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ABSTRACT
High dimensional data is ubiquitous and plays an impor-
tant role in many applications. However, the size of high
dimensional data is usually excessively large. To alleviate
this problem, in this paper, we develop novel techniques to
compress and search high dimensional data. Specifically, we
first apply vector quantization, a classical lossy data com-
pression method. It quantizes a high dimensional vector
to a sequence of small integers, namely the quantization
code. Then, we propose a novel lossless compression algo-
rithm, DeltaPQ, to further compress the quantization codes.
DeltaPQ organizes the quantization codes in a tree struc-
ture and stores the differences between two quantization
codes rather than the original codes. Among the exponential
number of possible tree structures, we develop an efficient
algorithm, whose time and space complexity are linear to
the number of codes, to find the one with optimal compres-
sion ratio. The approximate nearest neighbor search query
can be processed directly on the compressed data with small
space overhead in a few bytes. Many similarity measures can
be supported, such as inner product, cosine similarity, Eu-
clidean distance, and Lp-norm. Experimental results on five
large-scale real-world datasets show that DeltaPQ achieves
a compression ratio of up to 5 (and often greater than 2)
on the quantization codes whereas the state-of-art general-
purpose lossless compression algorithms barely work.
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1. INTRODUCTION
High dimensional data is ubiquitous and plays an impor-

tant role in many applications such as natural language pro-
cessing [28, 72, 67], multimedia databases [19, 87, 68], and
knowledge-base management [58, 40, 43]. For example, the
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semantics of images, videos, documents, and knowledge can
be captured by meaningful high dimensional feature vectors
extracted from deep learning models. However, the amount
of high dimensional data is usually excessively large. For ex-
ample, YouTube-8M [7] contains 1.4 billion feature vectors ex-
tracted from 350,000 hours of video using the Inception-V3

deep neural network model [81]. In comparison, as of May
2019, the length of new video uploaded to YouTube per day
is 720,000 hours [8]. As another example, on the one hand,
SIFT1B [4] contains 1 billion Scale-Invariant Feature Trans-
form (SIFT) [61] feature vectors extracted from 1 million
images. On the other hand, TinyEye, a reverse image search
engine, has around 40 billion images indexed to date [5].

A common practice in machine learning is to standardize
feature vectors by feature scaling, mean normalization, di-
mension reduction, etc, which can reduce its storage space
on disk or in memory. After these steps, feature vectors be-
come dense vectors (typically from hundreds to thousands
dimension). However, the size of dense vectors is still too
large. For example, one 1,024-dimensional dense vector takes
4KB (assuming each floating-point is 32 bits). The 1.4 bil-
lion vectors in YouTube-8M could take over 5TB in storage.

Vector and Product Quantization. To further compress
the dense vectors, quantization-based methods [37] can be
used. For example, in the YouTube-8M dataset, all the 32-bit
floating-points are quantized to 256 distinct values in each
dimension, i.e., the floating point value is replaced by an
integer in [1, 256] denoting the index of the 256 distinct val-
ues, which takes only log 256 = 8 bits. Thus the 1.4 billion
feature vectors in YouTube-8M are compressed to 1.4TB.

Product quantization extends the above idea. It evenly
partitions the original d dimensional space to m subspace
and the dense vectors are accordingly partitioned to a few
subvectors, one for each subspace. In each subspace, prod-
uct quantization quantizes the subvectors in this subspace
to l centroids learned by k-means clustering [60] (i.e., each
subvector is quantized to its nearest centroid). In this way,
each dense vector can be represented by a sequence of m
integers in the range of [1, l] using m log l bits, namely the
product quantization codes. In a common setting where
l = 256 and m = 8, the YouTube-8M dataset can be signifi-
cantly compressed to 11.2GB only.

Lossless Code Compression. To manage large-scale high
dimensional data, in this paper, we propose to further com-
press the quantization codes losslessly and perform the near-
est neighbor search directly on the compressed data. A clas-
sical lossless data compression technique, differential com-
pression, can be applied. It takes as input source data and
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code A: (8,  6,  10,  23,  1, 39,  28,  65)

code B: (8,  6,  10,  56,  1, 39,  28,  65)

code C: (7,  6,  10,  23,  1, 39,  28,  65)

code D: (8,  6,  10,  23,  1, 39,  48,  65)

code E: (8,  2,  10,  23,  1, 39,  48,  65)

B: <4, 56>

C: <1, 7>,  <4, 23>  

D: <1, 8>, <7, 48>

E: <2, 2>

(b) differential compression(a) the quantization codes
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Figure 1: Examples of lossless quantization code compression.

target data and produces the difference data such that given
the source data and the difference data, one can reconstruct
the target data. For example, Figure 1(a) shows five codes.
Among them, codes A and B only differ in the 4-th coordi-
nate. All the other coordinates are exactly the same. We
can use a tuple 〈i, x〉 to denote a difference which means
that the i-th coordinate is x in the target code. As an ex-
ample, as shown in Figure 1(b), the target code B has one
difference 〈4, 23〉 from the source code A, which means that
the 4-th coordinate is 56 in B while all the other coordinates
are the same as in A. Each difference takes only logm+log l
bits as i ∈ [1,m] and x ∈ [1, l]. In comparison, each original
code takes m log l bits. As long as the number of differences
is small, storing the differences takes less space than storing
the entire code.

To compress a collection of codes, we first sort them in an
arbitrary order. Then for every pair of adjacent codes, their
differences are calculated and stored. Finally, we can drop
all the codes except for the first one. Clearly, all the codes
can be losslessly reconstructed with the first code and all
the differences. Figures 1(a) and (b) show such an example.

Note that the order of the codes can impact the total num-
ber of differences and compression ratio. A natural ques-
tion to ask is “how to achieve the minimum total number
of differences?”. We observe that differential compression
leverages only the “similarities” between two adjacent codes.
However, one code can be “similar” to many codes. For ex-
ample, in Figure 1(a), the code A is similar to codes B, C,
and D (each of them has only 1 difference with code A) at
the same time. To unleash the full potential of differential
compression, we propose DeltaPQ.

Differential Tree Compression. DeltaPQ encodes all the
codes in a tree, which we call the DeltaTree. Formally, given
a collection of codes, there is a one-to-one correspondence
between the tree nodes and the codes. For the root node,
the original code is stored. For every other node, the differ-
ences between this node and its parent node are stored. For
example, Figure 1(c) shows a DeltaTree for the five codes
in Figure 1(a). In total, only 4 differences are stored in
this DeltaTree while in differential compression 6 differences
are stored. Obviously, all the codes can be losslessly recon-
structed by traversing a DeltaTree from its root.

Clearly, there are an exponential number of all possible
DeltaTrees for a collection of n codes. It is rather challenging
to find the optimal one with the minimum number of differ-
ences (thus the highest compression ratio). We will show the
optimal DeltaTree can be derived from the minimum span-
ning trees (MST) of a complete graph with all the codes as
the vertexes, as illustrated in Figures 1(d) and 1(e). Note
that there are n2 edges in the complete graph and classical
MST generation algorithms take O(n2) time, which is pro-
hibitively expensive for a large n. To alleviate this problem,
we develop an algorithm with time and space complexities
linear to n to generate the MST and the optimal DeltaTree.

Specifically, the time and space complexity are O(2mn) and
O(n) respectively. Note that m is typically a small integer
(in most of existing work [12, 66, 59, 65, 51] it is set to 8).

Similarity Search Directly on Compressed Data. One
of the most important operations on dense vectors is simi-
larity search (a.k.a., nearest neighbor search): given a query
vector, find the data vectors that are most similar to the
query vector. Due to the “curse of dimensionality” [48],
exact algorithms that guarantee to return completely accu-
rate results are not competitive with the brute-force method
for high dimensional dense vectors. For example, the R-
tree [41] and K-D [21] tree indexes become even slower than
the simple linear scan when data dimensionality is larger
than 10 [78]. Thus, people resort to approximate algorithms,
which is usually good enough in most applications.

