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ABSTRACT 
Most organizations are becoming increasingly data-driven, often 
processing data from many different sources to enable critical 
business operations. Beyond the well-addressed challenge of 
storing and processing large volumes of data, financial institutions 
in particular are increasingly subject to federal regulations 
requiring high levels of accountability for the accuracy and lineage 
of this data. For companies like GE Capital, which maintain data 
across a globally interconnected network of thousands of systems, 
it is becoming increasingly challenging to capture an accurate 
understanding of the data flowing between those systems. To 
address this problem, we designed and developed a concept 
lineage tool allowing organizational data flows to be modeled, 
visualized and interactively explored. This tool has novel features 
that allow a data flow network to be contextualized in terms of 
business-specific metadata such as the concept, business, and 
product for which it applies. Key analysis features have been 
implemented, including the ability to trace the origination of 
particular datasets, and to discover all systems where data is found 
that meets some user-defined criteria. This tool has been readily 
adopted by users at GE Capital and in a short time has already 
become a business-critical application, with over 2,200 data 
systems and over 1,000 data flows captured. 

1. INTRODUCTION 
The recognition of data as a strategic asset critical to business 
operations has made corporate data management substantially 
more important over the past decade [1]. Infrastructure for 
corporate data management in companies such as GE Capital is 
comprised of a global network of thousands of systems managing 
thousands of different types of data. In the wake of the global 
financial crisis of 2007-2009, the US Federal Government 
recognized the need for companies to maintain accurate and 
complete data to effectively manage and report risk. Specifically, 
the Dodd–Frank Wall Street Reform and Consumer Protection Act 
of 2010 [2] grants the US Federal Reserve (Fed) expanded 
oversight of large banks and other companies designated as 

Systemically Important Financial Institutions (SIFIs). Today, the 
Fed mandates that all SIFIs have the capability to track and report 
the lineage of data used for financial risk classifications and other 
important decisions. 

SIFI regulations created a data challenge of maintaining a cohesive 
view of data flows between systems which create, manipulate or 
store financial data. While GE is no longer a SIFI as a result of its 
significant divestitures from GE Capital, the desire to address the 
broader data management challenge persists. In addition to the 
ability to capture the cohesive view of data flows, it is important to 
be able to interactively query and perform ad hoc reporting for 
internal information sharing and oversight. We built a Concept 
Lineage Tool (‘Colt’) to address this challenge. With Colt, users 
can capture information about different types of systems and 
metadata about the data flowing between them, and answer 
questions about the lineage of those datasets. This information is 
made available for interactive exploration in the form of a directed 
graph (data flow network) where nodes represent data producers 
and/or consumers (hereafter referred to more generally as ‘data 
stores’), and edges represent data flows between those data stores. 

Colt enables users to fully characterize data flows using an 
extensible set of hierarchical taxonomies, including many potential 
combinations of businesses, products and concepts associated with 
data flowing between systems. Further, we have implemented a 
rich set of features to facilitate the mining of the data flow 
network, including the ability to view the entire network, view 
only those systems upstream and/or downstream of a single system 
or collection of systems, and/or view the network filtered by terms 
selected from the data flow taxonomies. Colt provides key features 
to understand how data propagates through the network, including 
tracing the lineage of data upstream from a system to its origin 
system(s) or downstream to its destination(s). This tracing 
capability is critical for assessing the potential impact of changes 
to one or more of the data stores. Users can also validate the 
network to ensure that no node is sending out information that it 
neither creates nor receives from another node. Finally, Colt 
enables administrators to create and edit the network. 

While Colt was initially built to address specific needs within GE 
Capital, it was purposefully designed to be highly reusable within 
other organizations and even other industries outside of financial 
services. The model and taxonomies used for capturing metadata 
about the data flows can be easily extended, modified, or entirely 
replaced with a new model and taxonomies. For example, in a 
different business or industry, businesses and products may not be 
relevant metadata descriptors, whereas alternate categories may be 
required to model the data flows. Arbitrary categories and 
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taxonomies can be used within Colt without requiring code 
changes, making Colt a powerful, reusable tool. 

This paper is organized as follows. Section 2 outlines the use case 
that this system was built to address, which has broad applicability 
outside of GE Capital. Section 3 summarizes related work in data 
lineage and network analysis. Section 4 provides an overview of 
the Colt system, and Section 5 details the data store and model. 
Section 6 reviews the user interface, and Section 7 describes some 
of the advanced capabilities found within Colt. Section 8 outlines 
the results achieved to date, and Section 9 provides a summary of 
the conclusions and future work. 

2. INDUSTRIAL USE CASE 
GE Capital is the financial arm of the General Electric Company. 
Its primary focus is on leasing and lending in the aviation, 
healthcare, and energy sectors where GE manufactures and sells 
industrial equipment. To identify prospects, track customers, and 
manage the overall risk exposure of the portfolio, GE Capital 
utilizes data from a wide range of internal and external data 
sources, storing this data across over 2,000 internal repositories. 

Historically, the GE Capital sub-businesses operated in silos, 
independently collecting and managing the data relevant to their 
products and customers. Due to the disjoint nature of this 
approach, it was difficult if not impossible to get a complete 
picture of where all of GE Capital’s data resided, or how it flowed 
from system to system. This severely impeded the ability to 
perform key data management activities, for example, to identify 
duplicate data or processes, or find the point of origination of a 
particular data element. 

