑞) denotes the probability of the walker being at state
(𝑣, 𝑞) at time 𝑡 . Mathematically, 𝝅𝑡 = (1 − 𝛽)W𝝅𝑡−1 + 𝛽𝝅0. In our
case, we will always begin NRWR from one particular state, i.e., we
will always have 𝝅0 [(𝑠, 𝑞0)] = 1.

Proposition 2. NRWR begun from (𝑠, 𝑞0) has a unique station-
ary distribution 𝝅 and lim𝑡→∞ 𝝅𝑡 = 𝝅 . Further, if 𝑆𝑟 ⊆ V ×𝑄 is the

set of states reachable from (𝑠, 𝑞0) then 𝝅 assigns non-zero probability

to all (𝑢, 𝑞) ∈ 𝑆𝑟 and 0 probability to all other states.

Proof. Since we only begin NRWR from (𝑠, 𝑞0) we consider the
restriction of the Markov Chain to the state space 𝑆𝑟 .
• Irreducibility: Given any two states (𝑣, 𝑞), (𝑣 ′, 𝑞′) ∈ 𝑆𝑟 , we
know (𝑠, 𝑞0) is reachable from (𝑣, 𝑞) through restart. Furthermore,
we also know that (𝑣 ′, 𝑞′) is reachable from (𝑠, 𝑞0) since (𝑣 ′, 𝑞′) ∈
𝑆𝑟 . Hence, (𝑣 ′, 𝑞′) is reachable from (𝑣, 𝑞).
• Aperiodicity: The restart acts as a self-loop on the initial state
(𝑠, 𝑞0), i.e., this state has period 1. Since all states of an irreducible
Markov Chain have the same period [20, Lemma 1.6] the Markov
chain is aperiodic.

By the definition of 𝑆𝑟 it is clear that the limiting probability for
any state not in 𝑆𝑟 is 0. The fact that each state of 𝑆𝑟 has non-zero
probability is a well-known fact about finite Markov Chains and can
be established by combining Lemma 1.13 and Prop. 1.19 of [20]. □

The query-specific hub score of a node is quantified through
NFA-guided centrality.

Definition 11 (NFA-Guided Centrality). The NFA-guided
centrality relative to 𝑠 and NFA M∗ is a |V| × 1 vector 𝝓 where

∀𝑣 ∈ V , 𝝓 (𝑣) = ∑
𝑞∈𝑄 𝝅 (𝑣, 𝑞).

Corollary 2. 𝝓 is well-defined and unique.

Proof. 𝝓 is an aggregation over 𝝅 . Since 𝝅 exists, and is unique,
so is 𝝓. □

3.2.4 Identifying the candidate set 𝐶 . Intuitively, 𝝓 (𝑣) quantifies
the proportion of NFA-guided paths that go through node 𝑣 . Thus,
if 𝑣 has a low 𝝓 (𝑣), it is unlikely that nodes that are only NFA-
reachable through 𝑣 will be part of the answer set. Te eliminate such
unlikely nodes we first sort nodes based on 𝝓. We next select the
highest centrality nodes 𝐻 (except the source node) by iteratively
adding nodes from the sorted list till the marginal increase in the
cumulative distribution saturates. Mathematically,©«

∑
∀𝑣∈𝐻∪{𝑣′ }

𝝓 (𝑣) −
∑
∀𝑣∈𝐻

𝝓 (𝑣)ª®¬ < 𝜂 (4)

Here, 𝜂 ≈ 0 is a small threshold and 𝑣 ′ is the |𝐻 | + 1 ranked node
in 𝝓. Thus, 𝐻 contains the hub nodes and their neighborhoods
represent the regions containing answer set candidates. We extract
these candidates C as follows.

C = {𝑣 ∈ V | ∃𝑣 ′ ∈ 𝐻, 𝑠𝑝 (𝑣 ′, 𝑣) ≤ 𝑑} (5)

Here, 𝑠𝑝 (𝑣 ′, 𝑣) denotes the shortest path distance from 𝑣 ′ to 𝑣 ,
and 𝑑 is a distance threshold.

3.2.5 Implementation and Computation Complexity: We break-up
the analysis into the following components.

NRWR:We simulate NRWR on the state space and terminate
once the set of hub nodes 𝐻 stabilizes. In our implementation, we
compute each state and outgoing transitions on the fly since only
a minority of the state space is actually visited during the NRWR.
To elaborate, at any state, we first compute the outgoing states.
This consumes 𝑂 (𝑑G) time where 𝑑G is the maximum outgoing
degree in G. Selecting the next transition consumes 𝑂 (1) time
since it is chosen uniformly at random if outgoing degree of the
current state is above 1; otherwise, the walker returns to (𝑠, 𝑞0). This
process continues for 𝑇 iterations requiring 𝑂

(
𝑇𝑑G

)
time. In our

implementation we do not fix 𝑇 , stopping when 𝐻 has converged.
Fogaras et. al. [14] show that the probability of rankings getting
interchanged decays exponentially with 𝑇 , so after 𝑇 = 𝜃 (log 1/𝜀)
we expect 𝐻 to stabilize with probability at least 1 − 𝜀.

Extracting hub nodes 𝐻 :We stop NRWR when 𝐻 converges,
i.e., it remains unchanged for two iterations. To keep nodes sorted
based on 𝝓, we use an array and after each transition the count and
the position of the visited node is updated. Using binary search,
this consumes 𝑂 (log(min{|V|,𝑇 })) time since at most 𝑇 vertices
can be visited in 𝑇 steps.

Computing candidate set C: We do breadth-first search for 𝑑
hops from 𝐻 . This consumes 𝑂

(
|𝐻 |𝑑𝑑G

)
time.

Time and space complexity: We only store 𝝓 during NRWR
and hence space complexity is 𝑂 (|V|). By aggregating the time
complexity from each of the above components, the final complexity
is 𝑂

(
𝑇
(
𝑑G log(min{|V|,𝑇 })

)
+ |𝐻 |𝑑𝑑G

)
where 𝑇 = 𝜃 (log 1/𝜀) for

a success probability of at least 1−𝜀. The probability of convergence
increases exponentially with 𝑇 . Hence, 𝑇 is a small number. 𝑑 is
typically 2 or 3. Consequently, under the assumption that the degree
is bounded, 𝑂

(
𝑇
(
𝑑G log(min{|V|,𝑇 })

)
+ |𝐻 |𝑑𝑑G

)
≈ 𝑂 (|𝐻 | .

3.3 Phase 2b: Ranking the Candidates

Once C is computed, our task is to rank these nodes based on their
confidence under the constraint that a node is reachable from the
source by at least 𝜃 NFA-accepting paths. Since enumeration of
all possible paths to each node in C is worst-case exponential, we
sample paths. The higher the sample size, the more accurate would
be our confidence estimates. On the other hand, a higher sample size
leads to increased computation cost. To fine-tune quality-efficiency
balance, we propose an iterative sampling methodology (Alg. 2).