Existing approximate algorithms can be broadly classified
into three categories, the Locality Sensitive Hashing (LSH)
based [48, 10, 47, 35, 82, 83, 80, 11, 26, 38, 62], the prox-
imity graph based [64, 33], and the product quantization
based [53, 59, 66, 51, 12, 36]. Methods in the first two
categories often incur huge space costs. Specifically, LSH
employs specific hash functions that are more likely to place
similar vectors to the same bucket than dissimilar vectors.
However, to achieve high accuracy, LSH based methods usu-
ally involve an excessively large number of hash tables and
incur huge index size and suboptimal efficiency [82, 83]. In
proximity graphs, each vertex corresponds to a data vec-
tor. Nearby vectors are connected such that for any vertex,
one of its neighbors must be closer to the query than itself.
Then a best-first search (such as A* search [75]) on the prox-
imity graph can find the nearest neighbor to a query [64].
However, building and storing such a graph is very expen-
sive. Furthermore, LSH and proximity graph based methods
all need to consult the original dense vectors during query
processing. Thus, they are not ideal for searching large-
scale dense vectors. In contrast, a nice property of product
quantization is that similarity search can be performed di-
rectly on the quantization codes without accessing the orig-
inal dense vectors. Our proposed approximate algorithm in
this paper searches the quantization codes in the DeltaTree
and takes only O(m) space overhead for each query.

In summary, we make the following contributions.

• We propose to compress the quantization codes by storing
their difference in a DeltaTree and formalize the optimal
DeltaTree construction problem.

• We develop an algorithm to construct the optimal Delta-
Tree in O(2mn) time and O(n) space.

• Approximate nearest neighbor search can be performed
directly on compressed codes with tiny space overhead.

• Experimental results show that our approach can often
achieve a compression ratio greater than 2 and up to 5 on
five large-scale real-world datasets.
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2. PRELIMINARIES
2.1 Background: Product Quantization
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Figure 2: Quantization, codebook, and code.

We first introduce some terms in product quantization
(PQ). PQ evenly partitions the original space into m sub-
space. Then, all (data and query) vectors are accordingly
divided into m subvectors. In each individual subspace, all
the subvectors are quantized to l distinct centroids, which
are learned from a sample of data using clustering algorithms
(e.g., k-means). That is to say, the subvector is represented
by the index of its nearest centroid in the same subspace,
which is an integer in [1, l]. Then, each original vector is
represented by a tuple of m integers, which is called its
quantization code (code for short). All the m × l centroids
collectively compose the codebook of the product quantizer.

Formally, PQ evenly partitions the d dimensional origi-
nal space into m sub-spaces. Thus each is d

m
dimensional1.

Each vector p is accordingly partitioned into m subvectors
p1, p2, . . . , pm. Let the l centroids in the j-th sub-space be
cj1, c

j
2, . . . , c

j
l . The subvector in the j-th subspace is quan-

tized to (and approximated by) its nearest centroid among
the l centroids. For ease of representation, we denote the
centroid nearest to pj as c(pj) and its index a(pj) is deter-
mined by the following assignment function:

a(pj) = arg min
x∈{1,2,··· ,l}

dis(pj , cjx)

where dis is the Euclidean distance. The code of a vector p
is the tuple 〈a(p1), a(p2), · · · , a(pm)〉 and is denoted as a(p).

Example 1. As shown in Figure 2, the original space is
d = 4 dimensional, which is partitioned to m = 2 subspace by
PQ. l = 4 centroids are learned for each subspace, which are
numbered from 1 to 4. Thus, there are in total 8 centroids
in the codebook as shown in the middle. The subvectors and
centroids are all d

m
= 2 dimensional. In the bottom, the

vector p is accordingly divided into 2 subvectors. In the first
subspace, the subvector is [5.53, 7.65] and its nearest cen-
troid is c31 (among c11, c21, c31, c41). In the second subspace,

1For ease of presentation, we assume d can be divided by m
and both m and l are a power of two. All the techniques in
this paper remain applicable if d, m, or l is not the case.

the subvector is [9.04, 6.80] and its nearest centroid is c12.
Thus, this product quantizer quantizes the vector p to a code
a(p) = 〈3, 1〉 as the indexes of c31 and c12 are 3 and 1 respec-
tively in their subspace. Note that with the code 〈3, 1〉 and
the codebook, we can approximately reconstruct the original
vector p = 〈5.53, 7.65, 9.04, 6.80〉 as 〈5.00, 6.19, 9.10, 7.29〉.

Distance/Similarity Calculation. A vector can be ap-
proximately reconstructed from its code using the codebook.
Moreover, the distance/similarity between two vectors can
also be estimated from their codes. For example, the inner
product (inn) of two vectors is the summation of the inner
products of all their m subvectors. On the other hand, the
inner product of two subvectors can be approximated by
the inner product of their nearest centroids of one subvector
and the nearest centroid of another subvector. Formally, the
inner product of p to q can be estimated by:

inn(p,q)=
∑m

j=1inn(pj,qj)≈
∑m

j=1inn(c(pj),qj)≈
∑m

j=1inn(c(pj),c(qj)).

The latter two are called the asymmetric distance (AD, the
distance calculated by a vector and a code) and the sym-
metric distance (SD, the distance calculated by two codes).
SD and AD are accurate estimations of inn(q, p) in the orig-
inal space with bounded distortion [51]. The error of SD is
twice of AD’s, so in practice, AD is usually used. In addi-
tion to inner product, product quantization supports many
other measures, such as Euclidean distance, cosine similar-
ity, and Lp-norm. Our techniques work seamlessly with all
these measures. For ease of presentation, in this paper, we
use inner product as an example.

Similarity Search using PQScan [51]. In a nutshell,
given a query vector, PQScan scans all the codes, calculates
the AD from each code to the query vector, and returns
the one with the largest (or smallest, based on the measure
used) AD as the nearest neighbor. As the inner product
between the centroids and the query subvectors are heavily
accessed, to achieve high performance, a l×m lookup table T
is constructed beforehand where T[i][j] = inn(cji , q

j). Then
the AD between any data subvector pj and query subvector
qj can be found in the lookup table and we have

inn(p,q) ≈ AD(p, q) =

m∑
j=1

inn(c(pj), qj) =

m∑
j=1

T[a(pj)][j].

(1)
Note that the lookup table T is usually tiny. In the common
setting where m = 8 and l = 256, the lookup table has only
2048 floating points, which takes merely 8 KB. One code-
book is maintained for a product quantizer, which contains
l×m centroids of d

m
dimensional. It is 1 MB when d = 1024.

with the codebook

inn(q, p) ≈ inn(C3, q1)+inn(C1, q2) = T[3][1]+T[1][2] = 22.92

query q: <6.82,  4.65,  5.24,  5.76>
q1 q2

the lookup table T

inn(C1, q1) = 25.46 inn(C1, q2) = 17.24
inn(C2, q1) = 20.66 inn(C2, q2) = 20.64
inn(C3, q1) = 5.68 inn(C3, q2) = 18.51
inn(C4, q1) = 4.28 inn(C4, q2) = 42.23

1

1

1

1

2

2

2

2

21

Figure 3: An example of query processing.
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Example 2. Following Example 1, Figure 3 shows how
to use the lookup table T to process a query. Given a query
vector q, we first split it into 2 subvectors q1 and q2. Then
we calculate the inner product of q1 and each centroid in
the first subspace in the codebook (the first column of the
codebook) as well as the inner product of q2 and each centroid
in the second subspace in the codebook (the second column
of the codebook) and store the results in the lookup table T.
Then, to get the AD of q and a vector p (the p in Figure
2), we simply use its code a(p) = 〈3, 1〉 to fetch the two pre-
computed inner products in T, and add them together to get
the AD of 22.92, which is a close approximation of the real
inner product inn (q, p) = 26.19.

