
Pattern Functional Dependencies for Data Cleaning

Abdulhakim QahtanF∗ Nan Tang♠ Mourad Ouzzani♠ Yang Cao♣ Michael Stonebraker�
FUtrecht University ♠Qatar Computing Research Institute ♣University of Edinburgh �MIT CSAIL

a.a.a.qahtan@uu.nl {ntang, mouzzani}@hbku.edu.qa
yang.cao@ed.ac.uk stonebraker@csail.mit.edu

ABSTRACT
Patterns (or regex-based expressions) are widely used to con-
strain the format of a domain (or a column), e.g., a Year
column should contain only four digits, and thus a value
like “1980-” might be a typo. Moreover, integrity constraints
(ICs) defined over multiple columns, such as (conditional)
functional dependencies and denial constraints, e.g., a ZIP
code uniquely determines a city in the UK, have been widely
used in data cleaning. However, a promising, but not yet
explored, direction is to combine regex- and IC-based theo-
ries to capture data dependencies involving partial attribute
values. For example, in an employee ID such as“F-9-107”,
“F” is sufficient to determine the finance department.

Inspired by the above observation, we propose a novel
class of ICs, called pattern functional dependencies (PFDs),
to model fine-grained data dependencies gleaned from par-
tial attribute values. These dependencies cannot be modeled
using traditional ICs, such as (conditional) functional de-
pendencies, which work on entire attribute values. We also
present a set of axioms for the inference of PFDs, analogous
to Armstrong’s axioms for FDs, and study the complexity of
consistency and implication analysis of PFDs. Moreover, we
devise an effective algorithm to automatically discover PFDs

even in the presence of errors in the data. Our extensive ex-
periments on 15 real-world datasets show that our approach
can effectively discover valid and useful PFDs over dirty data,
which can then be used to detect data errors that are hard
to capture by other types of ICs.

PVLDB Reference Format:
Abdulhakim Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao,
Michael Stonebraker. Pattern Functional Dependencies for Data
Cleaning. PVLDB, 13(5): 684 - 697, 2020.
DOI: https://doi.org/10.14778/3377369.3377377

1. INTRODUCTION
Functional dependencies (FDs) [4] and their different vari-

ants, e.g., conditional functional dependencies (CFDs) [12],

∗Work done while at QCRI.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 5
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3377369.3377377

have been widely used in data cleaning and other data man-
agement tasks such as query optimization and data modeling.
In addition, patterns (or regex-based expressions) are widely
used to specify the format of a set of values in a given domain,
e.g., a Year column should contain only four digits. Never-
theless, all previous integrity constraints (ICs), including FDs

and CFDs, are limited to work on the entire attribute values
and do not exploit the intrinsic knowledge carried out by
partial attribute values in the form of patterns.

We introduce pattern functional dependencies (PFDs),
a new type of ICs that combines dependency- and regex-based
theories.

1.1 Error Detection with Traditional ICs
Next, we discuss how traditional ICs, in particular FDs and

CFDs, are used for detecting data errors.

Example 1: Consider two tables: D1 with the schema (name,
gender) in Table 1, and D2 over the schema (zip, city) in
Table 2, respectively. Erroneous cells, r4[gender] in D1 and
s4[city] in D2, are annotated in pink. Their correct values, F
and Los Angeles, are shown and highlighted in green.

[FDs.] Suppose the following FDs are defined on these tables:

ϕ1 : Name ([name]→ [gender])

ϕ2 : Zip ([zip]→ [city])
FDs

where ϕ1 states that name uniquely determines gender in
table Name, and ϕ2 says that zip uniquely determines city in
table Zip.

Clearly, ϕ1 cannot detect the error r4[gender] in D1, be-
cause there is no other tuple r : (Susan Boyle, F) in D1 – an
FD requires two tuples to cause a violation [4]. Similarly, ϕ2

cannot detect the error s4[city] in D2.

[CFDs.] One possible, but very expensive, way to detect
errors in D1 and D2 is by using many constant CFDs, as
shown below:

φ1 : Name ([name = John Charles]→ [gender = M])

φ2 : Name ([name = John Bosco]→ [gender = M])

φ3 : Name ([name = Susan Orlean]→ [gender = F])

φ4 : Name ([name = Susan Boyle]→ [gender = F])

φ5 : Zip ([zip = 90001]→ [city = Los Angeles])

φ6 : Zip ([zip = 90002]→ [city = Los Angeles])

φ7 : Zip ([zip = 90003]→ [city = Los Angeles])

φ8 : Zip ([zip = 90004]→ [city = Los Angeles])

CFDs

where φ1 means that in table Name, if someone’s name is
John Charles, then his gender value should be M. The other

684

Table 1: D1: Name

name gender
r1: John Charles M
r2: John Bosco M
r3: Susan Orlean F
r4: Susan Boyle M

F

Table 2: D2: Zip

zip city
s1: 90001 Los Angeles
s2: 90002 Los Angeles
s3: 90003 Los Angeles
s4: 90004 New York

Los Angeles

constant CFDs (φ2–φ8) can be interpreted similarly. This
method is impractical because it would amount to knowing
the entire ground truth for all tuples. 2

1.2 Key Observation
One fundamental limitation of previous ICs (such as FDs

and CFDs), which will be addressed in this paper, is that
they enforce data dependencies using the entire attribute
values. Consequently, they cannot specify the fine-grained
semantics found in partial attribute values. For example,
given a column of full names, sometimes first names are
actually sufficient, and more meaningful than full names, to
determine the gender.

Our key observation is that by relaxing the limitation of
previous FDs of operating on entire attribute values, we are
able to introduce a new type of dependencies that can capture
partial attribute values that follow some regex-like patterns.
For example, in D1, the first name is enough to determine
gender, e.g., John is a male and Susan is a female; and in
D2, the first three digits of zip, e.g., 900, are sufficient to
determine the city Los Angeles.

Example 2: Let us now consider a new type of pattern-based
constraints:

λ1 : Name ([name = John\ \A∗]→ [gender = M])

λ2 : Name ([name = Susan\ \A∗]→ [gender = F])

λ3 : Zip ([zip = 900\D{2}]→ [city = Los Angeles])
PFDs

where λ1/λ2 states that if someone’s first name is John/Susan,
then the gender should be M/F (\A∗ matches any string,
which will be defined later; and λ3 says that if a five-digit
zip code starts by 900, then the city is Los Angeles (\D{2}
matches any two consecutive digits). Clearly, λ2 can detect
error r4[gender] in D1 and λ3 can detect error s4[city] in D2.

Alternatively, consider two other constraints as follows:

λ4 : Name ([name = \LU\LL∗\ \A∗]→ [gender])

λ5 : Zip ([zip = \D{3} \D{2}]→ [city])
PFDs

where λ4 states that one’s first name uniquely determines
one’s gender for table Name (assuming that name is written
as first name followed by last name) (\LU matches any upper
case letter and \LL∗ matches any consecutive lower case
letters); and λ5 states that the first 3 digits of a 5-digit zip
code determines the city for table Zip. These two PFDs (λ4

and λ5) are defined over a pair of tuples, e.g., two tuples
match as specified by the left hand side (LHS) of λ4 if they
both satisfy the pattern \LU\LL∗\ \A∗, and their first names

are the same, which is enforced by \LU\LL∗\ .
λ4 can detect error r4[gender] by comparing r3 and

r4: they have the same first name Susan but different
gender, which identifies a violation consisting of four cells
(r3[name], r3[gender], r4[name], r4[gender]). Similarly, λ5 can
detect error s4[city] by comparing s4 with s1, s2, or s3. 2

Table 3: Real-world PFDs and Errors

Dependendcy Pattern Tableau Errors

850\D{7} → FL 8505467600 — CA
Phone Number 607\D{7} → NY 6073771300 — PA

→ 404\D{7} → GA 4048481918 — OK
State 217\D{7} → IL 2176163297 — TX

860\D{7} → CT 8602713444 — SC

\A∗,\ Donald\A∗→M Holloway, Donald E. — F
Full Name \A∗,\ Stacey\A∗ → F Jones, Stacey R. — M

→ \A∗,\ David→ M Kimbell, David — F
Gender \A∗,\ Jerry\A∗ → M Mallack, Jerry L. — F

\A∗,\ Alan\A∗ → M Otillio, Alan P. — F

ZIP → CITY
60601 — Chicag

6060\D→ Chicago 60603-6263 — C
60601 — Chciago

ZIP → STATE
60\D{3} → IL 60603 — lL
95\D{3} → CA 95603 — MI

Remark. Specialized PFDs such as λ1–λ3 are more conserva-
tive, and more general PFDs such as λ4–λ5 are less conser-
vative, potentially leading to false positives (e.g., a unisex
name cannot determine the gender). Also, and not surpris-
ingly, real-world data is not homogeneous. Taking Boston
as an example, the first three digits of a zip code in Boston
could be either 201, 202, 203, or 204, not unique as in the
case of Los Angeles.

1.3 Contributions
We summarize our notable contributions below.

1. We introduce PFDs, a new type of ICs, based on our key
observation that data dependencies can be captured
by partial attribute values (see real-world examples in
Table 3). We also describe their semantics. (Section 2)

2. We provide an inference system for PFDs, similar to
Armstrong’s axioms for FDs, and provide an analysis
over PFDs in terms of consistency and implication. (Sec-
tion 3)

3. We devise an effective and efficient algorithm to au-
tomatically discover PFDs from dirty datasets. Note
that, although profiling ICs from clean data [13, 3] has
been widely studied, discovering them from dirty data
is known to be much harder [5, 8]. (Section 4)

4. We conduct extensive experiments on 15 real-world
datasets. The results show that our discovery algorithm
can effectively find valid dependencies with an average
precision and recall of 78% and 93%, respectively. Fur-
thermore, it can detect errors that cannot be found by
other FDs with an average precision of 65%. Table 3
shows sample PFDs (the dependencies and some of the
tuples in their tableaux), as well as the errors that these
PFDs were able to uncover. (Section 5)

Moreover, Section 6 discusses related work. Section 7 pro-
vides all proofs for Section 3. Section 8 closes this paper by
providing concluding remarks and discussing future work.