In addition, to the input parameters, Alg. 2, takes two additional
hyper-parameters: sample size 𝑧 and pruning percentage 𝑝 . Alg. 2
proceeds in an iterative manner. In each iteration, 𝑧 additional paths
are sampled for current candidate set (line 7). With these additional
samples, a more accurate estimate of the confidence values are
computed (lines 8-9). Based on the updated confidence values, the
top-𝑘 nodes are recomputed. If the top-𝑘 set remains unchanged
then the algorithm terminates (line 4). Otherwise, we eliminate
the bottom-𝑝% of the candidate set, and proceed towards the next
iteration with the smaller candidate set (lines 10-11).

3.3.1 Theoretical Characterization. The proposed sampling strat-
egy is based on the hypotheses that nodes that have a high fraction

304

Algorithm 2 Ranking Nodes through Iterative Sampling
Require Graph G(V, E, L) ,M∗ , 𝑘 ,support threshold 𝜃 , sample size 𝑧, retain percentage 𝑝 ,
candidate set C
Returns Set of top-𝑘 ranked nodes
1: 𝑡 ← 0
2: C𝑡 ← C
3: ∀𝑣 ∈ C, 𝑃𝑣𝑡 ← ∅
4: while 𝑡 ≤ 1 or top-𝑘 (C𝑡−1) ≠ top-𝑘 (C𝑡) do
5: 𝑡 ← 𝑡 + 1
6: for each node 𝑣 in C𝑡−1 do

7: 𝑃 ← sample 𝑧 paths from 𝑠 to 𝑣.
8: 𝑃𝑣𝑡 ← 𝑃𝑣

𝑡−1 ∪ 𝑃
9: 𝐶𝑜𝑛𝑓 (𝑣) ← Compute confidence based on 𝑃𝑣𝑡
10: 𝐵 ← bottom top-𝑝% nodes of C𝑡−1
11: C𝑡 ← C𝑡−1 \ 𝐵
12: if |C𝑡 | ≤ 𝑘 then

13: return top-𝑘 (C𝑡−1)
14: return top-𝑘 (C𝑡)1

of paths accepted by the NFA maintain that high fraction even in a
small sample. This claim is next made rigorous.

Proposition 3. Given a target node such that the number of

paths from the source to the target is 𝑛 and the fraction of these paths

accepted by the NFA is 𝑓 , then, for any 𝛿 ∈ [0, 1], a sample of 𝑧

independently chosen paths will have more than (1 − 𝛿) 𝑓 𝑧 paths

accepted by the NFA with probability at least 1 − 1/𝑛𝑐 for some

constant 𝑐 > 0 whenever 𝑧 = 𝜃 ((log𝑛)/𝑓 𝛿).

Proof. For 1 ≤ 𝑖 ≤ 𝑧, let𝑋𝑖 be an indicator random variable that
takes value 1 if the 𝑖𝑡ℎ path sampled is a path accepted by the NFA.
Then 𝑋 =

∑𝑧
𝑖=1 𝑋𝑖 is the number of accepted paths and 𝑋/𝑧 is the

fraction of accepted paths. Note that E [𝑋/𝑧] = 𝑓 . Assuming the 𝑋𝑖
are independent, applying a Chernoff bound for the lower tail we
have P [𝑋 < (1 − 𝛿) 𝑓 𝑧] ≤ 𝑒−𝛿

2 𝑓 𝑧/2. Choosing 𝑧 = 𝜃 ((log𝑛)/𝑓 𝛿)
gives us the result. □

From Prop. 3, it is clear that as the iterations proceed, the prob-
ability of a high ranked node getting pruned falls exponentially.
We also show that for moderate choices of the parameter 𝑧, lower
ranked nodes cannot overtake higher ranked nodes.

Proposition 4. Suppose we have two node 𝑣 and 𝑢 such that the

fractions of the paths to these nodes that are accepted by the NFA are

𝑓𝑣 and 𝑓𝑢 respectively. If 𝑓𝑣 > 𝑓𝑢 then, for any 𝜀 > 0, with probability

1 − 𝜀, the empirical fraction of the accepted paths of 𝑣 is greater than

empirical fraction of the accepted paths of 𝑢 after 𝑧 independently

drawn samples from each set whenever 𝑧 is 𝜃
(
(log 1/𝜀)/(𝑓𝑣 − 𝑓𝑢)2

)
.

Proof. For 1 ≤ 𝑖 ≤ 𝑧 let 𝑋𝑖 = −1 if the 𝑖𝑡ℎ path for node 𝑢
is accepted but the 𝑖𝑡ℎ path for node 𝑣 is not, let 𝑋𝑖 = 1 if the
situation is reversed and let 𝑋𝑖 = 0 if the 𝑖𝑡ℎ paths for both nodes
are both rejected or both accepted. If 𝑋 =

∑𝑧
𝑖=1 𝑋𝑖 , the event 𝑋 < 0

corresponds to the event that the rankings are reversed. Var [𝑋𝑖] =
𝑓𝑢 (1 − 𝑓𝑣) + 𝑓𝑣 (1 − 𝑓𝑢) = 𝑓𝑢 + 𝑓𝑣 − 2𝑓𝑢 𝑓𝑣 . By Bernstein’s inequality:

P [𝑋 < 0] ≤ exp
{

−((𝑓𝑣 − 𝑓𝑢)𝑧)2
(𝑓𝑢 + 𝑓𝑣 − 2𝑓𝑢 𝑓𝑣 + 1/3)𝑧

}
.

Upper bounding the denominator of the exponent by 3 we get

P [𝑋 < 0] ≤ 𝑒−(𝑓𝑣−𝑓𝑢)
2𝑧/3 .

□

Figure 4: Flowchart of RQuBE.

3.3.2 Computational Complexity: In the worst case, there will
be at most |C |

|C |×𝑝/100 = 100
𝑝 iterations. Sampling 𝑧 paths of length

𝑑𝑖𝑎𝑚 consumes 𝑂 (𝑧 · 𝑑𝑖𝑎𝑚) ≈ 𝑂 (𝑧 log(|𝑉 |)) time (in small-world
graphs (Recall § 3.1.3)). Updating the confidence of a node in each
iteration consumes 𝑂 (𝑧) time. Removing the bottom-𝑝% and com-
puting top-𝑘 set requires 𝑂 (|C| log

(
𝑝 |C |
100

)
and 𝑂 (|C| log(𝑘)) time

respectively using min-heap and max-heap respectively. Thus, the
total time consumption is 𝑂

(
1
𝑝 |C| (𝑧 log(|𝑉 |) + log (𝑝 |C|𝑘))

)
≈

𝑂 (|C| (𝑧 log(|𝑉 |) + log (|C|))) since both 1/𝑝 and 𝑘 are small.
Regarding space complexity, we only store two heaps to track

top-𝑘 and bottom-𝑝% nodes in the candidate set. Thus, the space
consumption is 𝑂 (𝑘𝑝 |C|) ≈ 𝑂 (|C|). Note that although for ease
of presentation we denote every sampled path being stored (line
8 in Alg. 2), in our implementation we do not require that since
𝐶𝑜𝑛𝑓𝑡 (𝑣) = 𝑠𝑢𝑝𝑡−1 (𝑣)+𝑠𝑢𝑝𝑡 (𝑣)

no. of paths sampled till now .