2.2 Problem Definition
In this paper, we study lossless code compression to fur-

ther reduce space cost. In addition, we also study how to
search the code with the smallest (or largest) AD to a given
query vector. The two problems are defined as below.

Definition 1 (Lossless Code Compression). Given
a collection of product quantization codes, the lossless code
compression encodes the data such that the original codes
can be perfectly reconstructed.

Definition 2 (Nearest Neighbor Search). Given a
collection of product quantization codes, a lookup table, and
a query vector, the nearest neighbor search finds the code
with the smallest (or largest) AD to the query vector.

We focus on generic measures that are supported by prod-
uct quantization and do not cover any measure-specific op-
timization in this paper.

3. DIFFERENTIAL CODE COMPRESSION

3.1 Lossless Differential Code Compression
In this section, we discuss how to use differential com-

pression to encode a collection of codes and search the one
with the smallest (or largest) AD directly on the compressed
data. Formally, we define a difference 〈i, x, y〉 as a tuple of
three integers, which means that the i-th coordinate in the
source code is x while it is y in the target code. For exam-
ple, the target code B in Figure 1(a) has only one difference
〈4, 23, 56〉 with the source code A, which means that the 4-
th coordinate is 23 in A while it is 56 in B, and all the other
coordinates are exactly the same. Clearly, given the source
code and the difference, the target code can be restored loss-
lessly by replacing the i-th coordinate with y in the source
code for each difference 〈i, x, y〉.

For a collection of codes, we can calculate the differences
between every pair of adjacent codes and store their differ-
ences in an array. Then we keep the first code and drop all
the rest. For example, Figures 1(b) shows the differences
calculated from the collection of codes in Figure 1(a) (note
that as we will show shortly the second integer x in the dif-
ference are unnecessary and thus it is left out in the figures).
With the first code and the array of differences, all the codes
can be losslessly reconstructed sequentially.

3.2 Searching Differential Compressed Codes
Next, we show how to search the code with the smallest

(or largest) AD to a query vector. A naive way is to re-
construct each code and use Equation 1 to calculate its AD

Algorithm 1: DifferentialCodeCompression

Input: {a1, a2, · · · , an}: a collection of n codes.
Output: differential compressed codes on disk.

1 write a1 to the buffer;
2 foreach k in [2, n] do
3 write a bitmap with m bits of 0 to the buffer;
4 foreach difference 〈i, y〉 of ak−1 and ak do
5 set the i-th bit in the bitmap;
6 write y to the buffer;

7 flush the buffer to disk;

Algorithm 2: SearchDiffCompressedCode

Input: differential compressed codes on disk;
q: a query vector; T: the lookup table.

Output: a: the code with largest/smallest AD to q.
1 read m integers of log l bits long each and use them

as the source code a;
2 calculate AD = AD(a, q) using Equation 1;
3 while not reaching EOF do
4 read a bitmap of m bits;
5 for the i-th bit that is set in the bitmap do
6 read an integer y of log l bits long;
7 AD = AD−T[a[i]][i] + T[y][i];
8 set a[i] as y;

9 return a if AD is smallest/largest ;

to the query. However, we observe some common computa-
tion between the source code and target code can be shared.
We illustrate our idea with an example. Consider two data
vectors p and o and their codes a(p) = 〈22, 1, 17, 20〉 and
a(o) = 〈22, 1, 19, 20〉. As discussed before, there is only one
difference 〈3, 17, 19〉 between the source code and the target
code and their AD to a query vector q are respectively

AD(p, q) = T[22][1] + T[1][2] + T[17][3] + T[20][4]

and

AD(o, q) = T[22][1] + T[1][2] + T[19][3] + T[20][4],

which only differ in the third term. Clearly, we have

AD(o, q) = AD(p, q)−T[17][3] + T[19][3].

That is, with AD(p, q) and the difference 〈3, 17, 19〉, we can
obtain AD(o, q). In general, for any source code a(p), target
code a(o), and every difference 〈i, x, y〉 of theirs, we have

AD(o, q)=AD(p, q) +
∑
〈i,x,y〉

(T[y][i]−T[x][i]) (2)

Clearly, based on Equation 2, with the differential com-
pressed codes, we can calculate the AD from every code to
the query and find the one with the smallest (or largest) AD.

3.3 Storing Differential Compressed Codes
Next, we discuss how to store the compressed data physi-

cally. Our goal is to compress the code as small as possible
while guarantee that they can be losslessly restored.

First of all, the second integer x, which is a part of the
source data, in a difference 〈i, x, y〉 is unnecessary to store.
We can maintain a source code (which initially is the first
code) and keep it up to date by replacing the i-th coordinate
with y for every difference 〈i, y〉. The second integer x can be
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found in the i-th coordinate in the up-to-date source code.
In this way, each difference takes only logm + log l bits as
i ∈ [1,m] and y ∈ [1, l].

To be self-contain, for each pair of adjacent codes, we need
to store the number s of their differences and the list of
differences. Note that s ∈ [0,m]. Thus, we can use log(m+
1) bits to represent s and logm+log l bits for each difference.
Alternatively, we can use a bitmap with m bits to record
which coordinates are different. In this way, we can drop the
first integers i in all the differences. Moreover, the number s
of differences can be inferred from the bitmap (which is the
number bits that are set) and thus can also be dropped. In
this way, we only need m+ s log l bits rather than log(m+
1) + s(logm+ log l) bits.

code A: (8,  6,  10,  23,  1, 39,  28,  65)

code B: (8,  6,  10,  56,  1, 39,  28,  65)

code C: (7,  6,  10,  23,  1, 39,  28,  65)

code D: (8,  6,  10,  23,  1, 39,  48,  65)

code E: (8,  2,  10,  23,  1, 39,  48,  65)
(a) the original codes (b) differential compressed codes

B: 00010000 00111000

C: 10010000 00000111 00010111

bitmap coordinates in targets

Figure 4: Storing differential compressed codes.

Example 3. Figure 4 shows an example of how to store
the two differential compressed codes B and C on disk. In
the example, m = 8, l = 256, and original codes are in
Figure 1(b). For code B, since it is only different from A by
the 4th coordinate, we set the 4th bit, unset the rest bits, and
store its 4th coordinate value 56 in its binary form 00111000.
For code C, the 1st and 4th coordinates are different from
code B, thus we set the 1st and 4th bit in its bitmap, unset
the rest bits, and store the two coordinate values 7 and 23 in
C in their binary forms 00000111 and 00010111 respectively.
Since each bitmap takes up m = 8 bits, and each code takes
log l=8 bits, the compressed codes B and C takes only 5 bytes
in total, rather than 16 bytes for the original codes.

Algorithms 1 and 2 show the pseudo-code of compressing
codes by differential compression and searching directly on
the differential compressed codes respectively. Both of them
takes only O(n) time where n is the number of codes.

4. DIFFERENTIAL TREE COMPRESSION

4.1 The DeltaTree
In differential compression, we store the differences be-

tween adjacent codes. The number of differences is propor-
tional to the storage cost and the computation cost. A nat-
ural question to ask is “how to achieve the minimum number
of differences?”. We observe that “similar” codes tend to
share many coordinates and have small number of differ-
ences. However, one code can be “similar” to many codes.
For example, as shown in Figure 1(a), the code A is simi-
lar to B, C, and D simultaneously (each of them has only
one difference with code A). In differential compression, A
cannot be adjacent to all the three codes. To address this
issue, we propose to store the differences in a tree-structured
index, namely the DeltaTree, which we define as below.

