

Colt: Concept Lineage Tool
for Data Flow Metadata Capture and Analysis

Kareem S. Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar
GE Global Research

Knowledge Discovery Lab
Niskayuna, NY 12309 USA

1-518-387-4047

{aggour, weisenje, mchugh, v.kumar1}@ge.com

ABSTRACT
Most organizations are becoming increasingly data-driven, often
processing data from many different sources to enable critical
business operations. Beyond the well-addressed challenge of
storing and processing large volumes of data, financial institutions
in particular are increasingly subject to federal regulations
requiring high levels of accountability for the accuracy and lineage
of this data. For companies like GE Capital, which maintain data
across a globally interconnected network of thousands of systems,
it is becoming increasingly challenging to capture an accurate
understanding of the data flowing between those systems. To
address this problem, we designed and developed a concept
lineage tool allowing organizational data flows to be modeled,
visualized and interactively explored. This tool has novel features
that allow a data flow network to be contextualized in terms of
business-specific metadata such as the concept, business, and
product for which it applies. Key analysis features have been
implemented, including the ability to trace the origination of
particular datasets, and to discover all systems where data is found
that meets some user-defined criteria. This tool has been readily
adopted by users at GE Capital and in a short time has already
become a business-critical application, with over 2,200 data
systems and over 1,000 data flows captured.

1. INTRODUCTION
The recognition of data as a strategic asset critical to business
operations has made corporate data management substantially
more important over the past decade [1]. Infrastructure for
corporate data management in companies such as GE Capital is
comprised of a global network of thousands of systems managing
thousands of different types of data. In the wake of the global
financial crisis of 2007-2009, the US Federal Government
recognized the need for companies to maintain accurate and
complete data to effectively manage and report risk. Specifically,
the Dodd–Frank Wall Street Reform and Consumer Protection Act
of 2010 [2] grants the US Federal Reserve (Fed) expanded
oversight of large banks and other companies designated as

Systemically Important Financial Institutions (SIFIs). Today, the
Fed mandates that all SIFIs have the capability to track and report
the lineage of data used for financial risk classifications and other
important decisions.

SIFI regulations created a data challenge of maintaining a cohesive
view of data flows between systems which create, manipulate or
store financial data. While GE is no longer a SIFI as a result of its
significant divestitures from GE Capital, the desire to address the
broader data management challenge persists. In addition to the
ability to capture the cohesive view of data flows, it is important to
be able to interactively query and perform ad hoc reporting for
internal information sharing and oversight. We built a Concept
Lineage Tool (‘Colt’) to address this challenge. With Colt, users
can capture information about different types of systems and
metadata about the data flowing between them, and answer
questions about the lineage of those datasets. This information is
made available for interactive exploration in the form of a directed
graph (data flow network) where nodes represent data producers
and/or consumers (hereafter referred to more generally as ‘data
stores’), and edges represent data flows between those data stores.

Colt enables users to fully characterize data flows using an
extensible set of hierarchical taxonomies, including many potential
combinations of businesses, products and concepts associated with
data flowing between systems. Further, we have implemented a
rich set of features to facilitate the mining of the data flow
network, including the ability to view the entire network, view
only those systems upstream and/or downstream of a single system
or collection of systems, and/or view the network filtered by terms
selected from the data flow taxonomies. Colt provides key features
to understand how data propagates through the network, including
tracing the lineage of data upstream from a system to its origin
system(s) or downstream to its destination(s). This tracing
capability is critical for assessing the potential impact of changes
to one or more of the data stores. Users can also validate the
network to ensure that no node is sending out information that it
neither creates nor receives from another node. Finally, Colt
enables administrators to create and edit the network.

While Colt was initially built to address specific needs within GE
Capital, it was purposefully designed to be highly reusable within
other organizations and even other industries outside of financial
services. The model and taxonomies used for capturing metadata
about the data flows can be easily extended, modified, or entirely
replaced with a new model and taxonomies. For example, in a
different business or industry, businesses and products may not be
relevant metadata descriptors, whereas alternate categories may be
required to model the data flows. Arbitrary categories and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

1790

taxonomies can be used within Colt without requiring code
changes, making Colt a powerful, reusable tool.

This paper is organized as follows. Section 2 outlines the use case
that this system was built to address, which has broad applicability
outside of GE Capital. Section 3 summarizes related work in data
lineage and network analysis. Section 4 provides an overview of
the Colt system, and Section 5 details the data store and model.
Section 6 reviews the user interface, and Section 7 describes some
of the advanced capabilities found within Colt. Section 8 outlines
the results achieved to date, and Section 9 provides a summary of
the conclusions and future work.

2. INDUSTRIAL USE CASE
GE Capital is the financial arm of the General Electric Company.
Its primary focus is on leasing and lending in the aviation,
healthcare, and energy sectors where GE manufactures and sells
industrial equipment. To identify prospects, track customers, and
manage the overall risk exposure of the portfolio, GE Capital
utilizes data from a wide range of internal and external data
sources, storing this data across over 2,000 internal repositories.

Historically, the GE Capital sub-businesses operated in silos,
independently collecting and managing the data relevant to their
products and customers. Due to the disjoint nature of this
approach, it was difficult if not impossible to get a complete
picture of where all of GE Capital’s data resided, or how it flowed
from system to system. This severely impeded the ability to
perform key data management activities, for example, to identify
duplicate data or processes, or find the point of origination of a
particular data element.

Prior to Colt, GE Capital like many organizations relied upon the
preparation of a large number of static Visio sheets to document
their data flows. It was a laborious task to collate and manage
them, and this approach prevented any sort of meaningful
querying, interaction, or validation of the resulting networks.

Colt was designed and developed to address this problem by
enabling the capture of data lineage metadata in a dynamic,
interactive tool. The challenge of being able to capture and analyze
data flows through a network of data stores is faced by many if not
most medium-to-large organizations and corporate entities,
particularly those integrating a large number of acquisitions.