3.4 Putting it All Together

Fig. 4 outlines the flowchart of RQuBE. Given the input information,
first, we infer the optimal NFA M∗(§ 3.1). Next, we use M∗ to
perform NFA-guided random walks with restart (NRWR) on G to
identify the candidate set C. C is constructed by identifying the
high centrality nodes in NRWR and then extracting their 𝑑-hop
neighborhoods. These candidates are then ranked through iterative
sampling of paths and the 𝑘 nodes with highest confidence are
returned as the answer set.

3.4.1 Complexity Analysis: In Fig. 4, we list the time and space
complexities of each of the components (See § 3.1.3,§ 3.2.5, and
§ 3.3.2 for the derivations). Recall, 𝐶 is a constant, |𝐻 | is the num-
ber of hub nodes, C is the number of nodes within 𝑑-hops from
𝐻 , 𝑧 is the sample size in Top-𝑘 search, and 𝑑G is the maximum
degree in G. Since 𝐻 ⊆ C, the total time complexity is therefore
𝑂 (log(|V|)𝐶 log(|V |) + |C|(𝑧 log(|𝑉 |) + log(|C|))). It is difficult to
bound |C| in general. However, for real-world networks typically a
small number of hubs of the graph capture most of the mass of any
centrality metric. Thus, we expect |𝐻 | to be moderate and hence,
C to be moderate as well. In § 4.2, we empirically profile the time
consumed by each of the three phases. Our experiments reveal that
iterative sampling for Top-𝑘 search is the most expensive phase
and NFA-inference is the fastest.

From Fig. 4, the total space complexity is 𝑂 (𝑑 log(|V |)G + |V|) .

305

Coauthor Freebase Stack Citation

Dataset

0
100

101

102

103

104

105

106

107

R
un
ni
ng

ti
m
e
(s
ec
s)

RQuBE-NFA

RQuBE-NRWR

RQuBE-sampling

Arrival

Optimal

(a) Running time

Coauthor Freebase Stack Citation

Dataset

0.00

0.25

0.50

0.75

1.00

1.25

A
cc
ur
ac
y

RQuBE Arrival

(b) Accuracy

Coauthor Freebase Stack Citation

Dataset

0.0

0.5

1.0

ρ

RQuBE Arrival

(c) Rank correlation

Coauthor Freebase Stack Citation

Dataset

0.00

0.25

0.50

0.75

1.00

1.25

C
-s
im

RQuBE Arrival

(d) Confidence similarity

Figure 5: (a) Running time comparison of RQuBEwithOptimal andArrival. (b-d) Accuracy, rank correlation, and confidence

similarity of RQuBE and Arrival when compared to the ground-truth.

4 EXPERIMENTS

In this section, we benchmark RQuBE and establish that:
• Quality: The proposed sampling methodologies are effective and
retains an average accuracy above 0.90.
• Efficiency: NFA-guided centrality is an effective measure to
guide the search process towards promising regions and enables
scalability to million-sized graphs containing thousands of labels.
• Semantics: The proposed NFA inference mechanism returns
semantically meaningful results. Furthermore, the inferred NFA
enables visualization of relationship diffusion in the graph.

4.1 Experimental Setup

All experiments are performed on a machine with Intel(R) Xeon(R)
Platinum CPU 2.1GHz with 256 GB RAM running Ubuntu 18.04.
All implementations are done in C++. Each experiment reports the
mean of the metric being measured over 100 queries. For each query,
the exemplar source and the destination are chosen uniformly at
random from all nodes in the graph. The default parameter values
are 𝑘 = 10 and support threshold 𝜃 = 30% of the total number of
paths between the exemplar pair.

4.1.1 Datasets. Table 2 summarizes the datasets.
Co-author [40]: Co-author is a co-authorship network obtained

from https://dblp.org/. Two authors (nodes) have an edge between
them if they have collaborated in at least one paper. Each node label
represents the venue where the author has published the most.

Citation [40]: In Citation, each node is a paper, and there is
a edge from paper 𝑥 to paper 𝑦, if 𝑥 cites 𝑦. The label of a node is
the conference venue where it was published.

Freebase [8]: Freebase is an open-source knowledge graph.
Node labels in freebase indicate the entity type such as ‘person’,
‘athlete’, ‘artist’, etc. Each edge represents a semantic link between
the entities with labels such as ‘created’, ‘lives in’, etc.

StackOverflow [19]: StackOverflow is a dynamic graph con-
taining interactions on the communication forum of Stack Overflow.
Each directed edge (𝑢, 𝑣, 𝑡), denotes an interaction between users
(nodes) 𝑢 and 𝑣 at time 𝑡 . The label of an edge corresponds to its
communication type. Since this dataset is dynamic, in addition to
the query parameter, we also include a timestamp 𝑡𝑞 . 𝑡𝑞 is ran-
domly sampled from the time range in StackOverflow. The query
is answered with respect to the state of the graph at time 𝑡𝑞 .

Table 2: Summary of datasets used.

Dataset |V | |E | |L| Directed Node

Labels

Edge

Labels

Effective

Diameter

Co-author (DBLP) 1.75𝑀 13.6𝑀 17073 ✓ 6.7
Citation (DBLP) 3.1𝑀 8.4𝑀 11661 ✓ ✓ 7.6
Freebase 3.6𝑀 57.7𝑀 7513 ✓ ✓ 3.7
StackOverflow 2.6𝑀 67.5𝑀 3 ✓ ✓ 4.0
Yeast 4𝑘 79𝑘 41 ✓ 4.0

Yeast: Yeast represents the protein-protein interaction network
of the yeast organism. Each node is tagged with the gene ontology
of the corresponding protein [6], which indicates its function.

4.1.2 Baselines. We consider the following baselines.
• Optimal: Optimal provides us the ground truth by implement-
ing Alg. 1. Since Optimal is exorbitantly slow, in all experiments
involving Optimal, we limit the search process to nodes that are
at most diameter hops away from the source.
• Arrival [45]: Arrival is the state of the art for answering
RPQs. For our problem, instead of enumerating all paths through
Optimal, we sample paths through Arrival.