2.PATTERN FUNCTIONAL DEPENDENCIES

2.1 Syntax
We first discuss (regex-like) patterns that we use for mod-

eling partial attribute values. Intuitively, the class of general
regular expressions could be used. However, this class is too
large for our purpose. In addition, it complicates the problems

685

All[A]

Upper[LU]

22

Lower[LL]

99

Digit[D]

gg

Symbol[S]

ll

A

;;

· · ·

OO

Z

cc

a

;;

· · ·

OO

z

ff

0

==

· · ·

OO

9

aa

ε

;; OO

· · ·

dd

Figure 1: A Generalization Tree

(i.e., high time complexity) of discovering and applying PFDs,
e.g., checking the equivalence of two regular expressions is
PSPACE-complete [38]. Fortunately, for finding data-driven
patterns, simple patterns are typically sufficient, as it has
been shown in [18, 31].

Generalization Tree. A generalization tree is a tree defined
over an alphabet Σ, where each leaf node is a character in
Σ and each intermediate node is a generalization of its child
nodes. The generalization tree used in this paper (Figure 1)
contains upper case letters [A-Z], lower case letters [a-z], digits
[0-9], and other symbols. Here, ε represents the empty string.

Patterns. A pattern P is a sequence of characters defined
over the generalization tree. For strings α and β,α{N}means
N repetitions of α, α & β is the logical and of α and β, α+
means one-or-more repetitions, and the Kleene star operator
α∗ denotes zero-or-more repetitions. We do not consider
recursive patterns such as (α+)∗.

The benefits of employing a simple definition of patterns,
in contrast to complicated regular expressions, are manifold:
(1) they are easy to specify, (2) they are easy to discover,
(3) they are easy to apply, (4) they are easy to reason about,
and (5) most importantly, they are enough to detect most
errors that more general regular expressions can find in prac-
tice. It will still be safe to use regular expressions to replace
the patterns defined above; the semantics of PFDs and the
axioms for PFD inference (Section 3.1) will remain the same.
However, the complexity of reasoning, discovering, and ap-
plying PFDs will be much higher.

Pattern Matching. A string s matches a pattern P , de-
noted by s 7→ P , if s is evaluated to be true by P ; the value
satisfies the pattern definition. For example, 90001 7→ \D{5}.
Also, it is easy to see that the patterns used in this paper can
be converted to non-deterministic finite automata (NFAs)
in polynomial time. Obviously, checking whether a string
is accepted by a pattern, two patterns are equivalent, or
whether one pattern is contained by another can be done
in PTIME [9]. Only if a string is accepted by the NFA of a
pattern, it is considered to match the pattern.

Constrained Patterns. Let R be a relation and P = \A ∗
Q\A∗ be a regular expression that generates a subset of
the values in attribute B ∈ R. The pattern Q is called
a constrained pattern and denoted by Q if ∀s, s′ ∈ B, the
portions of s and s′ that match Q should be exactly the same.
The main purpose of introducing constrained patterns is to
model the equivalence of two strings when their constrained
substrings are the same. For instance, the last two constraints
in the motivating examples in the introduction define two
constraints where the first name are the same and the first
3-digit are equal, respectively. More specifically, given two
strings s and s′, s and s′ are equivalent w.r.t. a constrained
pattern Q, denotes by s ≡Q s′, if s(Q) = s′(Q), where s(Q)

represents the portion of s that matches the expression Q. It
is worth noting that the constrained patterns provide better
equivalence between strings than the simple approximate
string matching.

name gender

X John\ \A∗ M

Susan\ \A∗ F

(a) ψ1 (λ1 and λ2)

name gender

X\LU\LL ∗ \ \A∗ ⊥

new line
(b) ψ2 (λ4)

zip city

X900 \D{2} Los Angeles

(c) ψ3 (λ3)

zip city

X\D{3} \D{2} ⊥

(d) ψ4 (λ5)
Figure 2: Sample PFDs

Example 3: [Constrained Patterns.] One sample

constrained pattern is Q = \LU\LL∗\ \A∗ from the
constraint λ4 presented in the introduction. It is used
on the name attribute to enforce the matching over
the first name. Another constrained pattern example is
Q′ = \LU\LL∗\ \A∗ \LU\LL∗, which can be used to
enforce the matching over both the first name and the last
name, but with an arbitrary number of middle names.

The embedded patterns of Q and Q′ are \LU\LL∗\ \A∗
and \LU\LL∗\ \A∗ \LU\LL∗, respectively. Obviously, Q′ ⊆
Q, i.e., pattern Q′ is contained by Q, and Q′ ⊆ Q, i.e., Q′

is a restricted constrained pattern of Q.
Consider two names in Table 1, r1[name] = John Charles

and r2[name] = John Bosco. We have r1[name] 7→ Q,
r2[name] 7→ Q. Moreover, we have r1[name] ≡Q r2[name],

because r1[name](Q) = {John}, r2[name](Q) = {John}, and
r1[name](Q) ∩ r2[name](Q) = {John} 6= ∅. 2

Restricting and Generalizing the Patterns. Given two
constrained patterns Q and Q′, we say that Q is a restricted
pattern of Q′, denoted by Q ⊆ Q′, if for any two strings s, s′,
s ≡Q s′ implies s ≡Q′ s

′. The pattern Q′ is said to be a

generalized pattern of Q.

Example 4: [Restricted Patterns.] Consider zip code
90001 and two patterns Q = \D{5} and Q′ = \D∗. We
have 90001 7→ Q, 90001 7→ Q′, and Q ⊆ Q′. 2

A special case of the string equivalence s ≡Q s′ is when

Q is a constant and Q is constraining this entire constant
(e.g., M for the gender male). In such a case, strings s1 and
s2 must be exactly the same (e.g., M for male).

In the rest of the paper, we limit our discussions to the
case of Q with only one constrained part (e.g., Q but not
Q′, both from Example 3). This is observed based on our
empirical study over many real-world datasets – more than
one constrained part is not common in practice.

Pattern Functional Dependencies (PFDs). A PFD ψ
defined over schema R is a pair R(X → Y, Tp), where:

1. X and Y are sets of attributes from R,

2. X → Y is a standard FD, called an embedded FD, and

3. Tp is a tableau with all attributes in X and Y , where
for attribute A in X or Y and each tuple tp ∈ Tp, tp[A]
is either a constrained pattern that matches values in
dom(A), or an unnamed variable ‘⊥’ that is used as a
wildcard.

Along the same notation convention of CFDs [12], we sepa-
rate attributes X and Y of a tuple in Tp with ‘‖’. IfX∩Y 6= ∅,
for each attribute A ∈ X ∩ Y , we use AL for the attribute A
in X indicating the LHS, and AR for the attribute A in Y
indicating the right hand side (RHS, for short). For any PFD

686

to make sense when X ∩ Y 6= ∅, we have tp[AL] ⊆ tp[AR] for
each tp ∈ Tp. Also, we simply write ψ as (X → Y, Tp) when
R is clear from the context.

Example 5: [PFDs.] The constraints λ1–λ5 given in the
introduction can be expressed as PFDs (Figure 2). 2

Remark. Data types can be classified into quantitative val-
ues that typically have meaning as a measurement (for ex-
ample, a person’s height) or a count (for example, a person’s
stock shares), and qualitative values that are non-statistical
and hence cannot be aggregated (for example, one cannot
compute the average value of two zip codes). Semantically
and intuitively, (functional) data dependencies (e.g., FDs [4],
CFDs [12], fixing rules [41], and Sherlock rules [20]) apply only
on qualitative values, not on quantitative values. In contrast,
constraints on quantitative values (e.g., metric dependen-
cies [23], differential dependencies [37]) are not functional.
PFDs are defined on qualitatively values.

2.2 Semantics
Intuitively, the tableau Tp of ψ : R(X → Y, Tp) constrains

the FD R(X → Y) embedded in ψ by specifying data depen-
dencies on partial attribute values in X and Y . In order for
a PFD to hold, the constrained patterns in tp ∈ Tp should
be matched by a predefined number of tuples that is called
the support of the PFD. A data tuple t ∈ T matches a tuple
tp ∈ Tp, denoted by t 7→ tp, if for each attribute A ∈ X ∪ Y ,
t[A] can be generated by the regular expression in tp[A].

A table T satisfies a PFD ψ(X → Y, Tp), denoted by T � ψ,
when: ∀tp ∈ Tp, if ∃(t1, t2) ∈ T such that:

t1[A] 7→ tp[A] ∧ t2[A] 7→ tp[A] ∧ t1[A] ≡tp[A] t2[A], ∀A ∈ X

then:

∀B ∈ Y : t1[B] 7→ tp[B]∧ t2[B] 7→ tp[B]∧ t1[B] ≡tp[B] t2[B].

That is, if the LHS values, t1[X] and t2[X], are equivalent
as constrained by tp[X], then their RHS values, t1[Y] and
t2[Y], should also be equivalent as specified by tp[Y]. If for a
tuple tp in the tableau Tp, the constrained parts only contain

constants (such as John\ \A∗), a PFD can be applied on
a single tuple. That is, for each tuple t in T and for each
attribute A ∈ X, if t[A] 7→ tp[A], then for each attribute
B ∈ Y , t[B] 7→ tp[B]. Moreover, if Ψ is a set of PFDs, we
write T � Ψ if T � ψ for each PFD ψ ∈ Ψ.

Example 6: Consider two tables Name (Table 1) and Zip
(Table 2), and the PFDs given in Figure 2.

[Violations of a Single Tuple.] Tuple r1 in Table 1 satisfies
PFD ψ1 (r1 � ψ1), but r4 violates ψ1 (r4 6� ψ1) because r4’s
first name is Susan but r4[gender] is M while it should be F.