2.1 Benefits of Data Lineage
There are many benefits to capturing and recording data lineage.
First and foremost is for compliance purposes—many if not most
companies and large organizations need to be able to report (either
to internal oversight boards or to external regulatory bodies) where
business critical data originates, where it resides within their
systems, and how it is transformed as it flows through their
networks. Further, data lineage can provide visibility into
otherwise opaque complex, often global, networks of
interconnected systems. This transparency can provide crucial
insights such as identifying critical systems and discovering
unexpected redundancies. Finally, data lineage can help answer
key questions, such as assessing the downstream impact of
changes to an organization’s IT infrastructure, or tracing faults
upstream to their source.

2.2 Concept Lineage
Colt is built to track concept lineage, where a concept is a logical
grouping of multiple data elements. For example, the concept
Party Identity may encompass data elements containing names,
addresses, and phone numbers for customers, prospects, and other
parties. Some concepts contain a handful of data elements, while
others can represent 20 or more elements. It is sufficient for Colt to
define data flows in terms of concepts, since these groups of data
elements are usually kept and move together through the data
stores. Further, modeling concepts is beneficial from a scalability
perspective, as it reduces the volume of edge metadata that must
be managed.

2.3 Taxonomies
Colt was designed and built to record complete metadata
describing data flowing from one system to another. As such, the
data is characterized in terms of a collection of taxonomies,
including the data contents (“concepts”) and the context in which
this data exists (“boundaries”):

• Concept: the data contents (e.g. Party Identity for data
containing customer names and addresses)

• Concept treatment: the action performed on the data by the
consuming system (options are create, read, modify, and
augment)

• Business Boundary: the business or sub-business for which
this data exists (e.g. GE Capital Americas)

• Product Boundary: the product line for which this data exists
(e.g. Commercial Loans)

• Other boundaries: Going forward, as data is further
characterized, additional boundary types may be defined and
associated with datasets

Concepts, businesses, and products are organized as groupings of
sub-concepts, sub-businesses, and sub-products. These may be
nested using an arbitrary number of levels, forming hierarchical
taxonomies. Figure 1 shows excerpts from each of the three
taxonomies used in Colt.

(a) Concept (b) Business (c) Product

Figure 1: Excerpts from the hierarchical taxonomies

3. RELATED WORK
Data lineage is represented as a directed network graph. In most
scenarios, data lineage graphs are primarily composed of three or
more abstract entities—data artifacts, the systems or
transformations that operate on those artifacts, and the agents that
carry out those transformations. Data artifacts here could range
from tuples in a database to files or entire datasets on a local or
remote file system. Sometimes, it is useful to explicitly
differentiate between transformation types (e.g. OS call, SQL
query) and the actual invocation of a transformation on an instance
of a data artifact. While lineage networks bear some high-level

1791

structural similarity to social networks (for example, certain nodes
exhibit higher centrality measures than most others, and data flows
between certain subsets of nodes are denser than others), we have
not come across a formal characterization of the topological
features of lineage networks.

Data Lineage: Data lineage exploration has been previously
studied within various contexts. Spreadsheet tools capture lineage
at the granularity of individual cells and show how the contents of
a cell are derived from other cells. Provenance-aware storage
systems [3][4][5] typically intercept operating system calls to
record information on per-file creation, modification and deletion
so that the files are easy to track, maintain and query. Scientific
workflow systems [6] allow rich annotations of workflow
components and record application-level lineage at the granularity
of files or datasets [7][8][9][10]. A number of commercial
solutions [11][12][13][14][15] supplement traditional data
warehouses and business intelligence ecosystems by capturing
lineage on a per-tuple basis, recording the loading and
transformations that resulted in the creation of each tuple. Lineage
tracking for modern Big Data ecosystems is surveyed in [16][17].
Commercial solutions in this space such as Teradata Loom [18]
and Cloudera Navigator [19] track and collect per data object
lineage of unstructured datasets as they flow through data cleaning
and processing steps in a Hadoop-based ecosystem. Tools for
collecting provenance data and assisting in provenance-based
search in social media networks have been proposed in [20][21].
Finally, recent approaches propose generic support for data
lineage/provenance in heterogeneous ecosystems that do not
constrain the nature and types of systems involved—either by
extensible transformation of all lineage information into a generic
log [22], or into a generic property graph [23], or via a portable
general-purpose provenance library that applications can tap into
[24], or by implementing the Open Provenance Model [25]. Our
work is similar to these latter approaches in that Colt manages
lineage of data across generic heterogeneous data systems.

Lineage Representation and Storage: Lineage graphs have been
represented using different models and persisted in a variety of
data stores. In some solutions, lineage information is stored in
meta-files co-located with the data or as metadata within the
headers of the files themselves, an approach that is not amenable
to querying or visualizing the lineage information. Relational
models have been used for storing and querying lineage in
[3][4][13] but does not provide native support for graphs; hence
even simple network traversals must be expressed via complex
joins between tables. XML is another popular model for
representing lineage networks [9][10][25]; however, the
hierarchical nature of XML is a drawback when representing say,
entities with multiple parents. Finally, graph-based models are
increasingly being used for lineage. Both property-graph models
[5][12][23] and semantic graph models [26][27] have built-in
capabilities for efficient operations on graphs. Colt is built on a
semantic model of lineage. Our work differs from these others in
that Colt maintains lineage information at the concept level, with
metadata describing flows in the context of concepts, businesses,
and products. Their hierarchical organization enables rich
queries—a key feature which is not readily available in other
graph-based provenance models.