Prior to Colt, GE Capital like many organizations relied upon the 
preparation of a large number of static Visio sheets to document 
their data flows. It was a laborious task to collate and manage 
them, and this approach prevented any sort of meaningful 
querying, interaction, or validation of the resulting networks.  

Colt was designed and developed to address this problem by 
enabling the capture of data lineage metadata in a dynamic, 
interactive tool. The challenge of being able to capture and analyze 
data flows through a network of data stores is faced by many if not 
most medium-to-large organizations and corporate entities, 
particularly those integrating a large number of acquisitions. 

2.1 Benefits of Data Lineage 
There are many benefits to capturing and recording data lineage. 
First and foremost is for compliance purposes—many if not most 
companies and large organizations need to be able to report (either 
to internal oversight boards or to external regulatory bodies) where 
business critical data originates, where it resides within their 
systems, and how it is transformed as it flows through their 
networks. Further, data lineage can provide visibility into 
otherwise opaque complex, often global, networks of 
interconnected systems. This transparency can provide crucial 
insights such as identifying critical systems and discovering 
unexpected redundancies. Finally, data lineage can help answer 
key questions, such as assessing the downstream impact of 
changes to an organization’s IT infrastructure, or tracing faults 
upstream to their source. 

2.2 Concept Lineage 
Colt is built to track concept lineage, where a concept is a logical 
grouping of multiple data elements. For example, the concept 
Party Identity may encompass data elements containing names, 
addresses, and phone numbers for customers, prospects, and other 
parties. Some concepts contain a handful of data elements, while 
others can represent 20 or more elements. It is sufficient for Colt to 
define data flows in terms of concepts, since these groups of data 
elements are usually kept and move together through the data 
stores. Further, modeling concepts is beneficial from a scalability 
perspective, as it reduces the volume of edge metadata that must 
be managed. 

2.3 Taxonomies 
Colt was designed and built to record complete metadata 
describing data flowing from one system to another. As such, the 
data is characterized in terms of a collection of taxonomies, 
including the data contents (“concepts”) and the context in which 
this data exists (“boundaries”): 

• Concept: the data contents (e.g. Party Identity for data 
containing customer names and addresses) 

• Concept treatment: the action performed on the data by the 
consuming system (options are create, read, modify, and 
augment) 

• Business Boundary: the business or sub-business for which 
this data exists (e.g. GE Capital Americas) 

• Product Boundary: the product line for which this data exists 
(e.g. Commercial Loans) 

• Other boundaries: Going forward, as data is further 
characterized, additional boundary types may be defined and 
associated with datasets 

Concepts, businesses, and products are organized as groupings of 
sub-concepts, sub-businesses, and sub-products. These may be 
nested using an arbitrary number of levels, forming hierarchical 
taxonomies. Figure 1 shows excerpts from each of the three 
taxonomies used in Colt. 

 

(a) Concept (b) Business (c) Product 

Figure 1: Excerpts from the hierarchical taxonomies 

3. RELATED WORK 
Data lineage is represented as a directed network graph. In most 
scenarios, data lineage graphs are primarily composed of three or 
more abstract entities—data artifacts, the systems or 
transformations that operate on those artifacts, and the agents that 
carry out those transformations. Data artifacts here could range 
from tuples in a database to files or entire datasets on a local or 
remote file system. Sometimes, it is useful to explicitly 
differentiate between transformation types (e.g. OS call, SQL 
query) and the actual invocation of a transformation on an instance 
of a data artifact. While lineage networks bear some high-level 
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structural similarity to social networks (for example, certain nodes 
exhibit higher centrality measures than most others, and data flows 
between certain subsets of nodes are denser than others), we have 
not come across a formal characterization of the topological 
features of lineage networks. 

Data Lineage: Data lineage exploration has been previously 
studied within various contexts. Spreadsheet tools capture lineage 
at the granularity of individual cells and show how the contents of 
a cell are derived from other cells. Provenance-aware storage 
systems [3][4][5] typically intercept operating system calls to 
record information on per-file creation, modification and deletion 
so that the files are easy to track, maintain and query. Scientific 
workflow systems [6] allow rich annotations of workflow 
components and record application-level lineage at the granularity 
of files or datasets [7][8][9][10]. A number of commercial 
solutions [11][12][13][14][15] supplement traditional data 
warehouses and business intelligence ecosystems by capturing 
lineage on a per-tuple basis, recording the loading and 
transformations that resulted in the creation of each tuple. Lineage 
tracking for modern Big Data ecosystems is surveyed in [16][17]. 
Commercial solutions in this space such as Teradata Loom [18] 
and Cloudera Navigator [19] track and collect per data object 
lineage of unstructured datasets as they flow through data cleaning 
and processing steps in a Hadoop-based ecosystem. Tools for 
collecting provenance data and assisting in provenance-based 
search in social media networks have been proposed in [20][21]. 
Finally, recent approaches propose generic support for data 
lineage/provenance in heterogeneous ecosystems that do not 
constrain the nature and types of systems involved—either by 
extensible transformation of all lineage information into a generic 
log [22], or into a generic property graph [23], or via a portable 
general-purpose provenance library that applications can tap into 
[24], or by implementing the Open Provenance Model [25]. Our 
work is similar to these latter approaches in that Colt manages 
lineage of data across generic heterogeneous data systems. 