Definition 3 (DeltaTree). Given one collection of
codes, a DeltaTree has one tree node for each code. For
the root node, the original code is stored. For every other
tree node, the differences between this node and its parent
are stored.

For example, Figure 1(c) shows a DeltaTree for the five
codes in Figure 1(a). In total, only 4 differences are stored

in the DeltaTree instead of 6 differences in differential com-
pression as shown in Figure 1(b). Clearly, we can restore
all the codes by traversing the DeltaTree from the root node
(we will discuss the details later).

For a collection of codes, there are enormous DeltaTrees.
The DeltaTree with a smaller total number of differences has
less storage and computation cost and a higher compression
ratio. Next, we discuss which DeltaTree has the minimum
number of differences and how to efficiently generate it.

Remark. Another possible solution is to encode the dif-
ferences in a connected graph instead of in a tree, where
each vertex corresponds to one code and each edge is la-
beled with the differences between the two codes on the two
ends. With one original code on a vertex and all the labels
on the edges, we can restore all the codes. However, if the
graph has a cycle, we can always remove one of the edges
in the cycle and still restore all the codes with the induced
graph. On the other hand, if the graph has no cycle, by def-
inition, an acyclic connected graph is a tree and the graph
is a DeltaTree. Thus, the DeltaTree dominates this solution.

4.2 The Optimal DeltaTree
In this section, we discuss how to find the DeltaTree with

the minimum total number of differences, which we call the
optimal DeltaTree as defined below.

Definition 4 (Optimal DeltaTree). Given a collec-
tion of codes, its optimal DeltaTree is the one with the min-
imum total number of differences in all its nodes.

To find the optimal DeltaTree, we first identify the scope
of all possible DeltaTree for a collection of codes. For this
purpose, we give the concept of DeltaGraph as defined below.

Definition 5 (DeltaGraph). Given one collection of
codes, their DeltaGraph is a complete graph with each code as
a vertex. Each edge is weighted by the number of differences
between the pair of codes on the two ends.

For example, Figures 1(c) and (d) show the optimal Delta-
Tree and the DeltaGraph of the five codes in Figure 1(a).

Given a collection of n codes, we observe that there is a
1-to-n correspondence between the spanning trees of their
DeltaGraph and their DeltaTrees. This is because, by defini-
tion, a DeltaTree is a tree where each node corresponds to
one code, while a spanning tree of the DeltaGraph is also a
tree where each vertex corresponds to a code. As there are n
vertexes in a spanning tree and each one of them can be the
root of a DeltaTree, there is a 1-to-n correspondence between
the spanning trees of the DeltaGraph and the DeltaTrees.

Based on the discussion above, we can conclude that all
possible DeltaTrees of a collection of codes can be generated
from the spanning trees of their DeltaGraph. Moreover, by
Definitions 3 and 5, the total weight of a spanning tree is
exactly the same as the total number of differences in each of
its n correspondent DeltaTrees. Clearly, the minimum span-
ning tree (MST) of the DeltaGraph has the minimum total
weight and its n correspondent DeltaTrees are all optimal,
as stated in Lemma 1.

Lemma 1. Given a collection of codes, the corresponding
DeltaTrees of the minimum spanning tree of their DeltaGraph
are all optimal DeltaTrees.

We omit the formal proof due to space limits.
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The DeltaGraph of n codes is a complete graph and has
O(n2) edges. The classical algorithms for MST generation
for the DeltaGraph take at least O(n2) time and space [73,
56, 74], which is prohibitively expensive for very large n.
Next, we discuss efficient MST generation in a DeltaGraph
and give an algorithm in O(2mn) time and O(n) space.

4.3 MST Generation
In this section, we discuss how to generate the MST of the

DeltaGraph efficiently. Our approach built upon the classical
Kruskal algorithm [56], which we recap below.

The Kruskal Algorithm. Given a connected graph with n
vertices, to generate its minimum spanning tree, the Kruskal
algorithm first sorts all the edges by their weights. Then it
accesses each edge in the ascending order of their weights
and tries to add the edge to a graph E (which is an empty
graph at the beginning). An edge is added to E iff. its
two vertices are not in the same connected component in E.
Once n− 1 edges are added to E, the algorithm terminates,
and E is guaranteed to be the minimum spanning tree. To
efficiently test if two vertices are within the same connected
component, a disjoint-set [34] data structure is employed.
The disjoint-set is an array of n integers. It takes constant
time2 to test an edge [84].

The time complexity of Kruskal algorithm for our Delta-
Graph is O(n2 logn). It is prohibitively expensive to apply
the Kruskal algorithm directly to generate the MST for our
purpose. To avoid generating and sorting all theO(n2) edges
in the DeltaGraph upfront, we propose to generate the edges
on-the-fly and in the order of their weights. The generated
edges will be checked by the disjoint-set. Only if approved,
the edge will be stored (in adjacent lists). Our algorithm ter-
minates once n − 1 edges are approved and stored. In this
way, we can avoid generating, storing, and sorting all the
edges. Actually, at any time, we store at most n− 1 edges.
Next, we discuss how to generate the edges on-the-fly.

Incremental Edge Generation. Our key observation for
the DeltaGraph is that the number of possible edge weights
is limited. The weight is an integer in the domain of [0,m],
where m is a very small number (e.g, 8). Thus, we can
enumerate every weight w in ascending order and in each
round generate all the edges in the DeltaGraph with weight
w . Since the batch of edges have the same weight w , they
can be checked in arbitrary order by the disjoint-set. Next,
we discuss how to generate all the edges with weight w .

Based on Definition 5, finding edges with weight w is
equivalent to finding code pairs with w differences. For
this purpose, we enumerate every combination of w coor-
dinates and “mask” them in all the codes. Then the codes
become exactly the same after masking must have at most w
differences (which can only be in the masked coordinates).
Moreover, two codes with w differences must be the same
after masking their w differences. Thus, this approach can
find all the code pairs with w differences. To mask a code,
we can simply set the w coordinates in the code as zero. For
this purpose, we create a mask bit array of the same length
as the code, i.e., m log l bits. Then for each i-th coordinate

2It takes O(α(n)) time where α(n) is the inverse Acker-
mann function. This function has a value α(n) < 5 for any
value of n that can be written in this physical universe, so
the disjoint-set operations take place in essentially constant
time.

Algorithm 3: MSTGeneration

Input: {a1, a2, · · · , an}: a collection of codes.
Output: G: the MST of the DeltaGraph of the codes.

1 foreach w ∈ [0,m] do
2 foreach combination of w numbers in [1,m] do

// generating all edges of weight w

3 Create a mask for the w coordinates;
4 foreach code ai do
5 Mask the w coordinates in ai with mask;
6 HashMap[masked ai].append(i);

// check edges with disjoint-set

7 foreach list of IDs in HashMap do
8 foreach pair of IDs 〈x, y〉 in the list do
9 check the pair 〈x, y〉 with disjoint-set;

10 if approved then
11 G[x].append(y);
12 if n− 1 pairs are approved then
13 return G;

in the combination, we unset the (i− 1) log l + 1 to i log l-th
bit in the mask. The rest of the bits are set. Then we can
simply AND the mask bit array with the code, which results
in the corresponding masked code.

code V: (3, 6, 10, 13)

code X: (8, 6, 10, 15)

code Y: (7, 6, 10, 13)

code Z: (5, 6, 10, 15)

(a) Original codes (b) Masked codes 

# = 1, Combination: (1)
mask: 0000 1111 1111 1111

code V: (0,  6,  10, 13)

code X: (0,  6,  10, 15)

code Y: (0,  6,  10, 13)

code Z: (0,  6,  10, 15)

! = 4, " = 16 

(c) Masked codes

# = 2, Combination: (1,4)
mask: 0000 1111 1111 0000

code V: (0,  6,  10, 0)

code X: (0,  6,  10, 0)

code Y: (0,  6,  10, 0)

code Z: (0,  6,  10, 0)

Figure 5: Differential compressed codes example.