4.1.3 Hyper-parameters. The hyper-parameter values of RQuBE
are identified through grid-search on 20 randomly generated queries
in each dataset. They are mentioned in Table 3.

4.1.4 Metrics. To quantify performance, we use:
• Accuracy: Let A∗ be the optimal top-𝑘 answer set and A the
answer set returned by RQuBE (or a baseline). The accuracy is
quantified as A

∗∩A
𝑘

.
• RankingPreservation:Tomeasure howwell the ranking among
nodes in the top-𝑘 set is preserved, we use Spearman’s rank cor-

relation coefficient (𝜌), Kendall’s Tau, and NDCG . In our case,
the two ranked lists are A∗ and A. We compute the correlation
between A∗ and A by only considering the nodes in A∗ ∩ A.

Table 3: Hyper-parameter values.

Dataset 𝜂 𝑧 𝑝 𝑑

Co-author 0.001 500 20% 2
Citation 0.01 2000 20% 2
Freebase 0.01 2000 20% 2
StackOverflow 0.01 1000 20% 2
Yeast 0.01 1000 20% 2

306

https://dblp.org/

50 100
k

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

Coauthor

Freebase

Stack

Citation

(a) Accuracy

50 100
k

0.6

0.8

1.0

S
p
ea
rm

an
’s
ra
nk

co
rr
el
at
io
n

Coauthor

Freebase

Stack

Citation

(b) Rank Correlation

50 100

k

0.0

0.2

0.4

0.6

0.8

1.0

K
en
da
ll’
s
T
au

Coauthor

Freebase

Stack

Citation

(c) Kendall’s Tau

50 100

k

0.0

0.2

0.4

0.6

0.8

1.0

N
D
C
G

Coauthor

Freebase

Stack

Citation

(d) NDCG

25 50 75 100

k

0.0

0.2

0.4

0.6

0.8

1.0

C
-s
im Coauthor

Freebase

Stack

Citation

(e) Confidence Similarity

20 40 60 80 100
k

0

1

2

3

4

5

R
un
ni
ng

ti
m
e
(s
ec
s) Coauthor

Freebase

Stack

Citation

(f) Running time

25 50 75
Support threshold θ

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

Coauthor

Freebase

Stack

Citation

(g) Accuracy

25 50 75
Support threshold θ

0.6

0.8

1.0

S
p
ea
rm

an
’s
ra
nk

co
rr
el
at
io
n

Coauthor

Freebase

Stack

Citation

(h) Rank correlation

25 50 75

Support threshold θ

0.0

0.2

0.4

0.6

0.8

1.0

K
en
da
ll’
s
T
au

Coauthor

Freebase

Stack

Citation

(i) Kendall’s Tau

25 50 75

Support threshold θ

0.0

0.2

0.4

0.6

0.8

1.0

N
D
C
G

Coauthor

Freebase

Stack

Citation

(j) NDCG

25 50 75

Support threshold θ

0.0

0.2

0.4

0.6

0.8

1.0

C
-s
im Coauthor

Freebase

Stack

Citation

(k) Confidence similarity

20 40 60 80
Support threshold θ

0

1

2

3

4

5

6

R
un
ni
ng

ti
m
e
(s
ec
s)

Coauthor

Freebase

Stack

Citation

(l) Running time

Figure 6: (a-f) Impact of 𝑘 on accuracy, 𝜌 , 𝜏 , NDCG , C-sim, and running time. (g-l) Impact of support threshold 𝜃 on accuracy,

𝜌 , 𝜏 , NDCG , C-sim, and running time.

• Confidence Similarity: The accuracy metric assumes any node
in A∗ \ A is a false positive. In reality, a false positive may also
be “good” if its confidence is almost as high as the true positive in
its corresponding ranking order. We capture this aspect through:

C-sim = 1−
∑𝑘
𝑖=1 |𝑐𝑜𝑛𝑓 (M∗, 𝑠,A∗ [𝑖]) − 𝑐𝑜𝑛𝑓 (M∗, 𝑠,A[𝑖]) |

𝑘
(6)

A[𝑖] denotes the 𝑖𝑡ℎ ranked node in A. Since 𝐶𝑜𝑛𝑓 (M∗, 𝑠, 𝑣) ∈
[0, 1], C-sim ∈ [0, 1] as well.

4.2 Comparison with Baselines

Efficiency: In Fig. 5a, we compare the running times of RQuBE
with Optimal and Arrival. RQuBE is 4 and 3 orders of magni-
tudes faster on average than Optimal and Arrival respectively.
For RQuBE, we further breakdown the running time into the three
components of NFA-inference, candidate set identification, and iter-
ative sampling. The largest consumption of time occurs in iterative
sampling, while NFA-inference is the fastest; the contribution of
NFA-inference on the overall time is extremely small and hence
invisible in the bar plot. This behavior is consistent with our theoret-
ical analysis. Specifically, the dominant factor in NFA-inference, is
the length of each sampled path, which is bounded by the diameter
of the graph. Candidate generation grows logarithmically with the
number of nodes in the graph. Both these factors are significantly
smaller than the 𝑂 (|C| log(|C|)) factor in iterative sampling.
Answer-set Quality:As visible in Figs. 5b-5d, RQuBE consistently
achieves accuracy, precision, and C-sim above 0.9 across all datasets.
In contrast, Arrival is inferior in quality. This result highlights the
importance of candidate generation through NFA-guided random
walks. More specifically, Arrival uniformly samples 𝑧 paths from
source to each node within 𝑑𝑖𝑎𝑚 hops, where 𝑑𝑖𝑎𝑚 is the effective
diameter of the graph. In contrast, RQuBE focuses only on the
candidate set formed through NFA-guided random walks. On this
candidate set, RQuBE performs iterative sampling, where 𝑧 paths

are sampled in each iteration on the surviving (i.e., promising) nodes.
Thus, the sampling strategy of RQuBE is non-uniform, wherein the
higher the promise of a node, the more is the number of samples
allocated for it. This strategy enables better balance between quality
and efficiency when compared to Arrival.

The accuracy of Arrival is the lowest in Freebase. Freebase
is dense and has a large number of labels. In this scenario, for
most nodes, when 𝑧 paths are sampled, they contain less than 𝜃

NFA-accepting paths. Consequently, Arrival prunes them off. In
RQuBE, a node gets pruned off due to support threshold only in
the last iteration of iterative sampling. Thus, nodes that survive till
the last iteration have 𝑖𝑧 paths sampled, where 𝑖 is the number of
iterations. This allows more reliable estimates of support.

