
Relaxation in Text Search using Taxonomies

Marcus Fontoura Vanja Josifovski Ravi Kumar Christopher Olston
Andrew Tomkins Sergei Vassilvitskii

Yahoo! Research
701 First Ave.

Sunnyvale, CA 94089.

{marcusf, vanjaj, ravikumar, olston, atomkins, sergei}@yahoo-inc.com

ABSTRACT
In this paper we propose a novel document retrieval model
in which text queries are augmented with multi-dimensional
taxonomy restrictions. These restrictions may be relaxed at
a cost to result quality. This new model may be applicable
in many arenas, including multifaceted, product, and local
search, where documents are augmented with hierarchical
metadata such as topic or location. We present efficient
algorithms for indexing and query processing in this new
retrieval model. We decompose query processing into two
sub-problems: first, an online search problem to determine
the correct overall level of relaxation cost that must be in-
curred to generate the top k results; and second, a budgeted
relaxation search problem in which all results at a particu-
lar relaxation cost must be produced at minimal cost. We
show the latter problem is solvable exactly in two hierar-
chical dimensions, is NP-hard in three or more dimensions,
but admits efficient approximation algorithms with provable
guarantees. We present experimental results evaluating our
algorithms on both synthetic and real data, showing order
of magnitude improvements over the baseline algorithm.

1. INTRODUCTION
Information retrieval (IR) systems have developed spe-

cialized data structures and algorithms to perform a specific
task: ranked retrieval of documents. These systems are in-
creasingly being called upon to incorporate more complex
processing into query evaluation. Some extensions, such
as query expansion, can be handled cleanly in the existing
model. Others, such as static scoring, may be incorporated
with only small changes to the underlying system. But an
increasingly prominent set of desired extensions do not nat-
urally fit within the traditional document model. Typical
examples are local search, in which the user is interested only
in geographically proximate results [9], multifaceted product
search, in which product metadata is effective to restrict
search along many dimensions [35], and social search, in
which an endorsement by another user may alter the rank-
ing of an object based on the relationship between the user
and the endorser.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Figure 1: Hierarchical document taxonomies.

Let us consider a motivating example. Sue is in Univer-
sity Ave., Palo Alto, California. She feels the sudden urge
to indulge in deep dish pizza. She enters an internet cafe,
navigates to a purveyor of local search, and queries for such
a restaurant in her vicinity. The local search engine may
take into account the following factors.
(1) Sue has indicated that she wishes the web page of match-
ing institutions to contain the term “deep dish.”
(2) Objects known to the local search engine are labeled with
a category, such as restaurant, or more specifically pizza
parlor.
(3) Sue is known to be on University Ave., which is part of
Palo Alto, which is part of the South Bay.

The scenario contains two types of information. The first,
in item (1), is a traditional textual query that is amenable
to existing techniques. The second, in items (2) and (3),
is a set of desired characteristics of the result, expressed as
leaves of a tree such as the ones illustrated in Figure 1. The
result should be a restaurant of type pizza parlor, but in a
pinch, perhaps an Italian restaurant will do. The location
should be University Ave., but again, perhaps a restaurant
located in nearby Menlo Park would be appropriate if it is
a good match to the other constraints. Thus, each of these
restrictions exists within a hierarchical structure allowing
relaxation at some cost.

1.1 Problem definition
Multi-dimensional relaxation may be phrased in many

ways: one may relax a location by specifying a ball of grow-
ing radius around that location, or may relax a phrase using
linguistic measures of phrase similarity. In our formulation,
we focus specifically on relaxation via multiple hierarchies,
for three reasons. First, hierarchies capture many important
notions of relaxation that are used today. Second, other
forms of relaxations may be cast as hierarchies with some
loss (see, for instance, [4]). In product search, for instance,

672

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

the price values are normally mapped into ranges, which can
easily be represented as taxonomies. And finally, the restric-
tion allows us to phrase a clean combinatorial problem that
is amenable to algorithmic techniques.