[Violations of Two Tuples.] Tuples (r1, r2) satisfy PFD

ψ2, but tuples (r3, r4) violates ψ2 (they have the same
first name Susan but different gender, F for r3 and M for
r4, which causes a violation). Similarly, tuples (s1, s2) in
Table 2 satisfy the PFD ψ4 in Figure 2, but (s1, s4), (s2, s4)
and (s3, s4) violate ψ4. 2

As shown in Example 6, both ψ1 and ψ2 can detect the
erroneous cell r4[gender]. Seemingly, ψ2 is more general than
ψ1. However, there are two notable cases. First, if r3 is not
present in Table 1, ψ1 can still detect r4[gender] as an error,
but ψ2 cannot, because there is no enough redundancy in
the data. Second, ψ2 may detect violations if Table 1 has

many unisex name such as Kim, which are actually not errors.
Hence, the generalization of patterns is a double-edged sword
and should be used carefully – an expert could validate a
generalized PFD only if she can ensure that there are no
exceptional cases.

For brevity, we also introduce a normal form for PFDs

where the RHS consists of a single attribute, as R(X →
A, Tp), where X is a set of attributes and A is a single at-
tribute, which are also commonly used by FDs and CFDs.

3. FUNDAMENTAL PROBLEMS

3.1 Inference Axioms for PFDs
We develop axioms for PFDs, analogous to Armstrong’s

Axioms for FDs [4] and the inference system for CFDs [12].
Let X,Y, Z be subsets of attributes from relation R, and

A,B be attributes of R. For simplicity, we write XY for the
union of two sets of attributes X and Y instead of X∪Y , and
XA for the union of a set of attribute X and one attribute
A instead of X ∪ {A}. Also, given a PFD ψ : R(X → Y, Tp),
since tuples in Tp are independent from each other, it is
sufficient to reason about R(X → Y, tp) for each tp ∈ Tp.

We are now ready to present the axioms for PFD inference,
which are shown in Figure 3.

Reflexivity. If A ∈ X, then R(X → A, tp) where the con-
strained pattern for A in the LHS of the PFD (or AL for
short) is a restricted form of the constrained pattern for A in
the RHS of the PFD (or AR for short), i.e., tp[AL] ⊆ tp[AR].

Consider the Name table (Table 1), we have a PFD

Name(name→ name, (John\A∗ ‖ \LU\LL∗\ \A∗)), meaning
that two persons both having the first name John determines
that they have the same first name.

Inconsistency-EFQ. Let SB be a subset of the domain
dom(B) of B. For a set Ψ of PFDs, we say that B ∈ SB is
consistent w.r.t. Ψ if for any value c ∈ SB , there exists an
instance T with a tuple t ∈ T such that t[B] = c and T |= Ψ.
B ∈ SB is not consistent if for each B-value in SB , such an in-
stance T does not exist. We will study the consistency of PFDs

in more detail in Section 3.2. The Inconsistency-EFQ axiom
derives R(B → Y, tp) for arbitrary attributes Y and their pat-
terns if tp[B] is contained in SB and B ∈ SB is not consistent
with the current set Ψ of PFDs. This is similar to the principle
of explosion (EFQ) in the natural deduction system [6].

Augmentation. If R(X → Y, tp) and A ∈ R and A /∈ XY
then R(XA→ Y A, t′p), where the pattern does not change
for X and Y , i.e., t′p[XY] = tp[XY], and the pattern for A
in the LHS is the same as the pattern for A in the RHS,
i.e., t′p[AL] = t′p[AR]. The axiom states that adding a new
attribute A (i.e., t′p[AL] = t′p[AR]) does not change the basic
dependency between X and Y .

Transitivity. Given R(X → Y, tp) and R(Y → Z, t′p), if
tp[A] ⊆ t′p[A] for each A ∈ Y , then R(X → Z, t′′p) with t′′p [X]
= tp[X] and t′′p [Z] = t′p[Z]. Note that transitivity applies
only when patterns in t′p for Y subsume patterns in tp for Y .

Reduction. This axiom is carried over from CFDs [12], it
is needed to remove useless attributes from the LHS of a
PFD. Intuitively, given a PFD R(XB → A, tp), if B is a
wildcard and A is a constant, the constrained patterns on A
must come from X and not from B. Hence, it is safe to drop
attribute B from the LHS of such PFDs.

687

Reflexivity A ∈ X
R(X → A, tp), where tp[AL] ⊆ tp[AR]

Inconsistency-EFQ
B ∈ SB is not consistent

R(B → Y, tp), where tp[B] ⊆ SB

Augmentation
R(X → Y, tp) A 6∈ XY

R(XA→ Y A, t′p), where t′p[XY] = tp[XY] and t′p[AL] = t′p[AR]

Transitivity
R(X → Y, tp) R(Y → Z, t′p) tp[A] ⊆ t′p[A] for all A ∈ Y
R(X → Z, t′′p), where t′′p [X] = tp[X] and t′′p [Z] = t′p[Z].

Reduction
R(XB → A, tp) tp[B] =⊥ tp[A] is a constant

R(X → A, t′p), where t′p[XA] = tp[XA]

LHS-Generalization
R(XB → Y, tp) R(XB → Y, t′p) tp[XY] = t′p[XY]

R(XB → Y, t′′p), where t′′p [XY] = t[XY] and t′′p [B] = tp[B] ∪ t′p[B]

Figure 3: Inference Axioms for PFDs

LHS-Generalization. This axiom generalizes the patterns
on the LHS of PFDs. More specifically, given two PFDs

R(XB → Y, tp) and R(XB → Y, t′p) such that the pat-
terns for XY in tp and t′p are identical, then it derives
R(XB → Y, t′′p) that combines the patterns for B in tp and
t′p, i.e., t′′p [B] = tp[B] ∪ t′p[B]. In other words, for any value
s over B, s 7→ t′′p [B] if and only if s 7→ tp[B] or s 7→ t′p[B].

Remark. In contrast to prior work on inference axioms
for FDs [4] and CFDs [12], Inconsistency-EFQ and LHS-
generalization are new axioms dictated by the patterns
introduced by PFDs. This justifies the novelty and fundamen-
tal difference between PFDs and prior work. The axioms of
reflexivity, augmentation, and transitivity extend standard
Armstrong’s axioms for FDs, the axiom of reduction is
extended from CFDs.

Implication. Given a set Ψ of PFDs and a PFD ψ, the
implication problem for PFDs is to determine whether Ψ
implies ψ, denoted by Ψ � ψ, i.e., whether for all instances
T of R, if T � Ψ then T � ψ.

Finite axiomatizability. PFDs are finitely axiomatizable.
Indeed, the axioms in Figure 3 provide an inference system
that is sound and complete for logical implication of PFDs.

Below we first formalize the notion of finite axiomatiz-
ability of PFDs, i.e., soundness and completeness for logical
implication of PFDs. We then prove that the inference axioms
do provide a finite axiomatization of PFDs.

Over attributes U , let Ψ be a set of PFDs and ψ another
PFD, A proof of ψ from Ψ using set I of axioms is a se-
quence of PFDs ψ1, . . . , ψn = ψ(n ≥ 1) such that for each
i ∈ [1, n], either (a) ψi ∈ Ψ, or (b) there exists a substitution
for some rule ρ ∈ I such that ψi corresponds to the conse-
quent of ρ such that for each PFD in the antecedent of ρ the
corresponding PFD is in the set {ψj | 1 ≤ j < i}.

The PFD ψ is provable from Ψ using I given U , denoted
by Ψ `Iψ, if there exists a proof of ψ from Ψ using I.
I is sound for PFDs implication if Ψ `Iψ implies Ψ |= ψ.
I is complete for PFD implication if Ψ |= ψ implies Ψ `Iψ.

Here I refers to the inference axioms in Fig. 3. We write
Ψ ` ψ instead of Ψ `Iψ when I is clear from the context.

Theorem 1: The inference system I is sound and complete
for logical implication of PFDs. 2

Please see Section 7.1 for the proof.

Table 4: Name Patterns

ñame g̃ender
r′1: John M
r′2: Susan F

Table 5: Zip Patterns

z̃ip c̃ity
s′1: 900 Los Angeles

Based on Theorem 1, we give the complexity of logical
implication of PFDs (please see Section 7.2 for a proof).

Theorem 2: The implication of PFDs is coNP-complete. 2

3.2 Consistency
The consistency problem is to check whether there is a

conflict given a set of ICs. As studied in CFDs [12], although
a set of FDs is always consistent, a set of CFDs may be
inconsistent. Similarly, PFDs may also be inconsistent, e.g.,
any inconsistent set of CFDs is also a set of inconsistent PFDs.
The consistency problem for PFDs is to determine, given a
set Ψ of PFDs defined over a relational schema R, whether
there exists a nonempty instance T of R such that T � Ψ.

Theorem 3: (a) The consistency of PFDs is NP-complete.
(b) It remains NP-hard even if all domains are infinite. 2

Please see Section 7.3 for the proof.
Theorem 3 tells us that, in contrast to CFDs whose consis-

tency is PTIME decidable when all domains are infinite [12],
the consistency analysis for PFDs remains NP-hard even over
infinite domains. This further highlights the fundamental
difference between PFD and CFD.

4. DISCOVERING PFDS
Essentially, PFDs represent some latent knowledge that

captures the dependencies between partial attribute values
in a table. Consider Tables 1 and 2, the knowledge we want
to discover is shown in Tables 4 and 5, respectively. Here,

“X̃” denotes that the values in this column are substrings of
the original column, e.g., “ñame” means that values in this
column are substrings of the name values. This observation
will serve as a guide for discovering PFDs.

4.1 The Brute-Force Solution
A simple method for discovering PFDs, from A to B, is to

enumerate all combinations of substrings of t[A] and t[B] for
each tuple t, group substrings of all A-values based on exact

688

string matching, and make a decision based on a function f
using the information on the corresponding substrings in B.

Example 7: [The Brute-force Solution.] Assume that
we want to find PFDs from name to gender (Table 1). A
brute-force solution works as follows:

Step 1. Enumerate substrings. Enumerate all combina-
tions of substrings of name and gender for each tuple. Con-
sidering r1 : (John Charles, M), we have: (J, M), (o, M), . . .
(s, M) for the substrings of name of length 1, (Jo, M), . . .
(es, M) for the substrings of length 2, and so on, until (John
Charles, M) for the entire string of name.

Step 2. Group common substrings on the LHS. Group
the common substrings of attribute name, and record the
corresponding RHS values using a bag semantics. We get (J,
{M, M}) where the two gender values M are from r1 and r2,
. . ., (John, {M,M}), (Susan, {M,F}), and so on.