Example 4. Figure 5 shows an example of masking. In
this example, m = 4, l = 16. In the first mask with w = 1,
we mask the first coordinate and find two pairs of masked
codes that are the same: (V, Y) and (X, Z). Thus, we gener-
ate two edges (V, Y) and (X, Z) whose weight are 1. We also
show an example where w = 2. The combination is (1, 4).
We found all the masked codes become the same. Thus, we
generate an edge for every pair of them with weight 2.

The pseudo-code of the MST generation (including edge
generation) is given in Algorithm 3. It takes a collection of
codes as input and outputs the MST of their DeltaGraph.
For each w ∈ [0,m] in ascending order, it enumerates all
the combinations of w numbers in [1,m] (Lines 1 to 2). For
each combination, the corresponding w coordinates of all
codes are masked. The code is appended to a list of codes
that share the same masked code. For this purpose, a hash
map is employed where the masked code is the key field and
the list of codes is the value field (Lines 2 to 5). Each pair of
codes in the same list/value in the hash map have at most w
differences. The edge between the pair of codes is generated
and checked by the disjoint-set. If the edge is approved by
the disjoint-set, it is added to the result G (Line 6 to 9).
Finally, if there are n − 1 edges in G, G must be the MST
of the DeltaGraph of the input codes and will be returned
(Lines 10 to 11).
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Algorithm 4: MSTGeneration-SkipEdge

// Replace with Line 6 in MSTGeneration

1 For each adjacent pair of IDs 〈x, y〉 in the list;

Lemma 2. Given a collection of codes, MSTGeneration
produce an MST of the DeltaGraph of the codes.

Complexity Analysis. For each combination of w coordi-
nates, MSTGeneration spends O(n) time to generate the
masked codes. Each pair in a list is an edge and the list can
be as long as O(n). Thus O(n2) edges are generated and
checked in each combination. The total number of combi-
nations is 2m at most for all w ∈ [0,m]. Thus, the time
complexity is O(2mn2). The space complexity is O(n) for
storing the n masked codes for each combination.

As discussed above, the number of edges generated and
checked in each combination is quadratic to n, the number
of codes. We observe that not all the edges in a list are
required to be checked. Actually, it is sufficient to check
only a very small portion of them to generate the MST.

4.4 Skipping Unnecessary Edges
Consider a list of codes that are exactly the same after

masking a combination of w coordinates. In MSTGenera-
tion, each pair of them are enumerated and checked if they
are within the same connected component, which is unneces-
sary. We observe that, for any pair of codes in this list, they
must be within the same connected component after checking
with disjoint-set. This is because, on the one hand, if they
are not in the same connected component, the disjoint-set
will approve this pair and add the edge between them to E.
On the other hand, if they are already in the same connected
component, the disjoint-set will do nothing. In either case,
they are eventually in the same connected component.

Based on the observation above, we can enumerate and
check every pair of adjacent code in the list only. After this,
all the codes in this list must be within the same connected
component. Any other pair of codes in the list must be
omitted by the disjoint-set as they are already in the same
connected component. Thus, we can safely skip them.

The number of adjacent code pairs in a list is less than the
length of the list. For each combination, the total length of
all lists is exactly n. Thus, the above method generates and
checks at most n edges (i.e., pairs of codes) for each combi-
nation. The total time complexity of MSTGeneration is
thus reduced to O(2mn) while the space complexity remains
the same. The pseudo-code is shown in Algorithm 4.

Theorem 1. Given a set of codes, MSTGeneration-
SkipEdge produces an MST of the DeltaGraph of the codes.

4.5 The Fixed-Height Spanning Tree
As we will see later, the space overhead to process a query

directly on a DeltaTree is proportional to the height of the
DeltaTree. The optimal DeltaTree we constructed from the
minimum spanning tree can be as high as O(n). Given that
n is a large number, the space overhead per query is unac-
ceptable. To address this problem, in this section, we discuss
how to generate a fixed-height spanning tree. Our empirical
results show that the corresponding DeltaTree of the fixed-
height spanning tree, whose height is bounded by O(m), has
the total number of differences only marginally larger than
that of the optimal DeltaTree, while its space overhead per
query is merely O(m) in a few bytes.

Algorithm 5: FixedHeightSpanningTree

Input: {a1, a2, · · · , an}: a collection of codes.
Output: G: a fixed-height spanning tree.

1 Initialize an n-bit bitmap and a height array of n 1s;
2 foreach w ∈ [0,m] do
3 foreach combination of w numbers in [1,m] do
4 Create the HashMap as in MSTGeneration

using ai only if the i-th bit is set in the
bitmap and ai’s height is no larger than
w+1;

5 foreach 〈k, v〉 ∈ HashMap where v.len > 1
do

6 Let aj be the code in v with the highest
height;

7 foreach code ai in v except aj do
8 G[j].append(i);
9 Unset the i-th bit of the bitmap;

10 Increase aj ’s height by 1 if there is
another code in v with the same height
as aj ;

11 return G;

To generate a fixed-height spanning tree, we treat each
connected component in the result graph G as a tree. Ini-
tially, each code is a connected component itself and a root
node. Then, we enumerate edges in DeltaGraph in the in-
creasing order of their weights. However, we only generate
edges between the root nodes of the connected components.
For this purpose, we use an n-bit bitmap to record if a code
is a root node in a connected component. When an edge is
added to G, only one end of it remains a root node. The
other end becomes a child of the root node. The bitmap
is updated accordingly. In this way, each connected compo-
nent is always a tree. Moreover, we add an edge with weight
w to G only if it did not result in a tree with a height of more
than w + 2. In this way, the spanning tree G we get has a
maximum height of w + 2. To this end, we use an array to
maintain the height of the subtree rooted at each code in G.

Algorithm 5 shows the pseudo-code of generating a fixed-
height spanning tree. It takes a collection of codes as input
and generates a spanning tree with maximum height m+ 2.
It first initializes a n-bit bitmap to record if a code is the
root node of a connected component. In addition, an array
of size n to record the height of each code is created. At
the beginning, as every code itself is a connected compo-
nent and root node, all bits are set in the bitmap and all
heights are 1 (Line 1). Then the algorithm enumerates all
edges with weights w between the root nodes whose height
no larger than w + 1 by masking a combination of w coor-
dinates (Lines 2 to 4). Then for each list v of codes which
are identical after masking, we choose the one aj with the
highest height as the new root node and add to G an edge
between aj and every other node in v (Lines 5 to 8). The
bitmap and the height array are updated correspondingly
(Lines 9 to 10). Finally, G must be a spanning tree of the
DeltaGraph with a maximum height of m+ 2 and will be re-
turned (Line 11). The complexity of this algorithm is iden-
tical to that of MSTGeneration.

Lemma 3. Given a collection of codes, FixedHeightSp-
anningTree must generate a spanning tree of the Delta-
Graph of the codes with a height of no more than m+ 2.
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Algorithm 6: DifferentialTreeCompression

Input: G: a fixed-height spanning tree of DeltaGraph.
Output: The corresponding DeltaTree of G on disk.