We define a taxonomy as a tree whose edges have non-
negative weights. For a taxonomy T , each document d in
the corpus is associated with exactly one node of T , de-
noted topic(d) ∈ T 1. Let T1, . . . , Tm be the taxonomies and
let topicj(d) ∈ Tj denote the node in the j-th taxonomy
associated with document d.

Figure 1 shows two taxonomies for our running example.
The weights determine the cost of relaxation in an additive
fashion. For a query seeking a pizza restaurant on Univer-
sity Ave., a non-pizza Italian restaurant located in the South
Bay but not in Palo Alto would incur a total relaxation cost
of 1+2+4 = 7. We assume these weights have been assigned
by a domain expert—our algorithms allow any nonnegative
weights and allow specification of the weights at runtime,
so it is possible to evaluate queries with user-specific relax-
ation costs. We also assume that these weights have been
normalized across taxonomies in a way that their addition
yields the correct query semantics.

User-entered queries have two components: (1) a text
component and (2) a set of taxonomy nodes. More formally,
a query Q consists of text keywords keyw(Q) and a vector
of taxonomy nodes topic(Q) = 〈topic1(Q), . . . , topicm(Q)〉,
where topicj(Q) ∈ Tj . The answer to a query consists of
the top k results, ranked in increasing order according to
the following scoring function:

score(d, Q) = α static(d) + β text(d, keyw(Q))

+γ tax(d, topic(Q)). (1)

Here,
static(d) returns the query-independent “importance” score

for document d (e.g., d’s PageRank [31]);
text(d, keyw(Q)) returns the text-based relevance score

for document d with respect to keywords keyw(Q); and
tax(d, topic(Q)) returns a taxonomy score, i.e., a collec-

tive relaxation cost for document d with respect to a list of
taxonomy nodes topic(Q).

(For all score components, lower is better. The variables
α, β, and γ are weights for the different score components.)
We set

tax(d, topic(Q)) =

mX
j=1

taxj(topicj(d), topicj(Q)),

i.e., the sum over relaxation costs in each taxonomy, where
topicj(Q) denotes the query node in taxonomy Tj . Relax-
ation cost in the j-th taxonomy is defined as

taxj(td, tQ) = wdistj (tQ, lca(tQ, td)) ,

where tQ = topicj(Q), td = topicj(d), lca(·, ·) is the least-
common ancestor function, and wdistj(·, ·) gives the sum
of the edge weights along the path between two taxonomy
nodes in Tj .

2 The above equation should be read as follows:

1For simplicity, we omit the cases in which a taxonomy does
not contain all documents or a document is associated with
multiple nodes of a given taxonomy, but our approach can
be easily extended to handle these cases.
2This apparently asymmetric measure of relaxation cost
may be converted to a symmetric version which returns the
same ordering of results in a straightforward manner.

if the query specifies University Ave. and the document is
located at University Ave., the relaxation cost is 0. But
if the document is located on California Ave., also in Palo
Alto, then the lca is Palo Alto and the relaxation cost de-
pends on the distance in the tree from University Ave. to
Palo Alto, and so forth.

There are three main subproblems that need to be ad-
dressed in order to fully support the new document retrieval
model we propose: (1) creation of taxonomies and selec-
tion of appropriate taxonomy weights, (2) mapping of query
terms and user information into taxonomy nodes, and (3) ef-
ficient indexing and query processing. In this paper we focus
on the third subproblem: our goal is to index taxonomies
with their weights and efficiently find top k answers for query
Q based on our scoring function score(d, Q).