Lineage Representation and Storage: Lineage graphs have been 
represented using different models and persisted in a variety of 
data stores. In some solutions, lineage information is stored in 
meta-files co-located with the data or as metadata within the 
headers of the files themselves, an approach that is not amenable 
to querying or visualizing the lineage information. Relational 
models have been used for storing and querying lineage in 
[3][4][13] but does not provide native support for graphs; hence 
even simple network traversals must be expressed via complex 
joins between tables. XML is another popular model for 
representing lineage networks [9][10][25]; however, the 
hierarchical nature of XML is a drawback when representing say, 
entities with multiple parents. Finally, graph-based models are 
increasingly being used for lineage. Both property-graph models 
[5][12][23] and semantic graph models [26][27] have built-in 
capabilities for efficient operations on graphs. Colt is built on a 
semantic model of lineage. Our work differs from these others in 
that Colt maintains lineage information at the concept level, with 
metadata describing flows in the context of concepts, businesses, 
and products. Their hierarchical organization enables rich 
queries—a key feature which is not readily available in other 
graph-based provenance models. 

Lineage Network Analysis and Visualization: Analysis and 
visualization of lineage networks can yield insights that help 

improve the corresponding applications. The Provenance 
Challenge [28] put forth nine representative queries that reflect the 
typical questions asked of lineage graphs of scientific workflows. 
The analysis queries issued against data lineage networks are a 
subset of general social network analysis algorithms and can be 
broadly categorized as follows. (1) Lineage tracing relates to 
determining the lineage of a data artifact, often tracing it upstream 
to its source(s) one step at a time [3][4][5]. (2) Impact assessment 
relates to the traversal of the network downstream from a given 
node of interest and can be viewed as the converse of upstream 
tracing. Examples of queries in this category include: “What is the 
estimated impact of a change to a data artifact or transformation 
process?” [11][13][14]. (3) Summarization relates to the analysis 
of lineage networks where most of the nodes and edges are 
involved. Validation of a lineage network, i.e., ensuring that all 
data artifacts can be traced back to reliable sources, can be 
considered to be a specific form of summarization. (4) Path-
finding and traversal refers to a more generalized walk-through of 
a lineage network. An example query in this category is: “Traverse 
a subset of paths where only data artifacts of a specific type flow 
between systems.” Colt supports each of these four categories of 
network analysis queries. Furthermore, Colt can filter these queries 
at any level and any combination of the concept, business, and 
product hierarchies. 

Lineage in Financial Services: While federal regulations such as 
CCAR (Comprehensive Capital Analysis and Review) and BCBS 
(Basel Committee on Banking Supervision) regulation number 239 
mandate that financial institutions deemed systemically important 
maintain lineage of critical data and other information used for risk 
and capital assessments, we are not aware of any Fed-
recommended guidelines or methodologies for lineage capture and 
management within the financial domain. Consequently, 
organizations have adopted a range of solutions towards lineage 
analysis for ad hoc reporting purposes, including: (1) using 
enormous spreadsheets and Visio diagrams, an approach that is 
laborious and not automated, (2) utilizing the collective 
capabilities of multiple off-the-shelf commercial lineage tools, an 
approach that is expensive and not customizable, or (3) developing 
complex software, often resulting in systems that are highly 
customized and non-extensible. 

Prior art indicates that certain large-scale financial institutions are 
developing their own in-house solutions and systems for tracking 
data lineage [29][30]. Additionally, anonymous case studies point 
to Informatica/Diaku Axon [31], Collibra [32], IBM’s InfoSphere 
Metadata Workbench [33] and DATUM as the leading third-party 
vendor tools of choice for data lineage management in medium to 
large financial enterprises. Our own qualitative evaluation of third-
party tools such as Axon for the GE Capital use case revealed 
shortcomings with respect to creating custom metadata groupings 
and extensible hierarchical taxonomies. Colt bears similarity to the 
Ontology and Provenance financial services offered by Bloomberg 
[34][35] in that it utilizes a semantic model to represent data 
concepts from multiple sources, thereby allowing business analysts 
to capture key information in a consistent, standardized manner. 
However, Colt differs in its use of semantics and the associated 
W3C standards-based technologies to also model lineage of data 
flowing between systems and to allow interactive querying of the 
lineage information. Importantly, the model underpinning Colt is 
flexible and extensible enough to support business logic changes to 
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the metadata taxonomies (e.g. additional hierarchies or updates to 
the existing taxonomy). 

4. HIGH-LEVEL SYSTEM OVERVIEW 
The goal of this work is to provide GE Capital with the capability 
to characterize how key data moves through a large number of 
data systems. To this end, we designed and developed a reusable 
solution enabling users to capture information about systems and 
metadata about the data flowing between them, and then 
interactively explore this information to answer business-critical 
questions. 

4.1 Requirements 
Key requirements for Colt included the ability to: (1) display the 
entire network of systems, (2) starting from a particular system, 
view the systems feeding data to or consuming data from that 
particular system, (3) create, modify, and delete data flows using 
the appropriate concept-boundary taxonomies, (4) filter the 
network views using those taxonomies (e.g., only show data flows 
containing Party Identity), (5) validate the network to assess if the 
representation is logical, and (6) starting from a specific node, 
trace the data in that node to discover its origination or destination 
points. 