Step 3. Decide on PFDs. Let the function f be “If the
number of distinct values on the RHS is at most three, and
the majority value is at least 50%, then it forms a partial
value dependency”. This would produce good information
such as (John, {M,M}) and (Susan, {M,F}) (i.e., true posi-
tives), as well as bad information such as (J, {M, M}) and
(e, {M,M,M}) (i.e., false positives). 2

Clearly, the brute-force approach does not work in practice
due to the following challenges:

(C1.) Huge number of attribute combinations. The number
of attribute combinations for X → Y is exponential for sets
of attributes X and Y , and quadratic for single attributes
A→ B, w.r.t. the number of attributes in relation R.

(C2.) Huge number of substrings. Given a string s1, the
number of its substrings is |s1|(|s1|+ 1)/2 where |s1| is the
length of s1. Given two strings s1 and s2, the number of
substring combinations is |s1||s2|(|s1|+ 1)(|s2|+ 1)/4, for a
single attribute PFD A→ B.

(C3.) High recall but low precision. While such an approach
may find all correct partial dependencies, it may unavoidably
include meaningless partial value dependencies as well.

4.2 Restrictions from Practical Perspectives
Before optimizing the aforementioned brute-force solution,

we discuss some restrictions based on the insights we identi-
fied from the real-world datasets we have worked with.

(i) String Tokenization. Special characters, such as “−”
in F-9-107 and “\ ” in John\ Charles, often provide strong
signals to extract meaningful substrings. Hence, when these
special characters (or signals) are present, we should leverage
them to tokenize a string.

(ii) Report Dependencies with Minimum Coverage.
The coverage of a PFD is the number of records that contain
its patterns. Without any restrictions, we may always be able
to find at least one PFD between any two attributes. Hence,
we report a dependency between A and B only if the PFDs

in the tableau accumulate a coverage above a set threshold.
This restriction is based on the intuition that PFDs with
high coverage give a stronger signal about the dependency.

(iii) Report PFDs with Large Support and Minimal
Noise. We define two important parameters to reduce false
positives: (a) the minimum support K, which represents the
minimum number of records that the pattern should appear
in to report the PFD that includes the pattern as a valid PFD

and (b) δ, the ratio of allowed violations, which represents the
ratio of the patterns which are different from the main pat-
tern that may appear in the dependent attribute values. For
example, if pattern p1 appears in n records in the LHS and
pattern p2 appeared in more than n−(δ∗100) in the RHS, we
declare p1 → p2 as a valid PFD for the embedded dependency.

(iv) Avoid Unnecessary Checks. A PFD ψ : (X → Y, Tp)
can be decomposed to ψi : (X → Bi, Tpi), ∀B ∈ Y , restrict-
ing the right hand side to single attribute only so as to avoid
unnecessary attribute combinations in the RHS. Moreover,
PFDs of the type ψ : (X → A, Tp) when A ∈ X are consid-
ered trivial dependencies. We ignore trivial PFDs in this work.

For generalizable PFDs, we used the attribute-set lattice
from [19] to mine the PFDs at level n + 1 of the lattice
after pruning the sets of attributes based on the discovered
dependencies in level n. The level number n represents
the number of attributes that should be in the LHS of the
PFD. In case of constant PFDs discovery, we ignore testing
dependencies when the coverage of the frequent patterns in
the combination of the attributes cannot be greater than
the minimum coverage.

The above restrictions suggest the followings. Restric-
tion (i) can significantly reduce the number of substrings
to be considered, and thus addressing Challenge C2, and
restrictions (ii, iii) reduces the number of false positives sig-
nificantly. A positive side effect of the above restrictions is
that it will increase the precision, without reducing the recall,
by discarding many meaningless substrings, i.e., and thus
addressing Challenge C3.

Restriction (iv) tells us that we do not need to traverse the
full lattice to check for dependencies, allowing us to avoid
a reasonable number of unnecessary tests. Hence, restric-
tion (iv) is used to tackle Challenge C1.

4.3 An Efficient Algorithm
The algorithm to discover PFDs by leveraging the above

practical restrictions is shown in Figure 4. Given a table
and a function to decide whether a set of values forms a
PFD as input, it outputs a set of PFDs. The algorithm first
profiles the data to prune attributes for which PFDs cannot
be found (line 1). For example, we drop all columns with
pure numerical (i.e., quantitative) values. We then treat all
remaining combinations of columns as potential dependencies
for PFDs. Thus, the algorithm will be able to detect PFDs

with multiple attributes on the LHS. The profiling process
also decides whether to Tokenize or to use NGrams for
each attribute to extract partial patterns (lines 2-3). Then we
create an index (hash-based inverted list) for the patterns in
the different attributes of the table (lines 5–11). The index
stores the pattern and its position in the value as a key
and the tuple ids in which the pattern appeared in that
position. The patterns are extracted either using Tokenize
or NGrams based on the decision made by the function

“Tokenize or NGrams”. Tokenize is based on restriction (i),
mentioned earlier whereas NGrams takes an attribute value
as input and outputs all the n-grams up to the length of the
largest value in the column.

After that, for each candidate dependency, the algorithm
checks whether there are patterns that can be used to form a
PFD (lines 13–28). We pick the attribute A with the largest
number of frequent patterns from attributes in the LHS of the
candidate PFD to be our starting attribute. For each token/n-
gram of h[A] (line 16), we check all the tokens/n-grams in the

689

Algorithm Discover PFDs

Input: a relational table T ,
a function f to make PFD decisions
a minimum coverage threshold γ

Output: a set Ψ of PFDs

/* Profile and prune T to obtain candidate dependencies in the
form (X → B) in a lattice representation. */

1. Φ := CandidateDependecies(T)
2. for each A ∈ attr(T) do
3. Tokenize or NGrams(A)
4. Ψ := ∅ /* the set of discovered PFDs */
5. H := ∅ /* a hash-based inverted list */
6. for each tuple t ∈ T do
7. for each A ∈ attr(T) do
8. for each u ∈ Tokenize(t[A])|NGrams(t[A]) do
9. if (u, posu) /∈ H[A] then
10. H[A].insert((u, posu), id list[id(t)])
11. else
12. H[A].update((u, posu), id list.append[id(t)])
13. for each ϕ : (X → B) ∈ Φ do
14. Tp = ∅ for a new PFD ψ : (X → B, Tp)
15. sort attributes of X according to the number of patterns
16. for each entry h ∈ H[A] do
17. ids = h[id list]
18. SX = frequent itemset of patterns in X[ids]
19. SB = frequent itemset of patterns in B[ids]
20. if f(SX , SB) is true then
21. add a tuple tp to Tp, w.r.t. entry S
22. if coverage(Tp) ≥ γ then
23. ψg :=generalize(ψ)
24. if (ψg) is not null then
25. remove the children of X in the lattice
26. Ψ := Ψ ∪ {ψg}
27. else
28. Ψ := Ψ ∪ {ψ}
29. return Ψ

Figure 4: Algorithm for Discovering PFDs

remaining attributes of the LHS. The set of frequent patterns
in the LHS attributes is represented by SX in the algorithm.
The algorithm also searches for the most frequent pattern in
attribute B (the RHS) that appears in the same tuples as the
pattern h[A](u, posu). Let SB represent the set of tuple ids in
which the frequent pattern appears. The function f(SX , SB)
returns True if the length of |SX | = n is greater than the
minimum support K and the length of SB is greater than
n−(δ∗100) records. The PFDs for each candidate dependency
ψ with a coverage greater than the minimum coverage will be
checked for generalization and either the generalized PFD ψg
or the constant PFD ψ will be added to the result (lines 22–
28). The final result will be returned (line 29).

Since some of the constant PFDs discovered so far may be
generalizable to variable PFDs, such as from Figure 2 (a) to
Figure 2 (b), we further process ψ to check if a variable PFD

ψg can be discovered. More specifically, for each attribute
A ∈ X, Generalize(ψ) (line 23) checks all the constrained
patterns in the PFDs from A and tries to find a general form
that can represent all of them. If the general constrained
pattern can be found, it is applied on all the values of the at-
tribute even those in which the pattern frequency is less than
the minimum support. The same process is applied on the
dependent attribute B (the RHS) of ψ. If the general PFD is
satisfied with a set of violations less than a given threshold, it
is reported to replace the constant PFDs. The PFDs λ4 and λ5

in the introduction are examples of general (variable PFDs).

Example 8: Consider Table 6, the algorithm decides

Table 6: A Running Example for PFD Discovery

name country gender
r1: Tayseer Fahmi Egypt F
r2: Tayseer Qasem Yemen M
r3: Tayseer Salem Egypt F
r4: Tayseer Saeed Yemen M
r5: Noor Wagdi Egypt M
r6: Noor Shadi Yemen F
r7: Noor Hisham Egypt M
r8: Noor Hashim Yemen F
r9: Esmat Qadhi Yemen M
r10: Esmat Farahat Egypt F

to use tokenization on the name attribute and n-grams
on the country and gender attributes. Recall that the
patterns are in the form ((u, posu), id list[id(t)]). Thus,
((‘Tayseer’, 0), [r1, r2, r3, r4]) and ((‘Fahmi’, 2), [r1]) will be
added to H[name].In H[country], all the patterns (extracted
using n-grams) are reduced to only two patterns. This is
because the patterns will be substrings of the full value and
they appear exactly in the same set of records as the full
value. For example, the entry ((‘Egy’, 0), [r1, r3, r5, r7, r10])
is similar to ((‘Egypt’, 0), [r1, r3, r5, r7, r10]) and the latter
will be preferable as it is more expressive. So H[country]
will have two entries only ((‘Egypt’, 0), [r1, r3, r5, r7, r10])
and ((‘Yemen’, 0), [r2, r4, r6, r8, r9]). For H[gender], it
has only two entries, ((‘M’, 0), [r2, r4, r5, r7, r9]) and
((‘F’, 0), [r1, r3, r6, r8, r10]). Assuming K = 2 and δ = 5%,
the algorithm will not be able to detect any single LHS PFDs.
Thus, it tries to find multi-attribute LHS PFDs. For example,
checking if [name, country]→ gender, we find that country has
a higher frequency in its patterns. Thus, we will start by the
sub-table that contains ‘Egypt’ in the country and combine
that with all the patterns in the name attribute. In the sub-
table [r1, r3, r5, r7, r10], we will be able to discover two PFDs:
λ1 : ([name = Tayseer\ \A∗, country = Egypt] → [gender =
F]) and λ2 : ([name = Noor\ \A∗, country = Egypt] →
[gender = M]). Similarly, for the sub-table [r2, r4, r5, r7, r9],
the algorithm discovers two PFDs: λ3 : ([name =
Tayseer\ \A∗, country = Yemen] → [gender = M]) and
λ4 : ([name = Noor\ \A∗, country=Yemen]→ [gender=F]).