4.3 Impact of Input Parameters

Impact of 𝑘: Figs 6a-6e present the impact on efficacy against
𝑘 . We observe that with higher 𝑘 , the accuracy of RQuBE drops
marginally, with the effect being most pronounced in Co-author.
Co-author is the most difficult dataset since it contains the largest
number of labels. When the label set is large, there is more het-
erogeneity in the network, which in turn, decreases the efficacy of
sampling. Despite these challenges, accuracy remains above 0.8 un-
der all values of 𝑘 ∈ [10, 100]. Note that C-sim is best in Co-author,
which indicates that even though the answer set may be different
from the ground-truth, their quality is almost equally good.

In the ranking preservation metrics of 𝜌 , Kendall’s Tau and
NDCG, we observe that on all datasets except StackOverflow, the
metrics are ≈ 1 (Figs 6b-6d). Distortion of ranking is the highest
in StackOverflow. Since StackOverflow has the lowest number
of unique labels (See Table 2), there are many nodes with similar
scores and hence ranking preservation is more difficult.

In Fig. 6f, we analyze the impact of 𝑘 on running time. As ex-
pected, the time increases marginally and saturates quickly. This
indicates that scalability is not a concern even when 𝑘 > 100. We

307

10−4 10−3 10−2 10−1

η

0.7

0.8

0.9

1.0

1.1

A
cc
ur
ac
y

Coauthor

Freebase

Stack

Citation

(a) Number of hubs

10−5 10−4 10−3 10−2

η

0

1

2

3

4

5

6

R
un
ni
ng

ti
m
e
(s
ec
s) Coauthor

Freebase

Stack

Citation

(b) Number of hubs

0 1 2 3
Number of hops d

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Coauthor

Freebase

Stack

Citation

(c) Number of hops

0.0 0.1 0.2 0.3
Number of hops d

100

101

102

R
un
ni
ng

ti
m
e
(s
ec
s) Coauthor

Freebase

Stack

Citation

(d) Number of hops

1000 2000 3000 4000
Sample size z

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

Coauthor

Freebase

Stack

Citation

(e) Sampling size

200 400
Sample size z

2

4

6

8

10

R
un
ni
ng

ti
m
e
(s
ec
s) Coauthor

Freebase

Stack

Citation

(f) Sampling size

20 40 60 80
Pruning percentage p(%)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

Coauthor

Freebase

Stack

Citation

(g) Pruning percentage

20 40 60 80
Pruning percentage p(%)

0

1

2

3

4

5

R
un
ni
ng

ti
m
e
(s
ec
s)

Coauthor

Freebase

Stack

Citation

(h) Pruning Percentage

6 8 10 12

Enumeration length

0.2

0.4

0.6

0.8

1.0

Q
ua
lit
y

Accuracy

Correlation

C-sim

(i) Citation

4 6 8

Enumeration length

0.2

0.4

0.6

0.8

1.0

Q
ua
lit
y

Accuracy

Correlation

C-sim

(j) Freebase

Figure 7: Impact of hyper-parameters (a-b) 𝜂, (c-d) 𝑑 , (e-f) 𝑧 and (g-h) 𝑝 on accuracy and running time of RQuBE. (i-j) path

enumeration length threshold during NFA-construction.

note here that NFA-inference and candidate set generation are in-
dependent of 𝑘 . Only iterative sampling depends on 𝑘 and since
typically 𝑘 ≪ |C|, the impact of 𝑘 on running time is minimal.
Support Threshold 𝜃 : The impact of 𝜃 on accuracy is similar to
𝑘 (Fig. 6g); there is minor deterioration in accuracy as 𝜃 increases.
A closer inspection on this behavior reveals that as 𝜃 increases,
the candidate set reduces. When the candidate set size reduces,
the skewness in the distribution of confidence values reduces, and
this results in a drop in accuracy. When the distribution is highly
skewed, even a low sample set of paths is able to better distinguish
the top-𝑘 set from the candidate space. The impact on ranking
preservation is also similar to what we observed against 𝑘 (Figs. 6h-
6j). Across all metrics, the performance remains above 0.8, with
StackOverflow being the hardest dataset.

Next, we analyze the impact of 𝜃 on the running time in Fig. 6l.
As expected, the running time either decreases (most pronounced
in Co-author) or remains minimally impacted. While increasing 𝜃
reduces the candidates set size, that does not guarantee a reduction
in running time. Recall that Alg. 2 terminates either when the candi-
date set size reduces to 𝑘 , or the top-𝑘 set remains unchanged over
two iterations. While the time per iteration reduces with reduction
in candidate set size, the number of iterations may increase.

4.4 Impact of Hyper-parameters

Impact of 𝜂: As 𝜂 reduces, more hubs are selected and hence the
candidate set size grows. This results in increase in computation
time (Fig. 7b) and improvement in the accuracy metrics (Fig. 7a).
Note that datasets that observe large improvement in accuracy with
reduction in 𝜂 (Co-author and StackOverflow), also undergo sig-
nificant increase in running time. This is purely due to the property
that these two datasets also observe a significant increase in candi-
date set with reduction in 𝜂.

Number of hops 𝑑: To form the candidate set, we enumerate all
nodeswithin𝑑 hops from any of the hubs. Thus, the higher the value
of 𝑑 , the larger is the candidate set size. With a larger candidate
set size, the accuracy and the running time can only monotonically
increase. This trend is reflected in Fig. 7c and Fig. 7d. Note that we
the 𝑦-axis in the Fig. 7d is in log-scale to better reflect the growth
rate. The increase in running time is the highest in StackOverflow
since the density of StackOverflow is the highest. We also notice
that beyond 𝑑 = 2, the increase in accuracy is minimal, while the
jump in running time is drastic.
Impact of 𝑧: We expect both the accuracy and running time to
increase with sample size 𝑧. These trends are visible in Fig. 7e and
Fig. 7f. We observe that across all datasets, a sample set of 1000 to
2000 paths is enough to achieve accuracy above 0.9.
Impact of 𝑝: 𝑝 controls the percentage of candidate nodes pruned
in each iteration of iterative sampling (Alg. 2). Clearly, the lower
the value of 𝑝 , the better should be the accuracy, and the larger the
computation time. This behavior is visible in Fig. 7g and Fig. 7h. We,
however, note that the variation in both accuracy and running time
is more profound in Co-author. This happens since in Freebase,
StackOverflow, and Citation, the average number of iterations
per query are 15, 13, and 6 respectively. In contrast, in Co-author,
the number of iterations is 30.
Path enumeration length inNFA construction: Since the num-
ber of paths between any pair of nodes may be exponential, we
restrict path enumeration to only those paths that are at most
as long as the graph diameter. While this allows computational
tractability, it may compromise accuracy. In Figs. 7i-7j, we study
this aspect in the datasets with the longest and shortest diameters
(Citation, diameter=7.6 and Freebase, diameter=3.7). Specifically,
we vary the path enumeration length threshold from graph diame-
ter to a significantly larger value and measure the impact on the

308

Table 4: (a) Results from the user survey for each of the 15 subgraphs from Yeast. 𝑝-values less than 0.01 are denoted as ≈ 0. (b)
Precision, Recall and Running times of BF and Raman et al. [34] in NFA-inference.