Lineage Network Analysis and Visualization: Analysis and
visualization of lineage networks can yield insights that help

improve the corresponding applications. The Provenance
Challenge [28] put forth nine representative queries that reflect the
typical questions asked of lineage graphs of scientific workflows.
The analysis queries issued against data lineage networks are a
subset of general social network analysis algorithms and can be
broadly categorized as follows. (1) Lineage tracing relates to
determining the lineage of a data artifact, often tracing it upstream
to its source(s) one step at a time [3][4][5]. (2) Impact assessment
relates to the traversal of the network downstream from a given
node of interest and can be viewed as the converse of upstream
tracing. Examples of queries in this category include: “What is the
estimated impact of a change to a data artifact or transformation
process?” [11][13][14]. (3) Summarization relates to the analysis
of lineage networks where most of the nodes and edges are
involved. Validation of a lineage network, i.e., ensuring that all
data artifacts can be traced back to reliable sources, can be
considered to be a specific form of summarization. (4) Path-
finding and traversal refers to a more generalized walk-through of
a lineage network. An example query in this category is: “Traverse
a subset of paths where only data artifacts of a specific type flow
between systems.” Colt supports each of these four categories of
network analysis queries. Furthermore, Colt can filter these queries
at any level and any combination of the concept, business, and
product hierarchies.

Lineage in Financial Services: While federal regulations such as
CCAR (Comprehensive Capital Analysis and Review) and BCBS
(Basel Committee on Banking Supervision) regulation number 239
mandate that financial institutions deemed systemically important
maintain lineage of critical data and other information used for risk
and capital assessments, we are not aware of any Fed-
recommended guidelines or methodologies for lineage capture and
management within the financial domain. Consequently,
organizations have adopted a range of solutions towards lineage
analysis for ad hoc reporting purposes, including: (1) using
enormous spreadsheets and Visio diagrams, an approach that is
laborious and not automated, (2) utilizing the collective
capabilities of multiple off-the-shelf commercial lineage tools, an
approach that is expensive and not customizable, or (3) developing
complex software, often resulting in systems that are highly
customized and non-extensible.

Prior art indicates that certain large-scale financial institutions are
developing their own in-house solutions and systems for tracking
data lineage [29][30]. Additionally, anonymous case studies point
to Informatica/Diaku Axon [31], Collibra [32], IBM’s InfoSphere
Metadata Workbench [33] and DATUM as the leading third-party
vendor tools of choice for data lineage management in medium to
large financial enterprises. Our own qualitative evaluation of third-
party tools such as Axon for the GE Capital use case revealed
shortcomings with respect to creating custom metadata groupings
and extensible hierarchical taxonomies. Colt bears similarity to the
Ontology and Provenance financial services offered by Bloomberg
[34][35] in that it utilizes a semantic model to represent data
concepts from multiple sources, thereby allowing business analysts
to capture key information in a consistent, standardized manner.
However, Colt differs in its use of semantics and the associated
W3C standards-based technologies to also model lineage of data
flowing between systems and to allow interactive querying of the
lineage information. Importantly, the model underpinning Colt is
flexible and extensible enough to support business logic changes to

1792

the metadata taxonomies (e.g. additional hierarchies or updates to
the existing taxonomy).

4. HIGH-LEVEL SYSTEM OVERVIEW
The goal of this work is to provide GE Capital with the capability
to characterize how key data moves through a large number of
data systems. To this end, we designed and developed a reusable
solution enabling users to capture information about systems and
metadata about the data flowing between them, and then
interactively explore this information to answer business-critical
questions.

4.1 Requirements
Key requirements for Colt included the ability to: (1) display the
entire network of systems, (2) starting from a particular system,
view the systems feeding data to or consuming data from that
particular system, (3) create, modify, and delete data flows using
the appropriate concept-boundary taxonomies, (4) filter the
network views using those taxonomies (e.g., only show data flows
containing Party Identity), (5) validate the network to assess if the
representation is logical, and (6) starting from a specific node,
trace the data in that node to discover its origination or destination
points.

In addition, a set of administrative users must be able to edit the
network, performing tasks such as adding systems and defining the
flows between them, and generating text-based reports of the data
flows.

4.2 Architecture
To meet these requirements, we designed a system based on the
conceptual architecture shown in Figure 2. The data storage layer
is comprised of a semantic triple store. An HTML and JavaScript
web-based user interface allows users to perform most of the
functions outlined above. For the remaining functions, a set of
Java microservices enables functionality such as network tracing,
which requires substantial overhead to execute.

4.3 Data Storage
Semantic technologies were chosen to model and store the network
data. The decision to use semantic technologies in lieu of a more
traditional relational or NoSQL store was made for multiple
reasons. First, a store with intrinsic recursive graph query
capabilities enables the efficient network traversal functionality
required in Colt. Second, semantic models enable a high level of
expressivity for representing the hierarchical data flow metadata in
an easily extensible format. This allowed Colt’s development to be
accomplished in stages, with the graph being monotonically
extended over time. A traditional database environment would
have required a large number of schema migrations or the
introduction of a convoluted schema as extensions occurred. Using
a NoSQL system would have simplified the schema approach, but
would have introduced significant overhead at query time. A W3C
standards-compliant semantic triple store is used to store the data
model and instance data as tuples [36]. Data is queried using the
SPARQL query language, standardized by the W3C [37]. Finally,
the use of semantic models increases the capability to infer
additional knowledge about the lineage networks through
automated reasoning capabilities.

5. SEMANTIC MODEL
A semantic model authoring technology called SADL (Semantic
Application Design Language) was used to create the semantic
model and ingest instance data [38]. SADL provides a controlled
English language that compiles directly to a proper subset of OWL
1.1. Using controlled English allows for descriptive models to be
generated in a manner that is comprehensible to subject matter
experts who are not familiar with the Semantic Web. This was
beneficial because it allowed GE Capital IT domain experts
without Semantic Web experience to directly contribute to the
creation of the model, shortening development time. The SADL
ingestion tools further provide a template language which
simplifies the loading of instance data to the triple store.

Figure 2: Colt conceptual system architecture

A semantic model was built to represent data systems and data
flows between them. Figure 3 is a simplified depiction of how the
model represents a producer system sending data to a consumer
system. The semantic model captures metadata about the nodes,
including a node name, type and a brief description. While we
primarily use the terms ‘system’ or ‘data store’ when describing
the nodes in Colt, nodes can be any one of the following types: (1)
a database or data warehouse, (2) an external source, (3) an
application, (4) a model/analytic, (5) a report, or (6) a process.
Each of these types of data stores is represented with a distinct
icon in the user interface.