In addition, a set of administrative users must be able to edit the 
network, performing tasks such as adding systems and defining the 
flows between them, and generating text-based reports of the data 
flows. 

4.2 Architecture 
To meet these requirements, we designed a system based on the 
conceptual architecture shown in Figure 2. The data storage layer 
is comprised of a semantic triple store. An HTML and JavaScript 
web-based user interface allows users to perform most of the 
functions outlined above. For the remaining functions, a set of 
Java microservices enables functionality such as network tracing, 
which requires substantial overhead to execute. 

4.3 Data Storage 
Semantic technologies were chosen to model and store the network 
data. The decision to use semantic technologies in lieu of a more 
traditional relational or NoSQL store was made for multiple 
reasons. First, a store with intrinsic recursive graph query 
capabilities enables the efficient network traversal functionality 
required in Colt. Second, semantic models enable a high level of 
expressivity for representing the hierarchical data flow metadata in 
an easily extensible format. This allowed Colt’s development to be 
accomplished in stages, with the graph being monotonically 
extended over time. A traditional database environment would 
have required a large number of schema migrations or the 
introduction of a convoluted schema as extensions occurred. Using 
a NoSQL system would have simplified the schema approach, but 
would have introduced significant overhead at query time. A W3C 
standards-compliant semantic triple store is used to store the data 
model and instance data as tuples [36]. Data is queried using the 
SPARQL query language, standardized by the W3C [37]. Finally, 
the use of semantic models increases the capability to infer 
additional knowledge about the lineage networks through 
automated reasoning capabilities. 

5. SEMANTIC MODEL 
A semantic model authoring technology called SADL (Semantic 
Application Design Language) was used to create the semantic 
model and ingest instance data [38]. SADL provides a controlled 
English language that compiles directly to a proper subset of OWL 
1.1. Using controlled English allows for descriptive models to be 
generated in a manner that is comprehensible to subject matter 
experts who are not familiar with the Semantic Web. This was 
beneficial because it allowed GE Capital IT domain experts 
without Semantic Web experience to directly contribute to the 
creation of the model, shortening development time. The SADL 
ingestion tools further provide a template language which 
simplifies the loading of instance data to the triple store. 

 

Figure 2: Colt conceptual system architecture 

A semantic model was built to represent data systems and data 
flows between them. Figure 3 is a simplified depiction of how the 
model represents a producer system sending data to a consumer 
system. The semantic model captures metadata about the nodes, 
including a node name, type and a brief description. While we 
primarily use the terms ‘system’ or ‘data store’ when describing 
the nodes in Colt, nodes can be any one of the following types: (1) 
a database or data warehouse, (2) an external source, (3) an 
application, (4) a model/analytic, (5) a report, or (6) a process. 
Each of these types of data stores is represented with a distinct 
icon in the user interface. 

 

Figure 3: data flows from a producer to a consumer 

The data flow itself is modeled as a potentially complex 
combination of concepts and boundaries, as shown in Figure 4, 
with the asterisks representing one-to-many relationships. A data 
flow is associated with one or more structures called boundary 
groups, which in turn may contain one or more concepts and 
treatments and boundary sets. Each boundary set is a combination 
of boundaries (business and product boundaries, at present). It 
should be noted, however, that the data model and application 
support an arbitrary number of boundary types, such that 
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additional boundary types can be added solely via additions to the 
instance data with no semantic model or code changes required. 

A data flow may consist, for example, of Contract Terms concepts 
and Party Identity concepts for Single Investor Lease products in 
the Fleet Services business (a sub-business of North America 
Commercial Loans and Leases). The Contract Terms data is read 
and persisted by the consumer, and the Party Identity data is 
modified by the consumer. Figure 5 shows this sample boundary 
group as it appears in the Colt interface. 

 

Figure 4: A data flow is a complex structure containing 
concepts and their treatments as well as boundaries 

Further, the hierarchical nature of the concept and boundary 
taxonomies allow for inheritance, and therefore it is assumed that 
the selection of a parent implies the selection of the children. For 
example, if a data flow includes a Concept C, then it is assumed to 
include Subconcepts Ca, Cb and Cc. 

 

Figure 5: Example boundary group 

5.1. Model in Depth 
The semantic model used in Colt descends from a generic process 
model originally built to describe the flow of materials in an 
industrial manufacturing setting. In this scenario, materials are 
tracked as they pass through process steps. Each step can create, 
modify, inspect or consume material. In the event of a failure that 
introduced an unsuitable element into the process, the model was 
used to determine all impacted products. This use case is very 
similar to the Colt use case, where the data flows are tracked to 
maintain context related to which data is created, used or inspected 
by various data systems. The original factory model was extended 
to reflect GE Capital IT’s terminology. 

At the core of the semantic model is a concept called the MoP, 
short for ‘material or process’. This concept originates from the 
model’s industrial lineage, used to describe the tendency of some 
factory data systems to refer to both materials and process steps in 
the same context (requiring disambiguation to occur later). The 
MoP was used to describe either a material at a point in time or a 
particular instance of a process step being performed. The usage is 
the same in Colt, with data systems and data flows both extending 
the MoP. 