After discovering λi (i ∈ [1, 4]), we find that these PFDs

cover 80% of the records. The algorithm then looks for a
general form of the discovered PFDs, which would be in this
case λ : ([name = \LU\LL∗\ \A∗, country] → [gender]).
Here the algorithm discovered that the full values in the
country attribute and the first token of the name attribute,
which are represented as a restricted pattern of a single
uppercase letter followed by any number of lowercase letters,
should be considered. It then applies the rule on the rest of
the records which are r9 and r10. Since these records do not
violate the general PFD λ, the algorithm reports the general
PFD λ instead of the constant PFDs λi (i ∈ [1, 4]). 2

Time Complexity. The algorithm is in O(2|R|n)-time. The
first loop (lines 4–10) runs n|R| times where n is the number
of tuples and |R| is the number of attributes. The second loop

(lines 11–25) iterates at most O(2|R|n) times to traverse the
lattice and test the patterns in each attribute assuming the
the max length of the values in a given attribute is constant.

4.4 Optimizations
Substring Pruning. Note that in the hash table, some
entries could be substrings of other entries. Moreover, if they

690

also have the same set of tuples, then we do not need to keep
all of them. Take Table 2 for example, the values 900, 9000,
and 90000 are associated with tuples {s1, s2, s3, s4}. In this
case, we pick the most specific one, i.e., 90000.

Single Semantics. Given attributes A and B and assuming
that values in A are homogeneous, if substrings of A-values
can determine B-values, then most likely these substrings
have one semantic explanation, e.g., the first name in the
first token determines gender, or the first digit of a zip code
determines a city. This single semantics is often reflected
by the positional information of the tokens. Hence, we can
group many tokens from the same attribute based on their
positions and pick the group with the largest size.

4.5 Selecting PFDs
The discovery of ICs is a data-driven mining approach with

no guarantee that the discovered ICs are genuine. The basic
reason is that the function f to decide whether a dependency
is a PFD is syntactic, not semantic, and the result is thus
data dependent. Obviously, our algorithm will produce both
true positives and false positives, so do all other IC discovery
algorithms [8]. However, these algorithms, including ours, are
very valuable in practice, for several reasons:

(1) Human Effort. Compared with asking a human to man-
ually provide PFDs, discovering candidate PFDs and then
involving a human to select genuine ones is more practical
in terms of the required human effort.

(2) Automatic and Explainable Repairs. Automatic data re-
pairing is hard to operate in real applications if the repair
algorithm is a black-box which cannot be explained. In case
of wrong repairs, there is no explanation about why the mis-
take happened. Automatic and explainable repairs are widely
used in industry, such as ETL rules, which are usually man-
ually coded. Moreover, the explainability enables interactive
debugging of the results [26], maintenance [7], and explicit
specification of domain knowledge [16].

5. EXPERIMENTS
Datasets. We used 15 tables (five datasets from each reposi-
tory) from data.gov (GOV) (an open data repository from
the US government), ChEMBL (CHE (a public chemical
database), and University Data Warehouse (UDW) (a
private repository from the administration of a large univer-
sity). Details are shown in the top part of Table 7. These
tables have less than 10 attributes, with the primary purpose
of making their manual annotation feasible.

Baselines. We consider two state-of-the-art algorithms for
discovering FDs and CFDs, namely FDep [14] and CFDFinder
[12, 13], respectively. We use the implementations provided
by Metanome [28]. We use the default parameter setting,
except for the confidence value, which was set to 0.995 instead
of 1 to allow CFDFinder to discover CFDs over dirty data.
All datasets and code are available at https://github.com/
daqcri/PFD_Experiments. The demo delivered at SIGMOD
[33] is available at https://github.com/daqcri/PFD_Demo.

5.1 PFD vs. CFD Discovery
In this experiment, we evaluate how good our method is in

discovering dependencies that cannot be discovered by exist-
ing methods. We compared our method with the FDep [14]
and CFDFinder [12, 13]. We manually verified the discovered

dependencies. When attribute values are considered, we man-
ually checked through external websites, e.g., for names and
genders we went to https://gender-api.com/, for zip code
and city we used https://pypi.org/project/uszipcode/,
and so forth We have also manually verified the discovered
PFDs with 2-3 attributes on the LHS. Unfortunately, PFDs

with multiple-attribute LHS is a very rare case. Hence, we
focus on single LHS attribute PFDs in our experimental
evaluation.

We fixed the minimum coverage to report a dependency to
10%, the allowed noise to 5%, and the minimum number of
records that contain the pattern in each reported PFD to 5.
These parameters are set empirically with the goal of allowing
a trade-off between precision and recall. For example, from
our experiments, the minimum support value K ≥ 4 will
result in almost 100% precision but a low recall.

We show in Table 7 the results in terms of the number of
dependencies, precision, and recall for the three strategies
(rows 1-3, 5-7, 9, 11-12). Note that we are counting the em-
bedded dependencies, not the number of FDs, CFDs, or PFDs.
We consistently discover more valid dependencies than FDep
and CFDFinder with only two exceptions (T2 and T9). In 8
tables out of 15, all uncovered embedded dependencies are
correct (P = 100%), and P ≥ 64% for all but two tables. In
9 tables, we were able to uncover all embedded dependencies
(R = 100%), and R ≥ 80% for all but two tables. These
dependencies (Table 3 shows some of them) can only be cap-
tured if one takes into account partial attribute values, which
in our case, are expressed through the constrained patterns.

A set of the dependencies can also be expressed using
variable PFDs. We should note that we were able to gener-
alize a reasonable number of dependencies to variable PFDs

Ṫhis is due to the strong connection between the attributes
such as Year → Date. The number of dependencies that are
represented by variable PFDs are shown in Table 7 (row 10).

It should be noted that even though FDep and CFDFinder
are revealing dependencies in the data, PFDs are showing the
patterns in the data that is responsible for the dependency.
For example, FDep reports (Full Name → Gender) because
full name is almost a key which is reported to determine all
the other attributes in the table. Our PFD method shows
that the tokens that represent the first name are responsible
for this dependency.

5.2 PFD Validation
In this experiment, we selected three embedded dependen-

cies: {Full Name → Gender}, {Fax → State} and {Zip →
City}, which we manually validated by consulting different
web services. To this end, we extracted the pattern in each
PFD and checked if that pattern actually determines the de-
pendent value (we consider here only constant PFDs). More
concretely, validating (Full Name → Gender) was performed
by checking the gender associated with each first name using
an API that retrieves the gender of each name (e.g., from
https://gender-api.com/get?name=David). For validating
(Fax → State), we collected the first three digits of the Fax
numbers in each state and matched the first three digits and
the state in each PFD with those in the real-world. Finally,
we validated (Zip → City) using the “uszipcode” package at
https://pypi.org/project/uszipcode/.

Table shows the precision and coverage of our method.
A few PFDs in the “Full Name → Gender” were reported
as errors because we considered the names which might be

691

Table 7: PFD vs CFD Discovery: Precision, Recall, Runtime, and Error Detection Accuracy
Row id Metrics T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Size
Columns 9 9 7 6 9 5 5 5 7 7 7 8 7 9 7
Rows 6,704 1,077 306 920 9,101 2,409 812 9,536 1,200 858 33,727 42,715 105,748 22,485 42,226

FDep

1 # Dependencies 12 13 9 5 5 8 4 5 10 15 6 2 3 5 9
2 Precision (P) 66.7% 38.46% 66.7% 80% 60% 50% 0% 20% 0% 20% 100% 50% 66.7% 100% 100%
3 Recall (R) 42.1% 45.5% 60% 36.4% 60% 80% 0% 20% 0% 50% 42.9% 9.1% 18.2% 17.2% 50%
4 Runtime (secs) 5.4 0.33 0.14 0.24 10.7 0.37 0.13 5.16 0.29 0.29 96.7 205.8 805.4 62.8 124.2

CFDFinder

5 # Dependencies 0 18 3 4 5 0 1 3 6 3 4 0 6 4 1
6 Precision (P) − 61.1% 0% 100% 0% − 100% 100% 16.7% 37.8% 100% − 85.7% 80% 100%
7 Recall (R) − 55% 0% 33.3% 0% − 100% 60% 100% 60% 28.6 − 54.5% 13.8% 5.5%
8 Runtime (secs) 89.5 8 0.5 0.6 154.4 0.8 0.4 12.3 1.3 1.6 291 2,529 1,277 2,236 580

PFD

9 # Dependencies 16 16 8 10 15 6 1 5 1 8 14 17 11 38 31
10 Variable PFDs 8 12 8 6 1 2 0 2 0 1 6 4 3 8 8
11 Precision (P) 100% 68.8% 100% 90% 33.3% 83.3% 100% 100% 100% 100% 100% 64.7% 100% 76.3% 51.6%
12 Recall (R) 84.2% 100% 80% 81.8% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 88.9 %
13 Runtime (secs) 125.6 11.4 2.39 8.05 27.17 4.3 0.26 32.2 0.58 4.78 155.7 598.7 224.8 263.8 374.9

Multi-LHS 14 Runtime (secs) 3276 348 36.1 15.1 689 4.3 0.26 91 0.58 5.15 2284 4729 1973 2773 6121

PFD
15 # Errors 0 8 0 13 18 0 2 5 0 31 0 6 20 43 8
16 Precision (P) − 37.5% − 77% 77.7% − 100% 40% − 58.1% − 100% 40% 86% 50%

Table 8: Precision and Coverage of Discovered PFDs
Dependency # PFDs Precision Coverage
Full Name → Gender 401 97.1% 54.9%
Fax → State 176 98.3% 46%
Zip → City 26 100% 78.3%

0 0.05 0.1

0.8

1

P
re

c
is

io
n

 (
P

)

0 0.05 0.1

Error Rate

0.8

1

0 0.05 0.1

0.8

1

 = 1% = 4% = 7%

0 0.05 0.1

0.5

1

R
e

c
a

ll
(R

)

0 0.05 0.1

Error Rate

0.5

1

0 0.05 0.1

0.5

1

Figure 5: Effectiveness by Varying Error Rates {Zip
→State}. Subfigures represent different values for
the minimum support K = 2 (left), 4 (middle) and
6 (right). (Note: Injected errors are not from the same at-
tribute’s active domain.)

unisex names as errors even though the data shows that
they are associated with a specific gender. Also, for (Fax →
State), we noticed that some companies record the fax of
their main branch for branches in other states which misled
our PFD discovery algorithm. Overall, we achieved a very
high precision (> 97%) for discovered PFDs.