Metric #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

Yes% 79% 100% 76% 100% 64% 98% 98% 98% 64% 64% 100% 62% 100% 62% 100%
𝑝-value 0 0 0 0 0.04 0 0 0 0.04 0.04 0 0.07 0 0.07 0

(a) User Survey

Algorithm Mean

Prec.

Median

Prec.

Mean

Recall

Median

Recall

Running

Time(sec)

BF 0.90 1 0.90 1 0.012

Raman 0.46 0.25 0.79 0.71 17.97

(b) Accuracy in NFA-inference

various quality metrics. As visible, there is minimal impact on the
quality. This trend may be explained as follows. Let P be the set of
all paths from the source to the destination. By thresholding, we
select a subset of paths from P. The larger the threshold, the larger
is the subset. As long as the subsets are large, we do not expect the
distribution of label sequences in each of these subsets to deviate
much from the true distribution in P. Since the NFA characterizes
the label sequences, if the sequence distributions across the subsets
are similar, the corresponding NFAs are also similar.

4.5 Case Studies on NFA-inference

4.5.1 User Survey. Does RQuBE infer the regex that the user in-
tends to communicate through the exemplar? We ask this question
in an user survey and measure the performance of NFA-inference.

To construct the user base, invitations were sent out to over 400
people who have a computer science or mathematics background.
We restrict to these educational backgrounds to ensure that users
are knowledgeable on regular expressions. The user base is diverse
enough to include bachelors level students, masters and PhD stu-
dents, full-time professors and experienced industry professionals.
From our invitations, 58 people participated in the survey.

In our user survey, we randomly select 15 subgraphs from the
Yeast dataset. We restrict the size of a subgraph to at most six nodes
so that it is easy for human consumption. Two nodes are randomly
selected within the subgraph as the source and destination. An
user is then shown the inferred regex for the corresponding source-
destination paths and asked whether it is an accurate representation
of the paths. The users are clearly instructed to tag the regex as
accurate only if it resembles the regex they would use to describe
the paths and not simply because it accepts all paths between the
source and the destination. As an example Σ∗ would accept all paths,
but may not be considered accurate. Their response is recorded
in the form of a Yes/No answer. The exact subgraphs used in our
survey are available at https://github.com/idea-iitd/RQuBE.

On average, 84% of the responses confirm that RQuBE recon-
structs the regex that the users have in mind. Table 4a presents
the accuracy per question and their 𝑝-values. The 𝑝-values are
computed under the null hypotheses that both options of Yes or
No are equally likely. As visible, the 𝑝-value is below 0.05 for 13
out of 15 subgraphs indicating a definite preference towards the
inferred regex. In 5 out of 15 subgraphs, 100% of the users agree
that the inferred regex correctly reconstructs their intended regex.
We selected a random subset of users to obtain qualitative feedback
on the cases where they selected “No”. The feedback consistently
indicated that even in these cases the inferred regex is accurate, but

it could have been more specific. Overall, these results establish the
efficacy of RQuBE in accurately modeling user’s intentions.

4.5.2 Comparison against Ground-truth: Our goal in this experi-
ment is two-fold: (1) Quantify the NFA-inference accuracy against a
ground-truth, and (2) Compare BF algorithm with the an alternative
MML-based algorithm.

To construct the ground-truth, we randomly choose 25 pairs of
source-destination nodes from Yeast. For each pair, we manually
inspect all paths of lengths up to 3-hops and employ a human la-
beler to construct the regex that best characterizes these paths. We
next identify all nodes in Yeast that are connected to the source
node through paths that satisfy the human-labeled regex (i.e., confi-
dence=1). These nodes form our ground-truth answer set. We now
try to recover this answer set by using the source-destination pair
as the exemplar to RQuBE. Note that our earlier experiments on
accuracy analyze the efficacy of Phase 2a and 2b against all path
enumeration. In this experiment, we focus on the accuracy of the
entire pipeline by also including Phase 1. Specifically, to recover
the ground-truth, the inferred regex (NFA) must be similar to the
human-labeled one. Furthermore, to benchmark inference quality
and efficiency of BF [7], we consider a second method where we
replace BF with Raman et al. [34], which is one of the prominent
MML-based NFA-inference algorithms (§ 3.1.4). We limit ourselves
to 25 queries and paths of lengths up to 3 since otherwise the task
of constructing human-curated regex is too arduous.

Table 4b presents the results obtained. BF is able to recover the
ground-truth for the majority of the pairs. In contrast, the accuracy
of Raman is significantly inferior. A closer inspection of the results
reveal that for some input exemplars, Raman is able to achieve high
precision and recall. But for the majority, both the precision and
recall numbers are low. Consequently, its median precision and
recall are lower than the averages. As discussed in § 3.1.4, Raman
does not have a parameter like ℓ in BF that has a monotonic relation-
ship with the language accepted by the corresponding NFA. Hence,
supervised parameter selection is not feasible. This limitation has
been recognized in the literature, where the only solution is to
either choose the NFA that "looks good" [10], or explore different
parameter choices and choose the one where MML is minimized.
We choose the second option for Raman.

In addition to quality, we also compare the NFA-construction
times of the two algorithms in Table 4b. As visible, BF is ≈ 1500
times faster. Raman is slow since we need to re-compute the change
in MML for each merging decision. Furthermore, Raman uses beam
search, where we need to compare any new NFA with all the NFAs
present in the beam at every step to avoid duplicates.

309

https://github.com/idea-iitd/RQuBE

(a) Q2: Weikum→Garcia-Molina (b) Q3: Garcia-Molina→Weikum (c) Q4: Kleinberg→Leskovec (d) Q6: Pei→Faloutsos

Figure 8: InferredNFAs of a subset of queries fromTable 5. For brevity,we only show labels corresponding to𝐴∗ conferences [1].

4.5.3 Semantics. Does RQuBE return semantically meaningful re-

sults? To conduct this empirical investigation, we use the Co-author
dataset. In Table 5, we show six queries and their top-1 matches.
Fig. 8 shows the inferred NFAs of a subset of queries.

Semantics: Across all queries, the top answer contains an au-
thor who publishes in the same community as the destination node
in the exemplar. This shows that the proposed NFA-inference mech-
anism is effective in modeling the intent behind the exemplars. But
this is an expected result and our goal is something more sophis-
ticated: to identify nodes that share the same relationship with
the source, in terms of labels in connecting paths, as the exemplar
destination. To this end consider Query 1. While both Jeffrey Xu
Yu and Guoliang Li publish heavily in data analytics, with ICDE
being the most prolific venue, they do not share a large number of
neighbors. Yet, 91% of the paths from Weikum to Li are accepted
by the NFA constructed over Weikum-Yu. Similarly in Query 6,
we are able to identify Vazirani and Papadimitrou as being similar
with respect to Kleinberg although Vazirani and Kleinberg have not
published together and Vazirani and Papadimitrou have published
together only twice.