Once the MoP establishes a concept of endpoints in a process 
segment, it is necessary to have a means of determining the 
temporal context in which these references occur. Given a process 
of several steps operating on the same data flow or material, one 
must be able to order them. One could use the MoPs directly, but 
this would induce a problem when counting unique materials or 
process steps. There is no problem when each step creates or 
meaningfully alters material because then any material appears 
only a single time. This fails in most common cases, however. 
When material passes through a non-destructive evaluation, the 
material is unchanged on exit. An attempt to count the number of 
unique materials (or process steps) by naively looking at the MoPs 
will produce an incorrect count. 

To counter the above problem, the concept of a process slice was 
introduced. The process slice forms an over-arching structure on 
which the process steps are hung (Source, Material, Destination). 
For each observation in the process chain, there is a separate 
process slice which, in turn, is associated with a MoP. This allows 
MoPs to occur multiple times without ambiguity. Conceptually, 
this is similar to a film strip which contains sequential images. If 
viewed as independent images, counting the number of entities 
leads to an incorrect number should any entity appear in multiple 
images. When treated as a sequence of images which are 
dependent on each other, an accurate count can be made. 

With these components, the basis for a semantic model supporting 
the capture of data stores and metadata on data flows is in place. 
There is a mechanism to determine ordering and a collection of 
objects representing our items of interest (data systems and data 
flows). What is now needed is the ability to describe the payload 
of the flow. 

Concepts, the coarse-grained taxonomy of data objects exchanged 
between systems in the flows, define the items of interest. These 
are a hierarchal structure where concepts have sub-concepts. 
Concepts in Colt may have specific operations applied which 
document any changes to the state of the data. Colt associates the 
concept with its treatment to better characterize how the data may 
be mutated as it is handled. Finally, boundaries are designed as 
hierarchal structures of variable depth. The system is designed 
such that the inclusion of a boundary entails the inclusion of all of 
its children. A concept, boundary, and treatment collection is 
collected into an object known as the Boundary Group. A given 
Data Flow is associated with one or more boundary groups. The 
collection of all the boundary groups associated with a given data 
flow give a full depiction of the exchange between the pair of IT 
systems. 

5.2. Extending the Boundaries 
Boundaries were designed with the expectation that they would be 
subject to extension over time. The use case required that the 
boundary model meet the following four criteria: 

1. The number of elements of a given type of boundary must be 
extensible. 

2. The number of types of boundaries must be extensible 
(business, product, etc.). 

3. The depth of the boundary hierarchy must be extensible. 

4. These alterations must be able to be made at runtime without 
modifying the code, restarting the system, altering the 
underlying semantic model, or migrating the existing data. 
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To satisfy the first requirement, the boundaries are modeled to 
describe a hierarchy of variable depth. The boundary has a name 
and collection of boundary elements. Each element has its own 
name, rank, and parent. The ranks begin at one, implying this is 
the least granular. Elements are grouped by their rank and their 
parent. 

To satisfy the second requirement, the boundary types are not 
fixed in the model. Instead, they are only described in instance 
data filling the model. This meets the requirement by simply 
adding more instance data to describe the new boundary hierarchy. 

The third requirement is met by not modeling the depth directly. 
As described above, the depth is treated as instance data. This 
allows for the hierarchy to become deeper by simply altering the 
instance data associated with the model. 

Basing the entire boundary hierarchy on the instance data and 
calculating it as needed satisfies the fourth and final requirement. 
Because the specifics of the boundary hierarchy are not reflected 
in the semantic model, the alteration of instance data alters the 
apparent boundary hierarchy. 

5.3. Ingestion of Instance Data 
Instance data for Colt was initially entered using a template-driven 
pipeline which uses an OWL model (derived from the SADL 
model), templates, and a set of records extracted to CSV format. 
The templates are an internal format used by SADL which specify 
the association between columns in the input data and the triple 
patterns to generate. The templates are also able to specify a set of 
transformations which may be applied to incoming the data. 

Initial data coming into the system was imported from three types 
of sources. The first is an extract from a change management 
database and was used to get canonical names and metadata for the 
IT systems used as the data stores (producer and consumer nodes). 
The second source was derived from Visio and other documents 
which had been assembled to catalog data flows for previous 
reviews. These were transcribed to CSV prior to loading. The last 
data source was the collection of taxonomies used internally to 
describe the concepts, sub-concepts and boundary elements. These 
were run through the ingestion pipeline as the materials became 
available. These datasets provided the foundation of the Colt data 
when it was first launched. Since launch, the user interface 
described next has been used to enter thousands of data flows. 

6. USER INTERFACE 
A web-based user interface allows users to create, manage, view, 
and interactively explore the lineage network. Third-party 
Javascript packages Cytoscape.js [39] and DynaTree.js [40] are 
leveraged to support network visualization and menu trees, 
respectively. Each node in the visualized network represents a GE 
Capital data system (or a relevant system external to GE Capital). 
Each edge in the graph represents the data flow from one system to 
another. Figure 6 shows a sample network wherein seven systems 
are sending data to a system called System H, which in turn sends 
data to System I. Note that this is a small example—the application 
is capable of displaying large networks with thousands of nodes 
and edges. The creation of data by a given system is represented in 
the network using a reflexive loop, as shown in Figure 7. 