Figure 3: data flows from a producer to a consumer

The data flow itself is modeled as a potentially complex
combination of concepts and boundaries, as shown in Figure 4,
with the asterisks representing one-to-many relationships. A data
flow is associated with one or more structures called boundary
groups, which in turn may contain one or more concepts and
treatments and boundary sets. Each boundary set is a combination
of boundaries (business and product boundaries, at present). It
should be noted, however, that the data model and application
support an arbitrary number of boundary types, such that

1793

additional boundary types can be added solely via additions to the
instance data with no semantic model or code changes required.

A data flow may consist, for example, of Contract Terms concepts
and Party Identity concepts for Single Investor Lease products in
the Fleet Services business (a sub-business of North America
Commercial Loans and Leases). The Contract Terms data is read
and persisted by the consumer, and the Party Identity data is
modified by the consumer. Figure 5 shows this sample boundary
group as it appears in the Colt interface.

Figure 4: A data flow is a complex structure containing
concepts and their treatments as well as boundaries

Further, the hierarchical nature of the concept and boundary
taxonomies allow for inheritance, and therefore it is assumed that
the selection of a parent implies the selection of the children. For
example, if a data flow includes a Concept C, then it is assumed to
include Subconcepts Ca, Cb and Cc.

Figure 5: Example boundary group

5.1. Model in Depth
The semantic model used in Colt descends from a generic process
model originally built to describe the flow of materials in an
industrial manufacturing setting. In this scenario, materials are
tracked as they pass through process steps. Each step can create,
modify, inspect or consume material. In the event of a failure that
introduced an unsuitable element into the process, the model was
used to determine all impacted products. This use case is very
similar to the Colt use case, where the data flows are tracked to
maintain context related to which data is created, used or inspected
by various data systems. The original factory model was extended
to reflect GE Capital IT’s terminology.

At the core of the semantic model is a concept called the MoP,
short for ‘material or process’. This concept originates from the
model’s industrial lineage, used to describe the tendency of some
factory data systems to refer to both materials and process steps in
the same context (requiring disambiguation to occur later). The
MoP was used to describe either a material at a point in time or a
particular instance of a process step being performed. The usage is
the same in Colt, with data systems and data flows both extending
the MoP.

Once the MoP establishes a concept of endpoints in a process
segment, it is necessary to have a means of determining the
temporal context in which these references occur. Given a process
of several steps operating on the same data flow or material, one
must be able to order them. One could use the MoPs directly, but
this would induce a problem when counting unique materials or
process steps. There is no problem when each step creates or
meaningfully alters material because then any material appears
only a single time. This fails in most common cases, however.
When material passes through a non-destructive evaluation, the
material is unchanged on exit. An attempt to count the number of
unique materials (or process steps) by naively looking at the MoPs
will produce an incorrect count.

To counter the above problem, the concept of a process slice was
introduced. The process slice forms an over-arching structure on
which the process steps are hung (Source, Material, Destination).
For each observation in the process chain, there is a separate
process slice which, in turn, is associated with a MoP. This allows
MoPs to occur multiple times without ambiguity. Conceptually,
this is similar to a film strip which contains sequential images. If
viewed as independent images, counting the number of entities
leads to an incorrect number should any entity appear in multiple
images. When treated as a sequence of images which are
dependent on each other, an accurate count can be made.

With these components, the basis for a semantic model supporting
the capture of data stores and metadata on data flows is in place.
There is a mechanism to determine ordering and a collection of
objects representing our items of interest (data systems and data
flows). What is now needed is the ability to describe the payload
of the flow.

Concepts, the coarse-grained taxonomy of data objects exchanged
between systems in the flows, define the items of interest. These
are a hierarchal structure where concepts have sub-concepts.
Concepts in Colt may have specific operations applied which
document any changes to the state of the data. Colt associates the
concept with its treatment to better characterize how the data may
be mutated as it is handled. Finally, boundaries are designed as
hierarchal structures of variable depth. The system is designed
such that the inclusion of a boundary entails the inclusion of all of
its children. A concept, boundary, and treatment collection is
collected into an object known as the Boundary Group. A given
Data Flow is associated with one or more boundary groups. The
collection of all the boundary groups associated with a given data
flow give a full depiction of the exchange between the pair of IT
systems.

5.2. Extending the Boundaries
Boundaries were designed with the expectation that they would be
subject to extension over time. The use case required that the
boundary model meet the following four criteria:

1. The number of elements of a given type of boundary must be
extensible.

2. The number of types of boundaries must be extensible
(business, product, etc.).

3. The depth of the boundary hierarchy must be extensible.

4. These alterations must be able to be made at runtime without
modifying the code, restarting the system, altering the
underlying semantic model, or migrating the existing data.

1794

To satisfy the first requirement, the boundaries are modeled to
describe a hierarchy of variable depth. The boundary has a name
and collection of boundary elements. Each element has its own
name, rank, and parent. The ranks begin at one, implying this is
the least granular. Elements are grouped by their rank and their
parent.

To satisfy the second requirement, the boundary types are not
fixed in the model. Instead, they are only described in instance
data filling the model. This meets the requirement by simply
adding more instance data to describe the new boundary hierarchy.

The third requirement is met by not modeling the depth directly.
As described above, the depth is treated as instance data. This
allows for the hierarchy to become deeper by simply altering the
instance data associated with the model.

Basing the entire boundary hierarchy on the instance data and
calculating it as needed satisfies the fourth and final requirement.
Because the specifics of the boundary hierarchy are not reflected
in the semantic model, the alteration of instance data alters the
apparent boundary hierarchy.

5.3. Ingestion of Instance Data
Instance data for Colt was initially entered using a template-driven
pipeline which uses an OWL model (derived from the SADL
model), templates, and a set of records extracted to CSV format.
The templates are an internal format used by SADL which specify
the association between columns in the input data and the triple
patterns to generate. The templates are also able to specify a set of
transformations which may be applied to incoming the data.