1 Write the code ai with highest height in G to disk;
2 DeepFirstTraverse(i,G);

Algorithm 7: DeepFirstTraverse(i, G)

Input: i : the parent; G: the spanning tree.
1 foreach j ∈ G[i] do
2 write is leaf = 0 to disk if G[j] is empty to

indicate aj is a leaf node (otherwise, write 1);
3 write is the last child = 1 to disk if j is the last

element in G[i] (otherwise, write 0);
4 write the differences of ai and aj to disk;
5 DeepFirstTraverse(j,G);

4.6 Storing and Searching the DeltaTree
From Fixed-Height Spanning Tree to DeltaTree. Once
a fixed-height spanning tree is generated, we deduce its cor-
responding DeltaTree and store it on disk. Specifically, we
traverse the spanning tree in pre-order (i.e., depth-first or-
der) and store the differences in this order in the same for-
mat as in differential compression. That is storing an m-
bit bitmap about the positions of the differences and the
list of different coordinates. To maintain the tree informa-
tion, for each node, we keep two boolean fields is leaf and
is the last child. The first field indicates if the tree node is
a leaf node while the second field indicates if the node is the
last child of its parent in the depth-first order.

Searching the DeltaTree. We sequentially scan the com-
pressed codes in a DeltaTree and maintain a stack h1 of
source codes and a stack h2 of AD between the source codes
in h1 and the query vector. The source code on top of h1

is guaranteed to be the parent of the code that is currently
visiting. Then same as in searching the differential com-
pressed code, with the AD of the source code on top of h2

and the differences, we can efficiently calculate the AD of
the currently visiting code using Equation 2.

Next we discuss how to keep two stacks up to date using
the two boolean fields is leaf and is last child. Basically,
if a node is a leaf node, it will not be the parent of any
other code and we do not push its information to the two
stacks. Right after visiting the last child of an internal node,
we pop the two stacks. This is because the information
of this internal node will not be referred anymore and the
elements on top of the two stacks are information about the
internal node since the currently visiting code is a child of
the internal node. In this way, we can always keep the two
stacks up to date.

Algorithms 6 and 7 show the pseudo-codes of the proposed
algorithm DeltaPQ. It takes the fixed-height spanning tree
generated by Algorithm 5 as input and generates the corre-
sponding DeltaTree on disk. It first writes the root node in G
to disk. Then the algorithm traverse G in depth-first order.
For each node in G, it writes one bit to indicate if the node
is a leaf node and another bit to indicate if the node is the
last child of its parent (Lines 2 to 3). Then the differences
of this node and its parent are also written to disk in the
same format as in differential compression (Line 4).

Algorithm 8 gives the pseudo-code of searching a Delta-
Tree on disk. It first reads the root node of the DeltaTree and

Algorithm 8: SearchDeltaTree

Input: differential tree compressed codes DeltaTree
on disk; q: the query; T: the lookup table.

Output: a: the code with largest/smallest AD to q.
1 read m integers of log l bits each as the source code a

and push a to stack h1;
2 calculate AD = AD(a, q) and push AD to stack h2;
3 while not reaching EOF do
4 read 2 bits as is leaf and is the last child;
5 read a bitmap of m bits and the differences from

disk, let a be the one on top of h1 and AD be
the one on top of h2, update a and AD same as
in Algorithm 2;

6 if is last child is 1 then pop h1 and h2;
7 if is leaf is 0 then push a to h1 and AD to h2;
8 return a if AD is smallest (or largest);

Table 1: The dataset details.

dataset n d raw data size quantized size

BigAnn 109 128 123GB 7.5GB
Deep1B 109 96 361GB 7.5GB
Audio 1.4 × 109 128 172GB 11GB
Video 1.4 × 109 1,024 1,341GB 11GB
SALD 0.89 × 109 128 429GB 6.7GB

calculates its AD to the query. The two stacks are initialized
with the root node and its AD (Lines 1 to 2). Then it reads
2 bits as the two boolean fields, m bits as the bitmap, and a
sequence of log l bits as indicated by the bitmap. With the
source code and its AD on top of the two stacks, the AD of
currently visiting node is calculated (Lines 4 to 5). Finally,
the two stacks are maintained in accordance with the two
boolean fields (Lines 6 to 8) and the largest (or smallest)
AD is returned after visiting all the nodes (Line 8).

Lemma 4. Given a DeltaTree, a lookup table T, and a
query vector q, SearchDeltaTree must return the code
with the smallest (or largest) AD to the query.

4.7 Update the DeltaTree
When a new vector arrives, we need to update the Delta-

Tree. The vector is firstly quantized to a code. Then we
append the code to the existing DeltaTree as the last child
of the root node. Though it does not lead to the minimum
number of additional differences, the insertion operation can
be performed efficiently. To process the deletion query, we
employ a boolean column to mark the existence of each vec-
tor. A deletion query simply marks the existence of the cor-
responding code as false. Periodically, we rebuild the entire
DeltaTree to optimize the space cost.

5. EXPERIMENTS
Datasets. All experiments were conducted on the following
five real-world datasets.

• BigAnn [4] consists of 1 billion 128-dimensional SIFT vec-
tors (a widely adopted image descriptor [61]) extracted
from ≈ 1 million images. This dataset has been exten-
sively used in similarity search studies [12, 66, 52, 53].

• Deep1B [16] is a billion-scale dataset that is obtained from
the outputs of the last fully-connected layer of a deep
neural network for a billion images on the Web. Each
vector is compressed by PCA to 96 dimensions.

• Video and Audio [9, 7] are the frame-level video and audio
features extracted from 350,000 hours of YouTube video
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Figure 6: Number of differences by varying m
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Figure 7: Number of differences by varying l
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Figure 8: Number of differences by varying n

using Inception-V3 and VGG-like models. Each of them
has around 1.4 billion feature vectors. These features are
preprocessed by feature standardization, dimension reduc-
tion, and vector quantization. Values in each coordinate
are quantized to 256 distinct values.

• SALD [3, 30, 31] contains neuroscience MRI data and con-
sists of 899 million 128-dimension vectors.

Table 1 shows the detailed statistics of all datasets. Notably,
the largest dataset contains 1.4 billion vectors and takes
1342 GB space on the disk (after vector quantization).

Settings. All of our proposed methods are implemented in
C++ and compiled using g++ -std=c++11 -fopenmp with
-O3 flag. All compressing experiments are conducted on a
shared cluster of machines with Centos 7, Intel(R) Xeon(R)
Gold 6230 CPUs @ 2.10GHz, and 192 GB memory. The
query experiments are performed on a dedicated machine
with Ubuntu 18.04, Intel(R) Xeon(R) Gold 6212U CPU @
2.40GHz, 64 GB memory, and an 8TB hard disk.

5.1 Evaluating Our Compression Methods
We first evaluate our proposed lossless compression meth-

ods. Three methods are evaluated: (1) DIFF compresses the
codes by differential compression as discussed in Section 3;
(2) MST encodes the codes in an optimal DeltaTree as dis-
cussed in Section 4.2; (3) DTC encodes the codes in the
DeltaTree derived from the fixed-height spanning tree of the
DeltaGraph as discussed in Section 4.5. We vary the three pa-
rameters, m, l, and n, and report the number of differences,
the compression time, and the compression ratio of the three
methods. Each time we vary one of the three parameters
and fix the other two as their default values. Specifically, m
varies in [4, 6, 8, 10]. l varies in [16, 64, 256, 1024]. n varies
in [106, 107, 108, 109]. The default value is 8 for m, 256 for l,
and the maximum n of each dataset (as shown in Table 1).
Note that the default setting of m and l is a common trade-
off between query accuracy and efficiency in many existing
studies [12, 65, 66, 52, 53]. The experimental results are
shown in Figures 6, 7, 8, 9, 10, 11, 12, 13, 14.