The user may explore the network in several ways, via the 
interface shown in Figure 8. Users may choose to view the entire 
network of data systems and data flows. Alternatively, the user 

may select one or more systems and choose to display all systems 
that feed the selected systems (“upstream” systems) and/or 
consume from the selected systems (“downstream” systems). At 
any point, a user may click on an individual system in the network 
and expand the graph to include systems upstream and/or 
downstream of the selected node. The user may choose to display 
the concepts or boundaries along the edges, as well. 

 

Figure 6: Example network containing 9 nodes 

 

Figure 7: Left-most reflexive loop indicates data creation at 
System A node 

Further, the user may apply concept or boundary filters to the 
network. For example, a user interested only in Party Identity data 
may apply a filter to only display the subset of the network 
containing this concept, hiding from view all nodes and edges not 
relevant to Party Identity. Users can filter down the network by 
specifying any combination of concepts, businesses, and 
products—Colt supports combinations expressed using 
conjunctive normal form; i.e., if a user selects more than one entry 
within a group (e.g., concepts), the system treats those with an OR 
operand. If the user makes multiple filter selections across 
different groups (e.g., business and product filter), the system 
treats those with an AND operand. Thus, a typical filter may look 
like “(concept1 OR concept2) AND business1”. 

Colt supports two filter modes that treat the concept/boundary 
hierarchies in different ways: (1) ‘any’, mode and (2) ‘exact’ 
mode. Filtering using ‘any’ mode will display edges that contain 
exact matches, supersets and subsets of the filter, whereas filtering 
using ‘exact’ mode will only display exact matches and supersets 
of the filter. 

Finally, the interface allows a subset of users to manage the 
network. Administrators may add, modify, and remove systems (as 
shown in Figure 9), manage boundary groups by selecting entries 
from the hierarchical taxonomies (as shown in Figure 10), and link 
systems with boundary groups to create data flows (not shown). 
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Figure 9: Interface allowing administrators to manage data systems used in the network 

Figure 8: Colt UI to visualize and explore a network 
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7. ADVANCED CAPABILITIES 
In addition to being able to capture and explore the network of 
data systems and data flows, GE Capital users also need to answer 
complex questions regarding the origin and destination of 
particular types of data. They also need to be able to assess 
whether inconsistencies exist in the network as captured. This 
section describes how Colt provides these capabilities. 

7.1 Lineage Tracing & Impact Assessment 
GE Capital users need the ability to trace data concepts from a 
given point in the network upstream to its points of origin 
(typically its point of creation), or downstream to its final points of 
destination for impact assessment. For example, a user may be 
working with Party Identity data for Single Investor Lease 
products in the Fleet Services business, in the System A enterprise 
data warehouse. The user may need to provide information 
showing the system from which that data originated and all 
intermediate locations along the way until it reached the System A 

data warehouse. In another instance, the user may wish to retire a 
system and wishes to see all downstream systems that may be 
impacted. 

To simplify the text for discussion purposes, we will focus on the 
challenge of tracing upstream from a node. However, the 
explanation below can be equally applied, without loss of 
generality, to tracing downstream by simply reversing the order of 
the nodes (tracing from receiver to sender for upstream vs. tracing 
from a sender to a receiver for downstream). 

An example of tracing is illustrated in Figure 11. The tracing 
routine evaluates each system upstream of the given system, 
determines if it is passing relevant data, and if so then evaluates 
each system upstream of that system, and so forth, until the final 
points of origination are reached. In this example, an upstream 
trace is performed on System Z. The first system to be considered 
is System Y. Next, Systems W and X are considered, and so forth. 
When tracing the data, the algorithm must not only consider the 
concept, but also the boundaries of interest. In this figure, 

Figure 10: Colt interface allowing administrators to manage boundary groups 
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concepts, businesses, and products are represented in the form 
{c,b,p}, since the metadata to be traced is defined by the triples 
{concept, business, product}. When tracing upward from System 
Y, note that System W is determined to be included in the trace 
(since it sends the data of interest {c,b,p}), but System X is 
excluded from the trace because it sends product q instead of 
product p, and thus is not relevant to this trace. Note that this is a 
highly simplified example, and in reality each edge contains many 
different concept-business–product combinations, and each must 
be checked in turn to see if any relevant data is sent to the traced 
node. 

 

Figure 11: Network tracing for System Z (with grayed/dashed 
segments determined to be irrelevant for the trace) 

The tracing routine is recursive, with each iteration dependent on 
the results from previous iterations. Each iteration evaluates a 
single edge and determines if its data flows are relevant to the 
trace based on the data that has been passed through the previous 
nodes. As such, tracing upstream involves computing the 
intersection of the data flows on the current edge with the 
intersection of all the data flows linking the current edge to the 
downstream node. If the result of the intersection is not empty, the 
node is included in the trace. If the intersection is empty, then the 
node in question does not send relevant data to the traced system 
and thus is not included in the trace results. 