We also used CFDFinder to discover dependencies between
attributes using partial values (patterns) instead of full values.
However, CFDFinder was unable to discover the dependen-
cies until we lowered the confidence parameter to 0.85, in
which case, it reported dependencies between each pair of
attributes, leading to a large number of false positives.

5.3 Error detection
Errors in Real-world Data. In this experiment, we show
how good the discovered and validated PFDs are at finding
errors. Given a table R and a PFD R(X → Y, tp), for each
tuple t in R, if t[A] 7→ tp[A] and t[B] 6= tp[B], then there

is a violation of the PFD. When there is a violation of a
PFD w.r.t. tuple t, the PFD will change t[B] according to the
PFD, which is then compared with the ground truth. Note
that if t[A] (i.e., the LHS) is erroneous, the precision will
be lowered. Because of the high accuracy of our methods
in discovering the correct PFDs as shown in Table 7, we
manually validated the dependencies and used the PFDs of
each validated dependency to detect errors. Since we do not
know all the errors that are present in each dataset, we only
report precision. Again, we used the 15 datasets and run
error detection using the manually validated dependencies.

Note that the university data has been manually curated
multiple times and the ChEMBL database has already 24
versions and thus has gone through multiple curation steps.
Discovering errors in such datasets is quite challenging. How-
ever, our PFD method was able to discover a set of errors
that could not have been discovered otherwise. The results
are shown in Table 7 (rows 14-15). We should note that we
limited ourselves to PFDs for which we could decide, based
on the knowledge available to us, whether the matching
tuples contain an error. For example, T10 (pref name →
protein class desc,“Nicotinic acetylcholine receptor \A∗ →
ion channel lgic ach chrn \A∗”) is a valid PFD but we do
not have access to the appropriate resources to check the
reported errors. For the 10 tables on which we could report
precision, we achieved 100% in 2 tables, then more than 77%
in 3 tables, and more than 50% in 2 tables. The last 3 tables
had a precision of less than 50%. This shows that in most
cases, we are able to discover errors with a good precision.
Examples of the discovered errors are shown in Table 3.

A Controlled Evaluation. In this experiment, we evaluate
how good is our approach at discovering valid PFDs that can
then be effective in discovering injected errors and how robust
it is in the presence of dirty data. To this end, we selected
the {Zip → State} dependency from one the datasets. We
manually cleaned the errors by deleting the twelve records
(tuples) that contain erroneous values out of a total of 924
records. Afterwards, we injected errors at varying rates from
1%, 2%, . . . , 10%, to the “State” attribute. The injected val-
ues belong to the same attribute domain with changes that
make them different from the original values. Since the at-
tribute “State” contains values of 27 states, we considered two
cases of noise: (i) outside the active domain: randomly select
a value from the remaining 23 states, and (ii) from the active
domain: select the value from the 26 states’ abbreviations

692

0 0.05 0.1

0.8

1

P
re

c
is

io
n

 (
P

)

0 0.05 0.1

Error Rate

0.8

1

0 0.05 0.1

0.8

1

 = 1% = 4% = 7%

0 0.05 0.1

0.5

1

R
e

c
a

ll
(R

)

0 0.05 0.1

Error Rate

0.5

1

0 0.05 0.1

0.5

1

Figure 6: Effectiveness by Varying Error Rates {Zip
→State}. Sub-figures represent the different values
for the minimum support K = 2 (left), 4 (middle)
and 6 (right). (Note: Injected errors are from the active
domain of the same attribute.)

included in the attribute that differ from the current value.
The second case is expected to confuse the PFD discovery
algorithm. We then run our PFD discovery on the dirty data
and use the discovered PFDs to detect the injected errors.
In this experiment, we also take into account the effects of
the parameters of our PFD discovery algorithm, namely the
minimum support K and the ratio of allowed violations δ.

The results are shown in Figures 5 and 6, for errors injected
from outside the active domain and from the active domain,
respectively. We used three values for K: 2, 4, and 6. We
make the following observations: (i) As K increases, the
precision increases but the recall decreases. In fact, when
K = 6 the precision reaches the highest value for both cases
and irrespective of the injected error rate as we require a high
support value to declare the presence of a PFD. However, the
recall suffers significantly as many valid PFDs are discarded.
(ii) Overall, large values for δ lead to better recall but lower
precision except for the larger value of K. Increasing δ allows
for the discovery of more PFDs and thus the ability to discover
more violations with the side-effect of more false positives
and thus lower precision. A large value of K compensates
for the latter effect. The different values of δ are shown by
the different curves in each sub-figure. (iii) Usually, selecting
the injected errors from the active domain would make it
conceptually harder to discover errors than when the injected
values are not from the active domain. However, our method
is robust enough so it is not affected much by the selection
of the error source. (iv) As expected, increasing the error
rate confuses the algorithm as the noise increases and many
PFDs are ignored because the number of violations becomes
greater than the allowed threshold. This reduces the recall
significantly where we can see that the discovered errors
becomes less than 30% when the error rate reaches 10%.

A question that might be asked here is: what would happen
if we inject errors on the LHS attributes? In this case, the
injected erroneous values might produce new PFDs or would
reduce the frequency of the existing patterns to be bellow the
minimum support K such that the algorithm will not be able
to discover the PFD in the first place and thus will reduce the
recall in discovering the errors. We did not include the results
for injecting errors in the LHS due to space limitations.

5.4 Efficiency
As discussed in Section 4.3, our method requires extra

time compared with other methods to deal with partial values.
However, we reduced the required time by deploying multiple
indexes where the first index stores the patterns in each
attribute with the records’ ids that include that pattern.
The other index stores the records’ ids and the attributes’
ids together with all the patterns that appeared in the cell
of that attribute and record. This allows for fast retrieval
of the patterns and hence a shorter running time. Since
our method utilizes patterns in discovering the PFDs, we
ignore all the attributes with numerical values except the
attributes with integer values that represent codes such as
phone numbers, IDs and Zip code. The number of different
lengths of the numerical values in attributes that represent
code is significantly small and in most case values have the
same length. For example, a zip code could have 5 digits or
9 digits and phone numbers have 10 digits. This heuristic
allows us to avoid a large number of unnecessary checks.

Table 7 (rows 4,8, 13 and 14) reports the running time for
FDep, CFDFinder and our PFD (both single and multiple
LHS attributes) discovery. In general, FDep runs faster than
CFDFinder, and CFDFinder runs faster than PFD, as ex-
pected; the discovered constraints are more complicated, as
we move fromFDs to CFDs and then to PFDs. Our goal is to
show that these algorithms can run in reasonable time, not
to compare their runtimes, because they are used to discover
different ICs.

6. RELATED WORK
Integrity Constraints. ICs have been widely studied for
detecting data errors, such as FDs [4], CFDs [12], and denial
constraints (DCs) [8]. PFDs differ from existing ICs in that
PFDs are based on the key observation that partial attribute
values, not necessarily entire values, are sufficient to deter-
mine values on correlated attributes. This fundamentally
distinguishes PFDs from other ICs. Indeed, over infinite do-
mains the consistency of PFDs is NP-complete while it is
PTIME for CFDs and is always guaranteed for FDs.

Pattern-based Error Detection. In practice, many sys-
tems (for example, Trifacta [40] and NADEEF [10]) have
predefined domain specific declarative rules to detect errors
of wrong formats, such as phone numbers or email addresses.
Instead of asking users to pre-define such rules, an inter-
esting and practical idea is to automatically detect them.
FAHES [31, 32] uses a similar idea that combines automati-
cally discovered frequent patterns within a column and other
statistics to detect disguised missing values. PFDs bridge
ICs and pattern-based error detection methods for a single
column, by allowing the use of patterns to enforce conditions
across attributes, which were not previously used for ICs.

Other Error Detection Methods. There are also other
types of tools for error detection: data transformation tools
(e.g., Data Wrangler [21] and BlinkFill [35]) that wrangle
values within a column, quantitative error detection tools [42,
30] that expose outliers and glitches in the data, and also
entity resolution for detecting duplicate data records [11, 36,
22, 27].

Despite all these efforts, detecting data errors with high
accuracy is far from automatic [2, 17], and almost all practical
tools (heavily) involve users to properly tune the parameters

693

and provide feedback. PFDs shine some light on automatically
detecting data errors by carefully examining the correlation
of partial values across different attributes.

Integrity Constraints Discovery. Due to the importance
of ICs, many techniques and systems have been proposed for
discovering different kinds of ICs, namely, FDs [25, 29, 43],
temporal FDs [1], differential dependencies [37], conditional
differential dependencies [24], CFDs [13, 34], and order de-
pendencies [39]. These techniques work on entire values and
adapting them to PFD discovery is quite challenging; we have
to carefully combine pattern discovery and data dependency
discovery, to effectively and efficiently discover PFDs.

7. PROOFS

7.1 Proof of Theorem 1: Inference System
We first show I is sound, followed by its completeness. We

only consider consistent PFDs Ψ, i.e., there exists an instance
T such that I |= Ψ, since otherwise Ψ |= ψ trivially holds.