Number of Differences. As shown in Figures 6, 7, and 8,
DIFF had the maximum number of differences among the
three methods, MST achieved the minimum total number

of differences, while the number of differences of DTC was
only marginally larger than that of MST. This means our
compression method DeltaPQ almost achieves the optimal
compression ratio among all DeltaTrees. For example, in
the default setting, the number of differences for MST, DTC,
and DIFF were respectively 1.9×109, 2.2×109, and 7.9×109

on Deep1B dataset. In addition, we observe that with the
increase of m and l, all the methods had a greater number
of differences, and the gap between DIFF and MST (DTC)
decreased. This is because the code space ml (the num-
ber of possible codes) grows when m and l increase and
the chance that two codes sharing common coordinates de-
creases. Thus, the number of differences increases. In ad-
dition, DIFF almost had the maximum possible number of
differences even when m and l were small and could not be-
come worse with the increase of m and l. The number of
differences grows with the input size n.

Compression Ratio. Figures 9, 10, and 11 report the com-
pression ratio of the three methods under different parame-
ters. The compression ratio is calculated as the size of the
original codes divided by the size of the compressed data
and the larger the better. We can see the compression ratio
had the same trend as the total number of differences, which
is consistent with our analysis. Note that the compression
ratio of DTC is only marginally smaller than MST and is
greater than 2 in almost all cases. The compression ratio
of DIFF was even smaller than 1, meaning the compressed
data is larger than the original codes. This is because DIFF
has too many differences and needs to store a bitmap to
record the position information of the differences. For ex-
ample, in the default setting, the compression ratio of DTC,
MST, and DIFF were respectively 2.57, 2.36, and 1.04 on the
Audio dataset. In addition, as the number n of codes grows,
the compression ratio tends to increase. For example, with
n = 106 on Deep1B, the compression ratio of DTC was 1.4,
while when n increased to 109, it improved to 2.1. This is
because, with the increase of input size, the codes are more
likely to be connected with lighter weight edges.

Compression Time. The compression time is shown in Fig-
ures 12, 13, and 14. DIFF had very small compression time
as it only needs to scan all the codes once and compare
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Figure 9: Compression ratio by varying m
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Figure 10: Compressing ratio by varying l
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Figure 11: Compression ratio by varying n
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Figure 12: Compressing time by varying m
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Figure 13: Compressing time by varying l
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Figure 14: Compressing time by varying n
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Figure 15: Comparison with the state-of-the-art similarity search algorithms

the adjacent codes. MST and DTC had longer compression
time. We can see from the figures that the compression
time of MST and DTC grew exponentially with the increase
of m and grew linearly with the increase of n. This is con-
sistent with our complexity analysis. Note that DTC was
around 2× faster than MST in most cases. This is because
DTC generates less edges than MST. It only generates edges
between codes that are root nodes in connected components
and whose height is small. However, DTC took more time
than MST on BigAnn for l = 1024. This is because, for
a large l, the common coordinates become rare and fewer
edges can be generated. Thus, most of the codes remain
root nodes with small height and DTC needs to generate

edges between all of them. Besides, DTC needs to maintain
the root node bitmap and height array. This is also why the
compression time grew marginally with an increase of l.

Summary. DTC achieved a similar compression ratio as
MST, up to 5 when m and l were small and took only half
of the compression time. DIFF barely compressed the codes.

5.2 Comparing with Compression Algorithms
In this subsection, we compare DeltaPQ with three state-

of-the-art general-purpose lossless compression algorithms.

• RLE Run-Length-Encoding [46] is a lossless compression
method widely used in column-oriented database systems.

• LZMA Lempel-Ziv-Markov chain algorithm [71] is a loss-
less compression method optimized for compression ratio.
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• LZ4 [25] is another lossless data compression algorithm
that is optimized for compression and decompression time.

We downloaded standard implementations of the above al-
gorithms from the official websites or GitHub repositories
[2, 71, 6]. All of them are implemented in C++. The
compression ratio on the five datasets with default param-
eters is reported in Figure 16a. As we can see from the
figures, DeltaPQ outperformed LZMA, LZ4, and RLE on all
of the datasets. The three general-purpose compression al-
gorithms barely work. For example, on the Deep1B dataset,
the compression ratio of DeltaPQ, LZMA, LZ4, and RLE were
respectively 2.35, 1.11, 1.01, and 0.998. This is the state-of-
the-art algorithms search for repetitive patterns in the data
and compress them by keeping only one copy of each repet-
itive pattern. However, the quantization codes rarely have
repetitive patterns. On the contrary, DeltaPQ leverages the
common coordinates to compress codes, which there are a
lot because the domain of each coordinate is very limited.

Figure 16b shows the compression time on the five datasets
with the default setting. LZ4 and RLE compressed data at
a very high speed, as fast as 50 seconds per billion codes,
yet they did not compress the data well and their compres-
sion ratios were close to 1, which means they barely reduce
the file size after compression. Although LZMA achieved a
slightly higher compression ratio than LZ4 and RLE, its com-
pression time was orders of magnitude longer. Compared to
LZMA, DeltaPQ achieved a much better compression ratio
with an order of magnitude less compression time.

Update Query. We now evaluate the performance of up-
date queries. We reported our experimental results on the
BigAnn dataset and omit others due to space limit, though
similar results are observed. The update query vectors are
randomly chosen from the original dataset. Since we only
need to append the new quantization code to the end of the
DeltaTree with at most 2 IOs, the average update time is
only 88ms. The increased compression ratio grows linearly
with the number of insertion queries. For example, with 1
million, 10 million, and 100 million insertion queries, the
compression ratio increases by 0.00237, 0.0237, and 0.237.

5.3 Similarity Search
Searching by Scanning PQ codes. We compared three
methods: (1) DIFFScan searches directly on the differential
compressed codes as discussed in Section 3; (2) DeltaPQ
searches directly on the DeltaTree derived from the fixed-
height spanning tree as discussed in Section 4.5; (3) PQScan
searches on the uncompressed codes. All the compressed
(or uncompressed) codes are on disk. We did not include
the method that searches on the optimal DeltaTree as it has
no bound on the space overhead per query. In contrast,
the three methods above all have very small space over-
head in a few bytes per query. We reported the average
query time on the five datasets with the default setting in
Figure 17a. DeltaPQ achieved the best query performance
while PQScan outperformed DIFFScan. For example, the
average query time for DeltaPQ, PQScan, and DIFFScan on

the Audio dataset were respectively 51, 93, and 104 seconds.
The performance boost is mainly due to the reduced size of
the compressed data and thus the reduced I/O cost. DIFF-
Scan not only had a higher I/O cost but also had a higher
CPU cost compared to PQScan. We also compared the av-
erage query time when all codes are in memory. As shown in
Figure 17b, DeltaPQ takes less than twice time than PQScan,
mainly because of the high branch misprediction penalty at
the CPU architecture level caused by the unpredictable node
depth during the scan. DIFFScan is slower than DeltaPQ be-
cause it executes up to 4 × more arithmetic operations. In
comparison, scanning the raw data takes 740s, 2190s, 1040s,
8070s, and 2420s for BigAnn, Deep1B, Audio,Video, and SALD

respectively, which are two orders of magnitude slower.
Table 2 shows the search accuracy of PQ-based methods

on the entire datasets and their one million sample. Recall
and ε-Recall, which are also used in the benchmark [1], are
reported, along with the mean average precision (MAP) [13].
ε-Recall is the percentage of results whose distances are
within 1+ε times of that of the k-th real nearest-neighbor.
The accuracy is lower in large datasets than in small datasets
as vectors in large datasets are more dense and more indis-
tinguishable. The accuraccy is higher in datasets of lower
dimensionalities as the quantization error is smaller.