Further complexity arises from the fact that the tracing routine 
must consider the concept and boundary hierarchies. For example, 
assume that product p has subsets p1 and p2. When tracing {c,b,p} 
upstream from a system, it is not sufficient to look for product p 
because the feeding systems may send combinations of p1 and p2  
that are then merged together to form the complete data for 
product p. Thus, any trace must identify and include any data 
flows with subsets of the given concepts and boundaries. In the 
figure, this is illustrated by the fact that Systems U and S are 
included in the trace because they send data for products p1 and 
p2, which are subsets of product p. Likewise, a system may send a 
superset of the product of interest, which needs to be included in 
the trace, as well. The evaluation of each edge can be expressed by 
the set equation: 

SA1→A2 ∩ SA2→T  ≠ ∅	→ keep  (1) 

where: 

SA2→T = SA2→A3 ∩ SA3→A4 ∩ … ∩ SAn→T         (2) 

and SAxAy = set of triples sent from node Ax to node Ay. 

Further, a user may choose to apply a filter to the tracing routine, 
which will limit the trace results to data flows that meet the filter 
criteria. 

The algorithm used for the network tracing is as follows: 

1. Identify concepts/boundaries feeding target system T 
2. Convert all concepts/boundaries to concept-business-product 

triples at the lowest hierarchy level 
3. Get all systems that feed data to node T, concatenate with 

name of node T to form a node trace path, and push those 
trace paths onto empty trace stack 

4. Add T to traced network 
5. While trace stack is not empty: 

a. Pop trace path (“A”) from stack (will take the form 
A1:::A2:::….:::T) 

b. If path has a loop with one or more nodes between (e.g., 
A:::B:::C:::B:::D repeats node B) discard path and return 
to (a) (to avoid recursive loops in paths) 

c. Query for concept-business-product triples that flow 
from the single-node hop from A1 to A2 in path 

d. Determine whether there is an intersection in the {c,b,p} 
between A1A2 and A2T paths 
i. If YES, add A1 to traced network 

ii. Store the resulting intersection of {c,b,p} triples 
that flow from A1 all the way to T 

iii. Get names of all systems that feed data to node A1, 
concatenate with previous node path and push those 
trace paths onto stack (e.g., A0:::A1:::A2:::…:::T) 

iv. If NO, continue to evaluate next entry on stack 
 

Figure 12: Tracing algorithm 

Using the network tracing feature, users can quickly determine the 
origination points for data feeding a particular system that intersect 
with the destination’s concepts and boundaries. The feature can 
also be used to trace downstream to destination points in the same 
manner. Figure 13 shows a sample trace result, for System A traced 
downstream. 

7.2 Validation 
GE Capital requires a mechanism to perform sanity checks on the 
network, to identify where it may be incomplete or incorrect. To 
this end, a validation feature has been implemented. The validation 
routine works on a per-system basis, determining whether the data 
that a given system sends is possible given the data that the system 
creates or receives. Specifically, a system will fail the validation 
routine if it is found to be sending data that it is neither creating 
nor receiving. 

The validation algorithm consists of identifying the input and 
output triples for the given system, and checking if each output is 
contained within the input set. As with the tracing algorithm 
above, the data must be considered in triples of the form {c,b,p} in 
order to preserve the concept-boundary combinations. Again, 
further complexity arises from the consideration of the concept and 
boundary hierarchies. For example, consider Figure 14, assuming 
that product p is comprised of subproducts p1 and p2. System W 
will fail validation, because it only receives subproduct p1, which 
is not enough for it to send product p. On the other hand, System X 
will pass validation because it receives subproducts p1 and p2, 
which are sufficient to product p. 
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Figure 14: System W fails validation because p1 is only a subset 
of p. System X passes validation.  

The user can choose to perform validation on a single node, or on 
all of the nodes displayed in the network. The algorithm for 
validation is as follows: 

For each node N to validate: 

1. Retrieve all lowest-level concept-business-product triples 
sent by node N 

2. Retrieve all lowest-level concept-business-product triples 
created or received by node N 

3. Perform an intersection of the triples sent and received 
and subtract the intersection from the triples sent by N 

4. If the set of remaining triples sent is not empty, node N 
fails validation, else passes 

 

Figure 15: Validation algorithm 

This algorithm can be expressed by the set equation: 

SS – (SC ∪	SR) ≠ ∅	→ fails         (3) 

where SS = set of triples sent, SC = set of triples created, and SR = 
set of triples received by node N. 

In practice, if a system fails validation, this failure is most likely 
due to a wrong or incomplete network representation (e.g., a 
downstream data flow has been added to Colt without a 

corresponding upstream data flow) than a problem in the 
underlying data systems. 

In the future, further validation criteria may be implemented on the 
network of systems, e.g. to identify redundancies in data creation, 
transmission, or storage (for data deduplication) across all data 
stores. 

7.3 Optimizations 
As a user-facing web-based tool, Colt required a reasonable level 
of interactivity. To meet this requirement, a number of query 
optimizations were implemented. Some were achieved by 
optimizing the SPARQL queries themselves, while others involved 
parallelizing long running queries through the service tier. 

Query performance in SPARQL is largely related to the order of 
the clauses. SPARQL performs pattern matching on triples to build 
sets that fulfill the given pattern in the query. As a result, placing 
the most restrictive clauses earlier in the query decreases the size 
of intermediate results processed, accelerating the query. For Colt, 
the main views are driven by the tracing of flows between 
producer and consumer systems, then applying filters to the 
discovered flows. Thus, the queries are constructed to first bind the 
producers and consumers. Queries used for management are more 
specific to other items, such as concepts of boundary elements, and 
similarly reprioritize the query clause order. 