Initial data coming into the system was imported from three types
of sources. The first is an extract from a change management
database and was used to get canonical names and metadata for the
IT systems used as the data stores (producer and consumer nodes).
The second source was derived from Visio and other documents
which had been assembled to catalog data flows for previous
reviews. These were transcribed to CSV prior to loading. The last
data source was the collection of taxonomies used internally to
describe the concepts, sub-concepts and boundary elements. These
were run through the ingestion pipeline as the materials became
available. These datasets provided the foundation of the Colt data
when it was first launched. Since launch, the user interface
described next has been used to enter thousands of data flows.

6. USER INTERFACE
A web-based user interface allows users to create, manage, view,
and interactively explore the lineage network. Third-party
Javascript packages Cytoscape.js [39] and DynaTree.js [40] are
leveraged to support network visualization and menu trees,
respectively. Each node in the visualized network represents a GE
Capital data system (or a relevant system external to GE Capital).
Each edge in the graph represents the data flow from one system to
another. Figure 6 shows a sample network wherein seven systems
are sending data to a system called System H, which in turn sends
data to System I. Note that this is a small example—the application
is capable of displaying large networks with thousands of nodes
and edges. The creation of data by a given system is represented in
the network using a reflexive loop, as shown in Figure 7.

The user may explore the network in several ways, via the
interface shown in Figure 8. Users may choose to view the entire
network of data systems and data flows. Alternatively, the user

may select one or more systems and choose to display all systems
that feed the selected systems (“upstream” systems) and/or
consume from the selected systems (“downstream” systems). At
any point, a user may click on an individual system in the network
and expand the graph to include systems upstream and/or
downstream of the selected node. The user may choose to display
the concepts or boundaries along the edges, as well.

Figure 6: Example network containing 9 nodes

Figure 7: Left-most reflexive loop indicates data creation at
System A node

Further, the user may apply concept or boundary filters to the
network. For example, a user interested only in Party Identity data
may apply a filter to only display the subset of the network
containing this concept, hiding from view all nodes and edges not
relevant to Party Identity. Users can filter down the network by
specifying any combination of concepts, businesses, and
products—Colt supports combinations expressed using
conjunctive normal form; i.e., if a user selects more than one entry
within a group (e.g., concepts), the system treats those with an OR
operand. If the user makes multiple filter selections across
different groups (e.g., business and product filter), the system
treats those with an AND operand. Thus, a typical filter may look
like “(concept1 OR concept2) AND business1”.

Colt supports two filter modes that treat the concept/boundary
hierarchies in different ways: (1) ‘any’, mode and (2) ‘exact’
mode. Filtering using ‘any’ mode will display edges that contain
exact matches, supersets and subsets of the filter, whereas filtering
using ‘exact’ mode will only display exact matches and supersets
of the filter.

Finally, the interface allows a subset of users to manage the
network. Administrators may add, modify, and remove systems (as
shown in Figure 9), manage boundary groups by selecting entries
from the hierarchical taxonomies (as shown in Figure 10), and link
systems with boundary groups to create data flows (not shown).

1795

Figure 9: Interface allowing administrators to manage data systems used in the network

Figure 8: Colt UI to visualize and explore a network

1796

7. ADVANCED CAPABILITIES
In addition to being able to capture and explore the network of
data systems and data flows, GE Capital users also need to answer
complex questions regarding the origin and destination of
particular types of data. They also need to be able to assess
whether inconsistencies exist in the network as captured. This
section describes how Colt provides these capabilities.

7.1 Lineage Tracing & Impact Assessment
GE Capital users need the ability to trace data concepts from a
given point in the network upstream to its points of origin
(typically its point of creation), or downstream to its final points of
destination for impact assessment. For example, a user may be
working with Party Identity data for Single Investor Lease
products in the Fleet Services business, in the System A enterprise
data warehouse. The user may need to provide information
showing the system from which that data originated and all
intermediate locations along the way until it reached the System A

data warehouse. In another instance, the user may wish to retire a
system and wishes to see all downstream systems that may be
impacted.

To simplify the text for discussion purposes, we will focus on the
challenge of tracing upstream from a node. However, the
explanation below can be equally applied, without loss of
generality, to tracing downstream by simply reversing the order of
the nodes (tracing from receiver to sender for upstream vs. tracing
from a sender to a receiver for downstream).

An example of tracing is illustrated in Figure 11. The tracing
routine evaluates each system upstream of the given system,
determines if it is passing relevant data, and if so then evaluates
each system upstream of that system, and so forth, until the final
points of origination are reached. In this example, an upstream
trace is performed on System Z. The first system to be considered
is System Y. Next, Systems W and X are considered, and so forth.
When tracing the data, the algorithm must not only consider the
concept, but also the boundaries of interest. In this figure,

Figure 10: Colt interface allowing administrators to manage boundary groups

1797

concepts, businesses, and products are represented in the form
{c,b,p}, since the metadata to be traced is defined by the triples
{concept, business, product}. When tracing upward from System
Y, note that System W is determined to be included in the trace
(since it sends the data of interest {c,b,p}), but System X is
excluded from the trace because it sends product q instead of
product p, and thus is not relevant to this trace. Note that this is a
highly simplified example, and in reality each edge contains many
different concept-business–product combinations, and each must
be checked in turn to see if any relevant data is sent to the traced
node.

Figure 11: Network tracing for System Z (with grayed/dashed
segments determined to be irrelevant for the trace)

The tracing routine is recursive, with each iteration dependent on
the results from previous iterations. Each iteration evaluates a
single edge and determines if its data flows are relevant to the
trace based on the data that has been passed through the previous
nodes. As such, tracing upstream involves computing the
intersection of the data flows on the current edge with the
intersection of all the data flows linking the current edge to the
downstream node. If the result of the intersection is not empty, the
node is included in the trace. If the intersection is empty, then the
node in question does not send relevant data to the traced system
and thus is not included in the trace results.