Comparing with State-of-the-art Similarity Search
Methods. Next, we compared our method with five state-
of-the-art approximate nearest neighbors search algorithms
HDIndex [13], C2LSH [35], QALSH [47], SRS [80], and HNSW
[64]. HDIndex is an on-disk tree-based method. C2LSH,
QALSH and SRS are on-disk LSH-based methods. HNSW
is an in-memory graph-based method. We run these algo-
rithms on BigAnn and scale the input size from 106 to 109.
We tune parameters to make their search accuracy roughly
the same (as evaluated by Mean Average Precision MAP [30,
31, 13, 36]) and report their query time and index cost

As shown in Figure 15, DeltaPQ answers top-100 queries
with MAP of 0.42, 0.32, 0.23 and 0.15 for Sift1M, Sift10M,
Sift100M and Sift1B respectively. In comparison, none of
the state-of-the-art methods scales to billion scale and gets
similar accuracy within a reasonable indexing time and size.
HDIndex requires more than 10 days and 1TB disk space to
build the index, while its query latency is at least an order
of magnitude longer than DeltaPQ. This is because HDIndex
incurs randomized disk access for building multiple huge
B-Trees on disk. In comparison, DeltaPQ only needs less
than 1 hour for preprocessing and less than 4GB for stor-
age. Compared to DeltaPQ, the index sizes of SRS, C2LSH,
and QALSH are more than two orders of magnitude larger,
and the indexing time, as well as query latency are at least
one order of magnitude longer. This is because LSH-based
methods require an excessively large number of hash tables
in order to match the accuracy of DeltaPQ. HNSW answers
query the fastest as it is an in-memory method while all the
others are disk-based. HNSW requires slightly less time for
indexing in the experiment because the number of neighbors
of each vertex only needs to be 2 to achieve the same ac-
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Table 2: Search Accuracy of PQ-based Methods (ε=0.1)

dataset ε-Recall
1M

ε-Recall
1B

Recall
1M

Recall
1B

MAP
1M

MAP
1B

BigAnn 0.88 0.52 0.48 0.19 0.43 0.15
Deep1B 0.70 0.25 0.29 0.08 0.24 0.08
Audio 0.67 0.27 0.41 0.12 0.35 0.11
Video 0.31 0.15 0.21 0.09 0.24 0.13
SALD 0.90 0.60 0.56 0.15 0.46 0.13

curacy as our method, which largely reduces the indexing
time. However, even for a very small number of neighbors
of 2, its index size is still at least 30× larger than DeltaPQ.

Indexing Time. As shown in Figure 15e, the quantiza-
tion time of PQScan is similar to the preprocessing time
(including quantization and compression) of DeltaPQ on all
datasets except for Video, which takes about 12× longer for
DeltaTree. This is because Video has a much higher dimen-
sionality than all other datasets, so it requires a longer time
for distance calculation when encoding. In Figure 15c, we
compare the whole index time of DeltaPQ with all the base-
lines. HDIndex, SRS, and C2LSH are orders of magnitude
slower than our method while QALSH is about one order of
magnitude slower. HNSW is slightly faster than DeltaTree,
but its index size is at least 30× larger.

To sum up, DeltaPQ has smaller index cost than graph-
based methods and LSH-based methods while providing rea-
sonable query performance and scales linearly to the dataset.

Remark. The trade-off between search accuracy, query
time, and index cost of the graph-based methods, LSH-based
methods, and PQ-based methods have been well studied.
For example, ann-benchmark [1] is a popular benchmark for
approximate nearest neighbor search. In summary, the PQ-
based methods have the smallest index size and index time
among them, while the graph-based methods achieves the
best accuracy-search time trade-off. PQ-based methods can
be very useful when handling extremely large datasets. It
can be too expensive to apply the graph-based method just
building the index. In addition, the search accuracy of PQ-
based method is usually good enough for many applications.
For example, [65] shows that clustering based on product
quantized vectors can produce competitive results compared
with k-means. In addition, [9] confirms that quantized vec-
tors on the Youtube-8M dataset do not significantly hurt the
evaluation results on several video classification models.

6. RELATED WORK
Tree Indexes. Similarity search on high dimensional vec-
tors has been extensively studied. Many tree structured in-
dexes based on space partition have been proposed, such as
the KD-tree [21], the R-tree [41], the TV-tree [57], the Quad-
tree [77, 32], the X-tree [22], the adaptive B+-tree [49], A-
Tree [76], M-Tree [24], Multicurves [85], DSTree [86], iSAX2+
[23], and etc.. A-Tree [76] introduces Virtual Bound Rect-

angles to reduce page access. M-Tree [24] is a balanced
tree for generic metric space and supports I/O and com-
putation efficient similarity search for dimensions under 50.
Multicurves [85] uses space-filling curves to reduce dimen-
sionality and then store each curve in a B-Tree. DSTree [86]
uses the Extended Adaptive Piecewise Approximation sum-
marization technique and supports upper and lower bound
distances for node splitting. iSAX2+ [23] is the latest vari-
ant of the iSAX family and supports bulk loading. Its in-
dex can be used for both exact and approximate NN search

[70]. Due to “the curse of dimensionality” [48], these meth-
ods only work for multi-dimensional data, and their per-
formances degenerate dramatically when the dimensionality
slightly increases [78]. HDIndex [13] is state-of-the-art tree-
based method that incorporates Multicurves and stores the
distances to reference sets for speeding up filtering. How-
ever, its indexing time and indexing space limit its usability
on large scale datasets.

Locality Sensitive Hashing. Indyk et al. propose Local-
ity Sensitive Hashing (LSH) to conquer the curse of dimen-
sionality, which guarantees that close by vectors are more
likely to be hashed to the same bucket than far away vec-
tors. Datar et al. [26] design the LSH scheme for Euclidean
distance and Lp-norm. Gionis et al. [38] propose LSH for
hamming distance, Anshumali et al. [79] design asymmetric
LSH for maximum inner product search, while Andoni et
al. [11] develop an optimal LSH for Angular distance. How-
ever, the index size of LSH based methods is excessively
large. To alleviate this problem, Lv et al. [62] propose to
probe multiple nearby hash buckets to reduce the index size.
Tao et al. [82, 83] propose to use one single index for nearest
neighbor search query. Gan et al. [35] propose to count the
number of hash values within the same bucket using multiple
B-trees [20]. Huang et al. [47] propose to use the query as
the middle point to determine buckets for better accuracy.

Proximity Graph. There are many proximity graph based
methods for similarity search [45, 63, 55, 64, 33, 14, 50].
Delaunay graphs [15] and monotonic search networks [27]
guarantee that for any vector/vertex, one of its neighbors
is closer to the query than itself. A best-first search from
any vertex can find the nearest neighbors of a query. How-
ever, their time complexity is unknown. Though randomized
neighborhood graphs [14] guarantee polylogarithmic search
time complexity, they are expensive to construct. Hajebi et
al. [42] propose to use a knn-graph [29] to approximate these
graphs. Malkov et al. [64] propose to use hierarchical nav-
igable small-world graphs [55] for similarity search, which
has been shown efficient empirically. Fu et al. [33] leverage
the angular between vectors in graph construction.

Product Quantization. Jégou et al. [51] propose to use
product quantization for large scale similarity search. André
et al. [12] propose to use SIMD for AD computation and put
the lookup table to registers. Matsui et al. [66] propose to
use hash tables to index codes . Johnson et al. [53] propose
to use product quantization for similarity search on GPU.
Liu et al. [59] proposes to index the codes using a forest of B-
trees for better disk I/Os. There are studies on optimizing
codebook generation for better accuracy [36, 39, 54] and
coarse quantization [17]. Variant coding strategies have been
proposed [18, 88]. Vector quantization has also been used for
clustering [65, 69] and deep neural network compression [44].

7. CONCLUSION
In this paper, we study lossless compression techniques for

high dimensional data management. We propose two differ-
ential code compression methods to compress the quantiza-
tion codes and perform queries directly on the compressed
data. One of them can achieve the optimal compression
ratio, while another one has slightly lower compression ra-
tio but it only incurs tiny space overhead per query. Our
experimental results show that on five real-world datasets,
our approach outperforms state-of-the-art general-purpose
compression methods and similarity search algorithms.
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