Interpretability: The NFA characterizing an exemplar is in-
terepretable and has its own independent importance in visualizing
collaboration diffusion. To elaborate, the NFA not only shows the
communities that collaborate, but also the sequentiality of collab-
orations. As an example, let us consider the Query 2 (Fig. 8a). It
is clear that Weikum’s direct collaborations are primarily with
the Information Retrieval (IR) community (SIGIR, WWW, WSDM).
However, his collaborators from IR have connections to the data
base (DB) domain, which is evident from the fact that as we get
closer to the accepting states, the proportion of DB conferences
increase. On the other hand if we look at the NFA for Q4 (Fig. 8c)
we see that the relationship from Kleinberg to Leskovec is largely

Table 5: Answers to exemplar-based RPQs by RQuBE on the

Co-author dataset.

Query # Source Destination Answer Confidence

1 Gerhard Weikum Jeffrey Xu Yu Guoliang Li 0.91
2 Gerhard Weikum Hector Garcia-Molina Surajit Chaudhuri 0.95
3 Hector Garcia-Molina Gerhard Weikum Stefano Ceri 0.94
4 Jon M. Kleinberg Jure Leskovec Ravi Kumar 0.6
5 Jon M. Kleinberg Christos H. Papadimitriou Vijay V. Vazirani 0.87
6 Jian Pei Christos Faloutsos Jiawei Han 0.79

expressed through the same set of conferences which form cycles
in the NFA, thereby indicating a greater convergence of interests
in the subnetwork connecting Kleinberg to Leskovec.

Asymmetry: Directionality in exemplars matters. To elaborate,
let us compare Query 2 with Query 3. Although the exemplar nodes
are the same, the source and the destinations are switched. This
impacts the label sequence in paths, and hence the NFA inference
(Compare Fig. 8a with Fig. 8b).

Impact of destination: Let us compare Query 1 with Query 2.
Although the source is same in both, because the destinations are
different, the identified best matches are also different.

5 CONCLUSION

Our work is motivated by the observation that in Regular Path
Queries (RPQs), the need to express path constraints in the form
of regular expressions is a barrier for both technically savvy as
well as non-technical users. While non-technical users do not have
the expertise to formulate regular expressions, technically savvy
users require familiarity with semantic annotations, which are of-
ten cryptic and dynamic. We remove this barrier by introducing
the query-by-example paradigm for RPQs. In our framework, the
user is only required to provide an exemplar pair that character-
izes the paths relationships a user is interested in. The proposed
technique, RQuBE, uses Biermann and Feldman’s algorithm [7]
to automatically infer the optimal regex that best represents the
relationship between the end points of the exemplar pair. This regex
is, in effect, a semantically rich representation of the exemplar pair
and may be of independent interest beyond the study of the RQuBE
problem. Returning to RQuBE, to mitigate the scalability bottleneck
of enumerating all possible paths across all nodes in the graph, a
sampling based methodology is developed using the novel concept
of NFA-guided random walks with restarts which may also be of
independent interest. Extensive experiments on real, million-scale
datasets establish that RQuBE is scalable, more than 3 orders of
magnitude faster than baseline strategies, and effective in retrieving
semantically meaningful answer sets.

ACKNOWLEDGMENTS

We acknowledge the contributions of Sarthak Singla and Gaurav
Jain in conducting several key experiments that were requested
during the revision phase.

310

REFERENCES

[1] [n.d.]. CORE Rankings Portal. http://portal.core.edu.au/conf-ranks/.
[2] 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74,

1 (Jan. 2002), 47–97.
[3] R. Angles, M. Arenas, P. Barcel, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker,

M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt. 2018. G-CORE: A
Core for Future Graph Query Languages. In Proc. SIGMOD ’18. ACM, 1421–1432.

[4] Dana Angluin. 1987. Learning Regular Sets from Queries and Counterexamples.
Inf. Comput. 75, 2 (Nov. 1987), 87–106. https://doi.org/10.1016/0890-5401(87)
90052-6

[5] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond a
Yottabyte, or How SPARQL 1.1 Property Paths Will Prevent Adoption of the
Standard. In Proceedings of the 21st International Conference on World Wide Web

(Lyon, France) (WWW ’12). Association for Computing Machinery, New York,
NY, USA, 629–638. https://doi.org/10.1145/2187836.2187922

[6] M Ashburner, C A Ball, J A Blake, D Botstein, H Butler, J M Cherry, A P Davis, K
Dolinski, S S Dwight, J T Eppig, M A Harris, D P Hill, L Issel-Tarver, A Kasarskis,
S Lewis, J C Matese, J E Richardson, M Ringwald, G M Rubin, and G Sherlock.
2000. Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 25, 1 (May 2000), 25–29. https://doi.org/10.1038/75556

[7] A. W. Biermann and J. A. Feldman. 1970. On the synthesis of finite-state acceptors.
Technical Report AIM-114. Stanford University.

[8] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proc. SIGMOD ’08 (Vancouver, Canada). ACM, New York, NY, USA,
1247–1250. https://doi.org/10.1145/1376616.1376746

[9] Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. 2015. Learning Path Queries
on Graph Databases. In Proceedings of the 18th International Conference on Ex-

tending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015.
109–120.

[10] Matthew S. Collins and Jonathan J. Oliver. 1997. Efficient induction of finite
state automata. In Proc. 13th Conf. Uncertainty in Artificial Intelligence (UAI ’97).
99–107.

[11] Javier De Las Rivas and Celia Fontanillo. 2010. Protein–Protein Interactions
Essentials: Key Concepts to Building and Analyzing Interactome Networks. PLOS
Computational Biology 6, 6 (06 2010), 1–8. https://doi.org/10.1371/journal.pcbi.
1000807

[12] Daniel Christopher Esposito, Joseph Cursons, and Melissa Jane Davis. 2018.
Inferring Edge Function in Protein-Protein Interaction Networks. (2018). To
appear in Bioinformatics, Preprint doi:10.1101/321984.

[13] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. 2011. Adding regular expressions to
graph reachability and pattern queries. In Proc. ICDE ’11. 39–50.

[14] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. 2005. Towards
scaling fully personalized PageRank: algorithms, lower bounds, and experiments.
Internet Math. 2, 3 (2005), 333–358.

[15] G. D. Hachtel, J. K. Rho, F. Somenzi, and R. Jacoby. 1991. Exact and Heuristic
Algorithms for the Minimization of Incompletely Specified State Machines. In
Proceedings of the Conference on European Design Automation (Amsterdam, The
Netherlands) (EURO-DAC ’91). IEEE Computer Society Press, Washington, DC,
USA, 184–191.