For network validation and large traces, early query performance 
was not suitable for interactivity. To improve performance, a 
service was introduced to run multiple related queries in parallel 
and then collate the results. To be candidates for this 
parallelization, the queries’ return values must contain some 
overlapping subset. The calling client provides the query service 
with a collection of queries to run, the collection of values to 
return and whether to return values from the non-overlapping sets. 

Figure 13: Downstream trace result for System A 
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The service executes the collection of queries in parallel and fuses 
the resulting responses into a single result set. In the Colt use case, 
the queries sent to the service are partitioned versions of the 
desired query. By partitioning on consumers or producers, the 
system can request the entire trace graph at once and then re-order 
the returned records to be visualized in a coherent manner. 

8. RESULTS 
Colt has been used extensively by GE Capital since it was first put 
into production in June 2015. At present, it contains a network of 
2,200+ nodes and 1,047 edges (data flows), which represent over 
47,000 unique concept-business-product combinations sent 
between data systems. Colt currently contains 64 concepts, 226 
business boundaries, and 125 product boundaries, each organized 
into 2- or 3-tier hierarchies. The tool’s user base is currently at 50 
and growing. 

With this new tool, GE Capital users are now able to reliably and 
accurately capture the current state of their data flows, and 
interactively explore a holistic view of those systems and flows. 
This capability was not available in the past and represents a 
substantial improvement in the ability to effectively and efficiently 
manage GE Capital’s data. By requiring documentation of critical 
data lineage in this way, GE Capital’s Chief Data Officer and team 
has been able to establish a standard of care for data used by the 
Senior Leadership Team in making strategic decisions about 
corporate strategies. 

Crucially, Colt also allows GE Capital users to answer key 
questions about systems and flows.  With the increased emphasis 
by financial regulatory oversight boards on stress testing model 
validation, GE Capital has been able to use the Colt system to 
provide supporting documentation of the sourcing of data used by 
such models. By centrally capturing data lineage across the 
organization, documenting the source of data used by these 
regulatory models is now a simple effort taking several minutes, 
rather than a herculean multi-team effort lasting several weeks. 

Additionally, Colt is being leveraged by the software development 
lifecycle process that governs the creation, maintenance, and 
decommissioning of software applications. By using Colt’s 
network analysis to identify the downstream impact from changes 
to systems, the approval teams for these projects can efficiently 
identify projects that require additional oversight. 

Overall, GE Capital estimates that Colt will result in a 50% 
reduction in time and cost of the requirement-building phases of 
complex IT projects, leading to millions in productivity savings 
alone. These estimated savings are attributable to Colt’s ability to 
handle complex queries about data movement across the entirety 
of GE Capital, enabling analysts to efficiently answer regulatory 
and operational inquiries without having to elicit and fuse this 
information from a variety of personnel and other potentially non-
computable sources. In a recent study conducted in GE Capital 
UK, 60% of unplanned system outages were a result of ineffective 
impact analysis—of not understanding the relationships and 
dependencies between systems. 

There were several lessons learned from our experience designing 
and developing Colt. Utilizing a semantic model to store the 
metadata proved beneficial, enabling a flexible schema and 
recursive querying. However, it took several iterations to reach 
this point. We initially used a rigid model (e.g., no extensible 

hierarchy) designed to address early system requirements. As the 
requirements expanded, we encountered challenges extending the 
model and system, going through three iterations before finalizing 
the model design. On the plus side, utilizing SADL to create 
models in structured English significantly reduced our modeling 
iteration time, allowing us to review the model frequently and 
directly with GE Capital users. 

9. CONCLUSIONS & FUTURE WORK 
As organizations struggle to manage more data than ever before, 
they often lack the ability to answer specific questions about where 
a given data set originated or how it may have been modified as it 
flows through an IT infrastructure. In a corporate infrastructure 
where it is common to find hundreds of systems managing 
thousands of different types of data, it is a significant challenge to 
get a cohesive picture of data flows through these systems, or to 
answer basic questions about the lineage of a given dataset. To 
address these challenges, we built a system enabling users to 
model GE Capital data stores and data flows, as well as to 
interactively explore this information to answer business-critical 
questions. 

Colt represents data stores and other systems as nodes in a directed 
graph, with edges representing flows of data that are fully 
characterized by a set of standardized taxonomies. Each edge 
contains metadata that represents the complete context of the data, 
including the specific concepts, businesses and products to which 
each data flow applies. Over 2,200 nodes have been entered to 
date, with over 1,000 edges describing over 47,000 data flows. 
Colt includes key analysis features, such as the ability to trace or 
validate the network. These features and more have made Colt a 
very powerful system within GE Capital for managing and mining 
data flow information across the business. 

To date, all data flow information has been captured and entered 
into Colt by hand. While this approach has been effective and 
provided significant value to GE Capital to date, it is easy to 
imagine that lack of regular maintenance in the long term could 
result in the data in Colt becoming incomplete or stale, and no 
longer reflective of current data flows. In the future, value could 
be added by auto-discovering the existence of network connections 
via network packet sniffing, extract-transfer-load (ETL) tool log 
mining, database query log mining, and similar technologies. Such 
capabilities could be used to automate the detection of connections 
between nodes, which can be used to: (i) identify new edges, (ii) 
confirm existing edges, and (iii) identify stale data in Colt. 
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