(I) I is sound. The soundness of I is a direct consequence
of the definition of the rules and satisfaction of PFDs. More
specifically, it can be proved by an induction on the length

|`| of the proof ` = ψ1
r17−→ . . . ,

rn−17−−−→ ψn from Ψ for ψ,
where each ri is one of the inference rules in Fig. 3. The
induction hypothesis H(k) is: If |`| = k(k ≥ 1), then from
that ` = ψ1, . . . , ψk = ψ is a proof for ψ from Ψ we have that
Ψ |= ψ. The induction step can be readily verified on the
last proof step of ` and is omitted here due to space limit.

(II) I is complete. We prove that I is complete for the logical
implication of PFDs in two steps as follows:

We first give an algorithm that computes, given a set Ψ
of PFDs and a single PFD ψ = R(X → Y, tp) over relation
schema R, a set W of attributes of R and associated patterns
tW [A] for all A ∈W , such that (i) ψW = R(X →W, tW) can
be implied from Ψ, and (ii) for any PFD ψ′ = R(X → Y, t′p)
that can be implied from Ψ, Y ⊆ W and tW [A] ⊆ t′p[A]
or A ∈ tW [A] \ t′p[A] is not consistent w.r.t. Ψ. Intuitively,
Y ⊆ W and tW [A] ⊆ tp[A] or B ∈ tW [A] \ tp[A] is not
consistent w.r.t. Ψ for each A ∈ Y if Ψ |= ψ. We denote by
(X, tp[X])Ψ the set {(A, tW [A]) |A ∈ W} and refer to it as
the PFD-closure of (X, tp[X]) under Ψ. It is easy to verify
that for any ψ = R(X → Y, tp) and set Ψ of PFDs, there
exists a unique PFD-closure of (X, tp[X]) under Ψ.

In the second step, we constructively prove that if (W, tW)
is the PFD-closure of (X, tp[X]) under ψ, then there must
exist a proof of ψW from Ψ.

Below we present these two steps in more details.

(I) From logical implication to PFD-closure. As shown in
Fig. 7, the algorithm takes as input a set Ψ of PFDs and
a single PFD ϕ = R(X → Y, tp) over relation schema R
and returns (X, tp[X])Ψ. Analogous to the closure set of
standard FDs [4] and CFDs [12], the set (X, tp)

Ψ satisfies
the following property: (A, tW [A]) ∈ (X, tp)

Ψ if and only if
Σ |= R(X → A, tp) with tp[A] = tw[A].

While the algorithm is similar to the one for computing
the closure of standard FDs [4], it differs along four points:

(1) It takes into account the constrained pattern tp for X;

(2) It returns, instead of attributes, a set of pairs (A, tW [A]),
where A is an attribute and tW [A] is a pattern for A;

(3) It extends closure differently: it could either add (A, tp[A])
into closure when A does not appear in closure (lines 8-9)

or update an existing pair (A, tW [A]) in closure if tp[A] is
tighter than tW [A] (line 10-11); and most importantly

(4) It uses a different condition to check whether the closure
set could be extended with new PFDs in Ψ (line 6): an PFD

R(Y → A, tp) can possibly trigger an extension of closure
only if attributes in Y all appear in closure and their patterns
can subsume the patterns in closure for Y (condition (a.i)),
or their patterns can extend those patterns in closure with
inconsistent values (condition (a.ii)), or tp[A] is a constant
while all attributes in Y that do not appear in closure have
wildcard patterns ⊥ (condition (b)).

One can readily verify that the set closure returned by the
algorithm is the PFD-closure of ψ under Ψ.

(II) From PFD-closure to inference proof. We next inductively
construct, from the trace of computing (X, tp[X])Ψ, a proof
of R(X →W, tW) from Ψ using I, where tW [A] = tp[A] for
each A ∈ X and (B, tW [B]) ∈ (X, tp[X])Ψ for each B ∈W .

For the base case, i.e., (A, tw[A]) added by line 2-3, the
proof consists of one step with the Reflexivity rule.

When condition (a.i) is triggered, the interpreted proof is
(denote by W the set of attributes in closure initially):

(1) R(X →W, tW) (induction hypothesis);

(2) R(X → Y, tW [XY]) (by (1) and the Reflexivity axiom);

(3) R(Y → A, tp) (in Ψ);

(4) R(X → A, tW [XA]) with tW [A] = tp[A] (by (2), (3)
and the Transitivity axiom).

For the case when condition (a.ii) is triggered (assuming
w.l.o.g. only B ∈ Y triggers (a.ii)), the interpreted proof
consists of the following steps (denote by Y ′ = Y \ {B0}):

(1) R(B → B, tB), where tB [BL] = tW [B] \ tp[B] and
tB [BR] = tp[B] (by the Inconsistency-EFQ axiom);

(2) R(Y ′B → Y ′B, t1), where t1[Y ′L] = t1[Y ′R] = tp[Y
′],

t1[BL] = tB [BL], t1[BR] = tB [BR] = tp[B] (by (1) and
the Augmentation axiom);

(3) R(Y ′B → Y ′B, t2), where t2[Y ′L] = t2[Y ′R] = tp[Y
′],

t2[BL] = t2[BR] = tp[B] (by the Reflexivity and Aug-
mentation axioms);

(4) R(Y ′B → Y ′B, t3), where t3[Y ′L] = t3[Y ′R] = tp[X] =
tW [X], t3[BL] = t3[B]∪ t2[BL] = tW [B], t3[BR] = tp[B]
(by (2), (3) and LHS-Generalization). That is, R(Y →
Y, t4), where t4[YL] = tW [Y] and t4[YR] = tp[Y];

(5) R(Y → A, tp) (in Ψ);

(6) R(Y → A, t5), where t5[Y] = tW [Y] and t5[A] = tp[A]
(by (4), (5) and the Transitivity axiom);

(7) R(X →W, tW) (induction hypothesis);

(8) R(W → Y, tW) (by (7) and the Reflexivity axiom);

(9) R(X → A, tW) (by (7), (8), (6) and Transitivity).

For the case when condition (b) is triggered, one can simi-
larly construct a proof using the Reduction axiom (omitted)

7.2 Proof of Theorem 2: Implication
The coNP-hard lower bound follows from the coNP-

hardness of the implication of CFDs [12], as the CFDs are a
special case of PFDs. Below we focus on the upper bound and
show that the implication checking of PFDs remains in coNP.

To show the coNP upper bound, we give an NP algorithm
for the complement of the implication problem. The algo-
rithm decides, given a set Ψ of PFDs over relation R and
another PFD ψ over R, whether Ψ 6|= ψ holds. To do this,
the algorithm checks whether there exists an instance T of

694

Algorithm From logical implication to PFD-closure

Input: Relation schema R, set Ψ of PFDs
and PFD ψ = R(X → Y, tp).

Output: The PFD-closure (X, tp[X])Ψ.

1. unused := ∅;
2. for each R(X → Y, tp) ∈ Ψ do
3. unused := unused ∪ {R(X → A, tp[XA]) | for each A ∈ Y };
4. closure := {(A, tp[A]) |A ∈ X};
5. repeat until no further change:
6. if R(Y → A, tp) ∈ unused,

(a) attributes in Y all appear in closure and ∀B ∈ Y
(i) there is (B, tW [B]) ∈ closure s.t. tW [B] ⊆ tp[B], or
(ii) there is (B, tW [B]) ∈ closure s.t.

B ∈ tW [B] \ tp[B] is not consistent w.r.t. Ψ; or
(b) Y contains attributes not appeared in closure,

tp[A] is a constant and tp[B] =⊥ for all B ∈ Y
that does not appear in closure, then

7. unused := unused −{R(Y → A, tp)};
8. if A is not in closure then
9. closure := closure ∪{(A, tp[A])};
10. else if (A, tw[A]) ∈ closure and tp[A] ⊆ tW [A] then
11. closure := closure ∪{(A, tp[A])};
12. return closure;

Figure 7: Algorithm for the Proof of Theorem 1

R such that I |= Ψ but I 6|= ψ. This is carried out by using
a small model property, given as follows.

Consider a set Ψ of PFDs over relation schema R and PFD

ψ = R(X → Y, tp). If there exists a nonempty instance T
of R such that I |= Ψ but I 6|= ψ, then there must exist
two tuples t, t′ ∈ I such that: (a) Is = {t, t′} |= Ψ, (b) t[X]
= t′[X], and (c) either t[Y] 6= t′[Y] or t[Y] 67→ tp[Y] (resp.
t′[Y] 67→ tp[Y]); moreover, for each A of R, t[A] (resp. t′[A])
is of length no longer than

∑
ψ∈Ψ |tψ[A]|, where tψ[A] is the

pattern of ψ on A and |tψ[A]| is the length of the pattern.
Based on the small model property, we give an NP algo-

rithm that checks whether Ψ 6|= ψ as follows:

(1) guess two tuples t and t′ such that for each attribute A,
both t[A] and t′[A] draw characters from the generaliza-
tion tree and are of length bounded by

∑
ψ∈Ψ |tψ[A]|;

(2) check whether Is = {t, t′} |= I and Is 6|= ψ; return “Yes”
if so and go to step (1) otherwise.

By the small model property, the algorithm correctly
decides whether Ψ 6|= ψ. It is in NP since (a) there are at
most exponentially in |R| and |Ψ| (the total length of PFDs

in Ψ) many guesses for step (1) and (b) step (2) is in PTIME
in |R| and |Ψ|. Therefore, the implication of PFDs is in coNP.

7.3 Proof of Theorem 3: Consistency
We only need to show that the consistency of PFDs is in NP

and it is NP-hard when all domains are infinite. Note that the
NP-hardness of the consistency checking of CFDs [12] does
not carry over here since it only works for finite domains.

Upper bound. We show that the consistency checking of PFDs

is in NP, by giving an NP algorithm. It is based on the
following small model property.

Small model property. Consider a set Ψ of PFDs over relation
schema R. If there exists a nonempty instance T of R such
that I |= Ψ, then (a) for any t ∈ I, It = {t} is an instance of
R and It |= Ψ; and (b) value of t on attribute A is of length
bounded by

∑
ψ∈Ψ |tψ[A]|, where tψ[A] is the pattern of ψ

on attribute A and |tψ[A]| is the length of tψ[A] (assuming
numbers are stored as unaries)

An NP algorithm. Using this property, we have an NP algo-
rithm for consistency checking of PFDs working as follows:

(1) guess a tuple t with each value t[A] of attribute A draws
characters from the generalization tree and is of length
bounded by

∑
ψ∈Ψ |tψ[A]|;

(2) check whether It = {t} |= Ψ; return “Yes” if so and go
to step (1) otherwise.