[16] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. 2010. Com-
puting Label-constraint Reachability in Graph Databases. In Proc. SIGMOD ’10

(Indianapolis, Indiana, USA). ACM, New York, NY, USA, 123–134.
[17] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto Sangiovanni-

Vincentelli. 1993. A Fully Implicit Algorithm for Exact State Minimization. Tech-
nical Report. USA.

[18] Mineichi Kudo and Masaru Shimbo. 1988. Efficient regular grammatical inference
techniques by the use of partial similarities and their logical relationships. Pattern
recognition 21, 4 (1988), 401–409.

[19] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Anal-
ysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and

Technology (TIST) 8, 1 (2016), 1.
[20] D. A. Levin, Y. Peres, and E. L. Wilmer. 2017. Markov chains and mixing times (2e

ed.). American Mathematical Soc.
[21] József Marton, Gábor Szárnyas, and Dániel Varró. 2017. Formalising openCypher

Graph Queries in Relational Algebra. In Proc ADBIS ’17. Springer, 182–196.
[22] Miller McPherson, Lynn Smith-Lovin, and JamesM Cook. 2001. Birds of a Feather:

Homophily in Social Networks. Annual Review of Sociology 27, 1 (2001), 415–444.

[23] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in
Graph Databases. SIAM J. Comput. 24, 6 (Dec. 1995), 1235–1258.

[24] Laurent Miclet. 1980. Regular inference with a tail-clustering method. IEEE

Transactions on Systems, Man, and Cybernetics 10, 11 (1980), 737–743.
[25] Dheepikaa Natarajan and Sayan Ranu. 2016. A scalable and generic framework

to mine top-k representative subgraph patterns. In 2016 IEEE 16th International

Conference on Data Mining (ICDM). IEEE, 370–379.
[26] Dheepikaa Natarajan and Sayan Ranu. 2018. Resling: a scalable and generic

framework to mine top-k representative subgraph patterns. Knowledge and

Information Systems 54, 1 (2018), 123–149.
[27] Mark EJ Newman. 2000. Models of the small world. Journal of Statistical Physics

101, 3 (2000), 819–841.
[28] Arlindo L. Oliveira and Stephen Edwards. 1995. Inference of State Machines from

Examples of Behavior.
[29] Anil Pacaci, Angela Bonifati, and M Tamer Özsu. 2020. Regular path query evalu-

ation on streaming graphs. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data. 1415–1430.
[30] Jon D Patrick and KE Chong. 1987. Real-time inductive inference for analysing

human behaviour. In AI’87-Proceedings Australian Joint Artificial Intelligence

Conference, Sydney. 305–322.
[31] You Peng, Ying Zhang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2020. Answering

billion-scale label-constrained reachability queries within microsecond. Proceed-
ings of the VLDB Endowment 13, 6 (2020), 812–825.

[32] Arneish Prateek, Arijit Khan, Akshit Goyal, and Sayan Ranu. 2020. Mining
top-k pairs of correlated subgraphs in a large network. Proceedings of the VLDB
Endowment 13, 9 (2020), 1511–1524.

[33] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for
RDF. W3C Recommendation. http://www.w3.org/TR/rdf-sparql-query/

[34] A. Raman, P. Andreae, and J. Patrick. 1998. A Beam Search Algorithm for PFSA
Inference. Pattern Anal. Appl 1 (1998), 121–129.

[35] Sayan Ranu, Minh Hoang, and Ambuj Singh. 2013. Mining discriminative sub-
graphs from global-state networks. In Proceedings of the 19th ACM SIGKDD

international conference on knowledge discovery and data mining. 509–517.
[36] Neha Sengupta, Amitabha Bagchi, Maya Ramanath, and Srikanta Bedathur. 2019.

ARROW: Approximating Reachability using Random-walks Over Web-scale
Graphs. In Proc. of the 35th IEEE Intl. Conference on Data Engineering (ICDE).

[37] Qawi K Telesford, Karen E Joyce, Satoru Hayasaka, Jonathan H Burdette, and
Paul J Laurienti. 2011. The ubiquity of small-world networks. Brain connectivity

1, 5 (2011), 367–375.
[38] Frank Tetzel, Wolfgang Lehner, and Romans Kasperovics. 2020. Efficient Compi-

lation of Regular Path Queries. Datenbank-Spektrum 20, 3 (2020), 243–259.
[39] Ken Thompson. 1968. Programming Techniques: Regular expression search

algorithm. Commun. ACM 11, 6 (June 1968), 419–422. https://doi.org/10.1145/
363347.363387

[40] Jithin Vachery, Akhil Arora, Sayan Ranu, and Arnab Bhattacharya. 2019. RAQ:
Relationship-Aware Graph Querying in Large Networks. In The World Wide Web

Conference. 1886–1896.
[41] Lucien D.J. Valstar, George H.L. Fletcher, and Yuichi Yoshida. 2017. Land-

mark Indexing for Evaluation of Label-Constrained Reachability Queries. In
Proc. SIGMOD ’17 (Chicago, Illinois, USA). ACM, New York, NY, USA, 345–358.
https://doi.org/10.1145/3035918.3035955

[42] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: A Property Graph Query Language. In Proc. 4th Intl. Wkshp. on

Graph Data Management Experiences and Systems (GRADES ’16) (GRADES ’16).
Article 7, 1-6 pages.

[43] F Vernadat. 1982. Regular grammatical inference by a successor method. In IEEE

Symposium on Pattern Recognition.
[44] Denny Vrandečić and Markus Krötzsch. 2021. Wikidata:Database reports/List

of properties/all . https://www.wikidata.org/wiki/Wikidata:Database_reports/
List_of_properties/all

[45] Sarisht Wadhwa, Anagh Prasad, Sayan Ranu, Amitabha Bagchi, and Srikanta
Bedathur. 2019. Efficiently answering regular simple path queries on large labeled
networks. In SIGMOD. 1463–1480.

[46] Moshé M. Zloof. 1975. Query-by-Example: The Invocation and Definition of
Tables and Forms. In Proceedings of the 1st International Conference on Very Large

Data Bases. 1–24.
[47] Lei Zou, Kun Xu, Jeffrey Xu Yu, Lei Chen, Yanghua Xiao, and Dongyan Zhao.

2014. Efficient processing of label-constraint reachability queries in large graphs.
Information Systems 40 (2014), 47 – 66. https://doi.org/10.1016/j.is.2013.10.003

311

http://portal.core.edu.au/conf-ranks/
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/2187836.2187922
https://doi.org/10.1038/75556
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1371/journal.pcbi.1000807
https://doi.org/10.1371/journal.pcbi.1000807
http://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/3035918.3035955
https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
https://doi.org/10.1016/j.is.2013.10.003