Further complexity arises from the fact that the tracing routine
must consider the concept and boundary hierarchies. For example,
assume that product p has subsets p1 and p2. When tracing {c,b,p}
upstream from a system, it is not sufficient to look for product p
because the feeding systems may send combinations of p1 and p2
that are then merged together to form the complete data for
product p. Thus, any trace must identify and include any data
flows with subsets of the given concepts and boundaries. In the
figure, this is illustrated by the fact that Systems U and S are
included in the trace because they send data for products p1 and
p2, which are subsets of product p. Likewise, a system may send a
superset of the product of interest, which needs to be included in
the trace, as well. The evaluation of each edge can be expressed by
the set equation:

SA1→A2 ∩ SA2→T ≠ ∅	→ keep (1)

where:

SA2→T = SA2→A3 ∩ SA3→A4 ∩ … ∩ SAn→T (2)

and SAxAy = set of triples sent from node Ax to node Ay.

Further, a user may choose to apply a filter to the tracing routine,
which will limit the trace results to data flows that meet the filter
criteria.

The algorithm used for the network tracing is as follows:

1. Identify concepts/boundaries feeding target system T
2. Convert all concepts/boundaries to concept-business-product

triples at the lowest hierarchy level
3. Get all systems that feed data to node T, concatenate with

name of node T to form a node trace path, and push those
trace paths onto empty trace stack

4. Add T to traced network
5. While trace stack is not empty:

a. Pop trace path (“A”) from stack (will take the form
A1:::A2:::….:::T)

b. If path has a loop with one or more nodes between (e.g.,
A:::B:::C:::B:::D repeats node B) discard path and return
to (a) (to avoid recursive loops in paths)

c. Query for concept-business-product triples that flow
from the single-node hop from A1 to A2 in path

d. Determine whether there is an intersection in the {c,b,p}
between A1A2 and A2T paths
i. If YES, add A1 to traced network

ii. Store the resulting intersection of {c,b,p} triples
that flow from A1 all the way to T

iii. Get names of all systems that feed data to node A1,
concatenate with previous node path and push those
trace paths onto stack (e.g., A0:::A1:::A2:::…:::T)

iv. If NO, continue to evaluate next entry on stack

Figure 12: Tracing algorithm

Using the network tracing feature, users can quickly determine the
origination points for data feeding a particular system that intersect
with the destination’s concepts and boundaries. The feature can
also be used to trace downstream to destination points in the same
manner. Figure 13 shows a sample trace result, for System A traced
downstream.

7.2 Validation
GE Capital requires a mechanism to perform sanity checks on the
network, to identify where it may be incomplete or incorrect. To
this end, a validation feature has been implemented. The validation
routine works on a per-system basis, determining whether the data
that a given system sends is possible given the data that the system
creates or receives. Specifically, a system will fail the validation
routine if it is found to be sending data that it is neither creating
nor receiving.

The validation algorithm consists of identifying the input and
output triples for the given system, and checking if each output is
contained within the input set. As with the tracing algorithm
above, the data must be considered in triples of the form {c,b,p} in
order to preserve the concept-boundary combinations. Again,
further complexity arises from the consideration of the concept and
boundary hierarchies. For example, consider Figure 14, assuming
that product p is comprised of subproducts p1 and p2. System W
will fail validation, because it only receives subproduct p1, which
is not enough for it to send product p. On the other hand, System X
will pass validation because it receives subproducts p1 and p2,
which are sufficient to product p.

1798

Figure 14: System W fails validation because p1 is only a subset
of p. System X passes validation.

The user can choose to perform validation on a single node, or on
all of the nodes displayed in the network. The algorithm for
validation is as follows:

For each node N to validate:

1. Retrieve all lowest-level concept-business-product triples
sent by node N

2. Retrieve all lowest-level concept-business-product triples
created or received by node N

3. Perform an intersection of the triples sent and received
and subtract the intersection from the triples sent by N

4. If the set of remaining triples sent is not empty, node N
fails validation, else passes

Figure 15: Validation algorithm

This algorithm can be expressed by the set equation:

SS – (SC ∪	SR) ≠ ∅	→ fails (3)

where SS = set of triples sent, SC = set of triples created, and SR =
set of triples received by node N.

In practice, if a system fails validation, this failure is most likely
due to a wrong or incomplete network representation (e.g., a
downstream data flow has been added to Colt without a

corresponding upstream data flow) than a problem in the
underlying data systems.

In the future, further validation criteria may be implemented on the
network of systems, e.g. to identify redundancies in data creation,
transmission, or storage (for data deduplication) across all data
stores.

7.3 Optimizations
As a user-facing web-based tool, Colt required a reasonable level
of interactivity. To meet this requirement, a number of query
optimizations were implemented. Some were achieved by
optimizing the SPARQL queries themselves, while others involved
parallelizing long running queries through the service tier.

Query performance in SPARQL is largely related to the order of
the clauses. SPARQL performs pattern matching on triples to build
sets that fulfill the given pattern in the query. As a result, placing
the most restrictive clauses earlier in the query decreases the size
of intermediate results processed, accelerating the query. For Colt,
the main views are driven by the tracing of flows between
producer and consumer systems, then applying filters to the
discovered flows. Thus, the queries are constructed to first bind the
producers and consumers. Queries used for management are more
specific to other items, such as concepts of boundary elements, and
similarly reprioritize the query clause order.

For network validation and large traces, early query performance
was not suitable for interactivity. To improve performance, a
service was introduced to run multiple related queries in parallel
and then collate the results. To be candidates for this
parallelization, the queries’ return values must contain some
overlapping subset. The calling client provides the query service
with a collection of queries to run, the collection of values to
return and whether to return values from the non-overlapping sets.

Figure 13: Downstream trace result for System A

1799

The service executes the collection of queries in parallel and fuses
the resulting responses into a single result set. In the Colt use case,
the queries sent to the service are partitioned versions of the
desired query. By partitioning on consumers or producers, the
system can request the entire trace graph at once and then re-order
the returned records to be visualized in a coherent manner.