The algorithm is correct by the small model property. It is
in NP since (a) there are at most 2O(|

∑
ψ∈Ψ |ψ|+|R|) guesses for

step (1) and (b) step (2) decidable in PTIME in |
∑
ψ∈Ψ |ψ|+

|R|, where |ψ| is the length of PFD ψ and so is |R|.
Lower bound. We show that the consistency of PFDs is NP-
hard over infinite domains by reduction from the nontautol-
ogy problem, similar to the proof of consistency of CFDs [12].
More specifically, an instance of the nontautology problem is
a DNF Boolean formula φ = C1∨· · ·∨Cn, where (a) variables
in φ are x1, . . . , xm and (b) Cj is of the form `j1 ∧ `

j
2 ∧ `

j
3,

in which `ji (i ∈ [1, 3]) is either xk or x̄k for some k ∈ [1,m].
The problem is to decide whether there is a truth assignment
such that φ is false. The problem is NP-complete [15].

Given an instance φ of the nontautology problem, we define
an instance of the PFD consistency problem, namely, a rela-
tion schema R over infinite domains and a set Ψ of PFDs on
R such that φ is not a tautology if and only if Ψ is consistent.

(1) R is defined to be (X1, . . . , Xm, C), where all attributes
Xi(i ∈ [1,m]) and C are over infinite domains of strings con-
sisting of lower case letters (LU) and digits (D). As will
be shown later, for each tuple t in an instance T of R,
t[X1, . . . , Xm] encodes a truth assignment µ of variables x1,
. . . , xm: µ(xi) = true if t[Xi] is a string starts with digits
and µ(xi) = false if t[Xi] starts with lower case letters.

(2) The set Ψ consists of n+1 PFDs. More specifically, for each
clause Cj(j ∈ [1, n]) in φ, Ψ includes ψj = R(X1 . . . Xm →
C, tj) encoding Cj such that (i) tj [C] = D+LU∗, (ii) tj [Xi] =
D+LU∗ if xi appears in Cj , and (iii) tj [Xi] = LU+D∗ if
x̄i appears in Cj . In addition, Ψ includes ψn+1 = R(C →
C, tn+1), where tn+1[CL] = D+LU∗ and tn+1[CR] = LU+D∗.

Intuitively, any tuple t in an instance T of R that satisfies
PFDs ψ1−ψn must have t[C] as a string started with a digit
if the truth assignment encoded by t[X1, . . . , Xm] makes φ
true; moreover, if this the case then T does not satisfy ψn+1.

One can verify that Ψ is consistent iff there exists a truth
assignment that makes φ false (omitted due to space limit).

8. CONCLUSION AND FUTURE WORK
We have introduced PFDs, a new class of ICs that can

capture dependencies between partial attribute values, in
contrast to previous ICs that consider the entire attribute
values. We have provided a sound and complete set of in-
ference axioms for PFDs. Moreover, we have proposed an
effective and efficient algorithm to discover PFDs from the
data even if is dirty, instead of asking domain experts to pro-
vide them manually. Most importantly, we have applied our
solutions on many real-world datasets and found many “new”
data errors that cannot be found by existing automatic error
detection solutions. One followup work is to study effective
pruning strategies for reducing the candidate attribute com-
binations for PFD discovery. Another future work is to test
on more real-world datasets to examine PFDs with multiple
LHS attributes.

695

9. REFERENCES
[1] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and

M. Stonebraker. Temporal rules discovery for web data
cleaning. PVLDB, 9(4):336–347, 2015.

[2] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F.
Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, and
N. Tang. Detecting data errors: Where are we and
what needs to be done? PVLDB, 9(12):993–1004, 2016.

[3] Z. Abedjan, L. Golab, and F. Naumann. Profiling
relational data: a survey. VLDB J., 24(4):557–581,
2015.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
databases. 1995.

[5] L. Berti-Équille, H. Harmouch, F. Naumann,
N. Novelli, and S. Thirumuruganathan. Discovery of
genuine functional dependencies from relational data
with missing values. PVLDB, 11(8):880–892, 2018.

[6] W. A. Carnielli and J. Marcos. Ex contradictione non
sequitur quodlibet. Bulletin of Advanced Reasoning
and Knowledge, 1:89–109, 2001.

[7] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based
information extraction is dead! long live rule-based
information extraction systems! In EMNLP, pages
827–832, 2013.

[8] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[9] H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications. Available
on: http://www.grappa.univ-lille3.fr/tata, 2007.
release October, 12th 2007.

[10] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K.
Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang.
NADEEF: a commodity data cleaning system. In
SIGMOD, pages 541–552, 2013.

[11] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE,
19(1):1–16, 2007.

[12] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. TODS, 33(2), 2008.

[13] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. TKDE,
23(5):683–698, 2011.

[14] P. A. Flach and I. Savnik. Database dependency
discovery: a machine learning approach. AI
Communications, 12(3):139–160, 1999.

[15] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[16] P. S. G.C., C. Sun, K. G. Kuchimanchi, H. Zhang,
F. Yang, N. Rampalli, S. Prasad, E. Arcaute,
G. Krishnan, R. Deep, V. Raghavendra, and A. Doan.
Why big data industrial systems need rules and what
we can do about it. In SIGMOD, pages 265–276, 2015.

[17] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca,
P. Papotti, and N. Tang. Interactive and deterministic
data cleaning. In SIGMOD, pages 893–907, 2016.

[18] Z. Huang and Y. He. Auto-detect: Data-driven error
detection in tables. In SIGMOD, pages 1377–1392,
2018.

[19] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. TANE: An efficient algorithm for
discovering functional and approximate dependencies.
The Computer Journal, 42(2):100–111, 1999.

[20] M. Interlandi and N. Tang. Proof positive and negative
in data cleaning. In ICDE, pages 18–29, 2015.

[21] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, pages 3363–3372, 2011.

[22] P. Konda, S. Das, P. S. G.C., A. Doan, A. Ardalan,
J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. Naughton,
S. Prasad, G. Krishnan, R. Deep, and V. Raghavendra.
Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197–1208, 2016.

[23] N. Koudas, A. Saha, D. Srivastava, and
S. Venkatasubramanian. Metric functional
dependencies. In ICDE, pages 1275–1278, 2009.

[24] S. Kwashie, J. Liu, J. Li, and F. Ye. Conditional
differential dependencies (cdds). In Advances in
Databases and Information Systems (ADBIS), pages
3–17, 2015.

[25] P. Mandros, M. Boley, and J. Vreeken. Discovering
reliable approximate functional dependencies. In KDD,
pages 355–363, 2017.

[26] F. Panahi, W. Wu, A. Doan, and J. F. Naughton.
Towards interactive debugging of rule-based entity
matching. In EDBT, pages 354–365, 2017.

[27] G. Papadakis, L. Tsekouras, E. Thanos,
G. Giannakopoulos, T. Palpanas, and M. Koubarakis.
The return of JedAI: End-to-end entity resolution for
structured and semi-structured data. PVLDB,
11(12):1950–1953, 2018.

[28] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener,
and F. Naumann. Data profiling with metanome.
PVLDB, 8(12):1860–1863, 2015.

[29] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert,
J. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms. PVLDB,
8(10):1082–1093, 2015.

[30] C. Pit-Claudel, Z. Mariet, R. Harding, and S. Madden.
Outlier detection in heterogeneous datasets using
automatic tuple expansion. In Technical Report.

[31] A. A. Qahtan, A. K. Elmagarmid, R. C. Fernandez,
M. Ouzzani, and N. Tang. FAHES: A robust disguised
missing values detector. In KDD, pages 2100–2109,
2018.

[32] A. A. Qahtan, A. K. Elmagarmid, M. Ouzzani, and
N. Tang. FAHES: detecting disguised missing values.
In ICDE, pages 1609–1612, 2018.

[33] A. A. Qahtan, N. Tang, M. Ouzzani, Y. Cao, and
M. Stonebraker. ANMAT: automatic knowledge
discovery and error detection through pattern
functional dependencies. In SIMOD, pages 1977–1980,
2019.

[34] J. Rammelaere and F. Geerts. Revisiting conditional
functional dependency discovery: Splitting the “C”
from the “FD”. In ECML-PKDD, pages 552–568, 2018.

[35] R. Singh. Blinkfill: Semi-supervised programming by
example for syntactic string transformations. PVLDB,
9(10):816–827, 2016.

[36] R. Singh, V. V. Meduri, A. K. Elmagarmid, S. Madden,

696

P. Papotti, J. Quiané-Ruiz, A. Solar-Lezama, and
N. Tang. Synthesizing entity matching rules by
examples. PVLDB, 11(2):189–202, 2017.

[37] S. Song and L. Chen. Differential dependencies:
Reasoning and discovery. ACM Trans. Database Syst.,
36(3):16:1–16:41, 2011.

[38] L. J. Stockmeyer and A. R. Meyer. Word problems
requiring exponential time: Preliminary report. In
STOC, pages 1–9, 1973.

[39] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and
D. Srivastava. Effective and complete discovery of
order dependencies via set-based axiomatization.
PVLDB, 10(7):721–732, 2017.

[40] Trifacta Documentation. Trifacta built-in data types.
https://docs.trifacta.com/display/PE/Supported+

Data+Types.

[41] J. Wang and N. Tang. Towards dependable data
repairing with fixing rules. In SIGMOD, pages 457–468,
2014.

[42] E. Wu and S. Madden. Scorpion: Explaining away
outliers in aggregate queries. PVLDB, 6(8):553–564,
2013.

[43] G. Zhu, Q. Wang, Q. Tang, R. Gu, C. Yuan, and
Y. Huang. Efficient and scalable functional dependency
discovery on distributed data-parallel platforms. IEEE
Transactions on Parallel and Distributed Systems,
30(12):2663–2676, 2019.

697