8. RESULTS
Colt has been used extensively by GE Capital since it was first put
into production in June 2015. At present, it contains a network of
2,200+ nodes and 1,047 edges (data flows), which represent over
47,000 unique concept-business-product combinations sent
between data systems. Colt currently contains 64 concepts, 226
business boundaries, and 125 product boundaries, each organized
into 2- or 3-tier hierarchies. The tool’s user base is currently at 50
and growing.

With this new tool, GE Capital users are now able to reliably and
accurately capture the current state of their data flows, and
interactively explore a holistic view of those systems and flows.
This capability was not available in the past and represents a
substantial improvement in the ability to effectively and efficiently
manage GE Capital’s data. By requiring documentation of critical
data lineage in this way, GE Capital’s Chief Data Officer and team
has been able to establish a standard of care for data used by the
Senior Leadership Team in making strategic decisions about
corporate strategies.

Crucially, Colt also allows GE Capital users to answer key
questions about systems and flows. With the increased emphasis
by financial regulatory oversight boards on stress testing model
validation, GE Capital has been able to use the Colt system to
provide supporting documentation of the sourcing of data used by
such models. By centrally capturing data lineage across the
organization, documenting the source of data used by these
regulatory models is now a simple effort taking several minutes,
rather than a herculean multi-team effort lasting several weeks.

Additionally, Colt is being leveraged by the software development
lifecycle process that governs the creation, maintenance, and
decommissioning of software applications. By using Colt’s
network analysis to identify the downstream impact from changes
to systems, the approval teams for these projects can efficiently
identify projects that require additional oversight.

Overall, GE Capital estimates that Colt will result in a 50%
reduction in time and cost of the requirement-building phases of
complex IT projects, leading to millions in productivity savings
alone. These estimated savings are attributable to Colt’s ability to
handle complex queries about data movement across the entirety
of GE Capital, enabling analysts to efficiently answer regulatory
and operational inquiries without having to elicit and fuse this
information from a variety of personnel and other potentially non-
computable sources. In a recent study conducted in GE Capital
UK, 60% of unplanned system outages were a result of ineffective
impact analysis—of not understanding the relationships and
dependencies between systems.

There were several lessons learned from our experience designing
and developing Colt. Utilizing a semantic model to store the
metadata proved beneficial, enabling a flexible schema and
recursive querying. However, it took several iterations to reach
this point. We initially used a rigid model (e.g., no extensible

hierarchy) designed to address early system requirements. As the
requirements expanded, we encountered challenges extending the
model and system, going through three iterations before finalizing
the model design. On the plus side, utilizing SADL to create
models in structured English significantly reduced our modeling
iteration time, allowing us to review the model frequently and
directly with GE Capital users.

9. CONCLUSIONS & FUTURE WORK
As organizations struggle to manage more data than ever before,
they often lack the ability to answer specific questions about where
a given data set originated or how it may have been modified as it
flows through an IT infrastructure. In a corporate infrastructure
where it is common to find hundreds of systems managing
thousands of different types of data, it is a significant challenge to
get a cohesive picture of data flows through these systems, or to
answer basic questions about the lineage of a given dataset. To
address these challenges, we built a system enabling users to
model GE Capital data stores and data flows, as well as to
interactively explore this information to answer business-critical
questions.

Colt represents data stores and other systems as nodes in a directed
graph, with edges representing flows of data that are fully
characterized by a set of standardized taxonomies. Each edge
contains metadata that represents the complete context of the data,
including the specific concepts, businesses and products to which
each data flow applies. Over 2,200 nodes have been entered to
date, with over 1,000 edges describing over 47,000 data flows.
Colt includes key analysis features, such as the ability to trace or
validate the network. These features and more have made Colt a
very powerful system within GE Capital for managing and mining
data flow information across the business.

To date, all data flow information has been captured and entered
into Colt by hand. While this approach has been effective and
provided significant value to GE Capital to date, it is easy to
imagine that lack of regular maintenance in the long term could
result in the data in Colt becoming incomplete or stale, and no
longer reflective of current data flows. In the future, value could
be added by auto-discovering the existence of network connections
via network packet sniffing, extract-transfer-load (ETL) tool log
mining, database query log mining, and similar technologies. Such
capabilities could be used to automate the detection of connections
between nodes, which can be used to: (i) identify new edges, (ii)
confirm existing edges, and (iii) identify stale data in Colt.

10. ACKNOWLEDGEMENTS
The authors would like to thank George Brandman, Rob Casper,
John Clark, Daren Clarke, Mark Linehan, Subbaiah Maneyapanda,
Roberto Maranca, Glenn Nielsen and Harsh Sharma.

11. REFERENCES
[1] McAfee, A. and Brynjolfsson, E., “Big Data: The

Management Revolution”, Harvard Business Review, 90 (10):
60-68, Oct, 2012.

[2] The Dodd-Frank Wall Street Reform and Consumer
Protection Act, https://www.govtrack.us/congress/
bills/111/hr4173/text, Jul. 2010.

[3] Sar, C. and Cao, P. “Lineage File System”. Technical Report,
Stanford University, Jan 2005.

1800

[4] Muniswamy-Reddy, K., Holland, D. A., Braun, U., Seltzer,
M. I. “Provenance-Aware Storage Systems”. In Proc. of
USENIX Annual Technical Conference, 2006: 43-56.

[5] Gehani, A. and Tariq, D. “SPADE: Support for Provenance
Auditing in Distributed Environments”, In Proc. of 13th
ACM/IFIP/USENIX Middleware Conference, 2012: 101-120.

[6] Yu, J. and Buyya, R. “A Taxonomy of Scientific Workflow
Systems for Grid Computing”. ACM SIGMOD Record:
34(3): 44-49, 2005.

[7] Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.
“Data Lineage Model for Taverna Workflows with
Lightweight Annotation Requirements”, In proc. of 2nd
International Provenance and Annotation Workshop (IPAW),
2008: 17-30.

[8] Anand, M. K., Bowers, S., McPhillips, T. M., Ludascher, B.
“Exploring Scientific Workflow Provenance using Hybrid
Queries over Nested Data and Lineage Graphs”. In proc. of
21st International Conference on Scientific and Statistical
Database Mgmt (SSDBM), 2009: 237-254.

[9] Bose, R. and Frew, J., “Composing Lineage Metadata with
XML for Custom Satellite-derived Data Products”. In proc. of
16th International Conference on Scientific and Statistical
Database Mgmt (SSDBM), 2004: 275-284.

[10] Foster, I., Vockler, J., Wilde M., Zhao Y. “Chimera: A
Virtual Data System for Representing, Querying and
Automating Data Derivation”. In proc. of 14th International
Conference on Scientific and Statistical Database Mgmt
(SSDBM), 2002: 37-46.

[11] Tomingas K., Tammet T., Kliimask M., Jarv P. “Automating
Component Dependency Analysis for Enterprise Business
Intelligence”. In Proc. of International Conference on
Information Systems (ICIS), 2014.

[12] Manta Tools – Manta Flow, https://mantatools.com/manta-
flow.

[13] SQLdep: Data Lineage Tool for Data Warehouse Teams,
https://sqldep.com/.

[14] Solidatus: Data Lineage and Impact Analysis simplified,
https://www.threadneedletechnology.com/solidatus/.

[15] WhereScape RED. https://www.wherescape.com/products-
services/ wherescape-red/.

[16] Glavic B. “Big Data Provenance: Challenges and
Implications for Benchmarking”. In proc. of the First
Workshop on Specifying Big Data Benchmarks, 2014: 72-80.

[17] Wang, J., Crawl, D., Purawat, S., Nguyen M., Altintas I. “Big
Data Provenance: Challenges, State of the Art and
Opportunities”. Proc. of the IEEE International Conf. on Big
Data, 2015: 2509-2516.

[18] Overview of Teradata Loom Technology,
http://blogs.teradata.com/data-points/overview-of-teradata-
loom-technology/.

[19] Cloudera Navigator Lineage Diagrams,
http://www.cloudera.com/ documentation/enterprise/5-5-
x/topics/cn_iu_lineage.html.

[20] Gundecha, P., Ranganath, S., Feng, Z., Liu, H. “A Tool for
Collecting Provenance Data in Social Media”. In proc. of the
19th ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining, 2013: 1462-1465.

[21] Ranganath, S., Gundecha, P., Liu, H., “A Tool for Assisting
Provenance Search in Social Media”. In Proc. of the 22nd
ACM Intl. Conf. on Information and Knowledge
Management (CIKM), 2013: 2517-2520.

[22] Spillane R., Sears R., Yalamanchili C, Gaikwad S, Chinni M.,
Zadok E. “Story Book: An Efficient Extensible Provenance
Framework. In Proc. of the 1st USENIX Workshop on Theory
and Practice of Provenance, 2009.

[23] Linkurious: “How to Track and Visualize Data Lineage”,
https://linkurio.us/how-to-track-and-visualize-data-lineage/.

[24] Macko P., Seltzer M. “A General-Purpose Provenance
Library”. Proc. of the 4th USENIX Workshop on Theory and
Practice of Provenance, 2012,
https://github.com/pmacko86/core-provenance-library.

[25] Simmhan Y. L., Plale B., Gannon S. “Karma2: Provenance
Management for Data-driven Workflows”. Int. Journal of
Web Services Research. 5(2):1-22, 2008.

[26] Moreau L. et al. “The Open Provenance Model: An
Overview”. Provenance and Annotation of Data and
Processes, LNCS 5272: 323-326. 2008.

[27] Missier P., Sahoo S., Zhao J., Goble G., Sheth A. “Janus:
From Workflows to Semantic Provenance and Linked Open
Data”. Provenance and Annotation of Data and Processes,
LNCS 6378: 129-141. 2010.

[28] Moreau L et al. “The First Provenance Challenge”,
Concurrency and Computation: Pract. Exper.: 20(5): 577-586.
2000.

[29] Benjamin, A. R., McClennen, C. E., Santo Domingo, M. G.,
Dufresne, J. M., Sullivan, C. R. “Data Lineage Management
Operation Procedures”. US Patent# US9384231 B2, 2016.

[30] Khandelwal A., Walden C., Clarke D., Worley I., Saggu J.,
Sourekas S., Brizzi S. “Tracking Data Flow in Distributed
Computing Systems”. US Patent# US20160285701 A1, 2016

[31] Diaku Axon for BCBS 239 Compliance.
https://diaku.com/wp-content/uploads/2015/04/
AxonForBcbs239Compliance2.pdf, 2015.

[32] Case Study: Collibra Data Governance for a Domestic
Significantly Important Bank.
https://blog.knowledgent.com/case-study-collibra-data-
governance-domestic-significantly-important-bank/, 2016.

[33] Marchant, H. “Exploring Data Lineage: Get a Complete
Picture of your Data Flows”. IBM developerWorks technical
article, 2010.

[34] “Provenance delivers complete data lineage”. Bloomberg
Provenance Fact Sheet. https://www.bbhub.io/solutions/
sites/8/2015/09/Bloomberg_Provenance_Fact_Sheet.pdf.

[35] “Bloomberg is providing critical BCBS-239 compliance
support”. Bloomberg Ontology and Provenance fact sheet.
https://www.bbhub.io/solutions/sites/8/2015/09/Ontology_an
d_Provenance_BCBS-239_Fact_Sheet.pdf.

[36] W3C RDF, https://www.w3.org/RDF/.
[37] SPARQL, http://www.w3.org/TR/rdf-sparql-query/.
[38] Crapo, A., and Moitra, A. “Toward a Unified English-Like

Representation of Semantic Models, Data, and Graph Patterns
for Subject Matter Experts”. Int. Journal Semantic Computing
7:215. 2013.

[39] Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sumer, O. and
Bader, G.D., “Cytoscape.js: a graph theory library for
visualization and analysis”, Bioinformatics, 32 (2): 309-311,
2016.

[40] Wendt, M. DynaTree.js, http://wwwendt.de/tech/dynatree/.

1801