1.2 Our approach
A natural IR-based strategy to address indexing and query

processing would be to use a text index to obtain establish-
ments relevant to “deep dish pizza,” and then post-process
using the metadata, i.e., restaurant classification data, geo-
graphical data, and user preferences. However, text match-
ing may not represent the most selective access path (es-
pecially if relaxed text matching semantics are employed).
Given that queries have multiple access paths to data, it
makes sense to consider a broader space of evaluation strate-
gies, in the spirit of database query optimization. However,
care must be taken in our domain: the presence of multi-
ple potential relaxations results in a planning space that is
exponential in the number of taxonomies.

Our approach is to extend the text index to also include
the taxonomy nodes, and process the text and taxonomy
portions of the query simultaneously via the index. In par-
ticular, we create a posting list3 for each taxonomy node.
To process a query we select initial taxonomy nodes and
begin to traverse their posting lists. As results begin to
emerge, we adjust the degree of relaxation (i.e., move up
or down in the taxonomy), with the goal of scanning the
shortest posting lists possible (i.e., posting lists for low tax-
onomy nodes) while still producing the top k results. In the
case of multiple taxonomies we may choose to issue multiple
simultaneous relaxation strategies (i.e., moving up in taxon-
omy one versus moving up in taxonomy two), so as to avoid
overly relaxed strategies that produce excessive matches.

1.3 Main contributions
(1) The formalization of a novel document retrieval model,

in which textual queries are augmented with multi-dimensional
taxonomy restrictions. These restrictions may be relaxed at
a cost to result quality.

(2) Given taxonomies along with weights, algorithms for
indexing (Section 4) and query processing (Section 5).

(3) A formal treatment of the problem of query processing
at a fixed relaxation. We show that this problem problem is
solvable exactly in two dimensions, is NP-hard in three or
more dimensions, but admits efficient approximation algo-
rithms with provable guarantees (Section 5.3).

(4) Experimental results evaluating our algorithms on both
synthetic and real data, showing order of magnitude im-
provements over the baseline algorithm (Section 6).

3Section 3 provides background information on posting lists
and inverted text indexes.

673

2. RELATED WORK
Query relaxation has been studied in the context of XML

and semi-structured databases, e.g., [36]. The focus of this
work is how to relax query constraints in order to deal with
imprecise document models and heterogeneous schemas. It
does not consider relaxation via taxonomies, which is our
concern.

Document taxonomies are already being used in some
commercial IR engines. Local search in today’s web search
engines uses a location taxonomy to find out the relevant
documents in close proximity to a given location. While
there is no published work from the major search engines
describing their current implementations of local search, we
assume that these do not generalize to multiple taxonomies
as described in this paper. Several indexing and query pro-
cessing algorithms for local search have been proposed in [9].
In that work, queries have two components—a textual com-
ponent and a geographic component. The algorithms pro-
posed in [9] are based on space-filling curves and do not use
taxonomies. We view that work as complementary to ours,
since the taxonomy component of our scoring function can
be easily integrated into their processing model.

Another example of use of taxonomies on the web is prod-
uct search where products are classified into taxonomies to
aid the browsing and search; see [35] for an overview. Mul-
tifaceted search products such as Endeca (endeca.com), i411
(i411.com), FacetMap (facetmap.com), Flamenco (flamenco.
berkeley.edu), aim to improve the search and navigation
of document collections by allowing the user to drill down
in the set of documents returned by a query.

There has been much recent work on keyword search over
structured or semi-structured databases, e.g., [2, 16, 24, 26,
34]. Typically the aim is to find database fragments (i.e.,
XML subtrees or joined relational tuples) such that each
fragment contains all query keywords and is minimal in some
respect (e.g., minimal in size). In our work we focus on how
to leverage metadata about documents, which in our case
occurs in the form of one or more independent taxonomies.
A query does not just consist of keywords, but also specifies
desired taxonomy positions.

A taxonomy of attributes has been used in OLAP systems
for aggregation and exact queries [21, 25]. In this setting,
it has been mostly used to determine the right granular-
ity of aggregation. However, increasingly sophisticated al-
gorithmic approaches and problem formulations have been
applied to the same underlying data model [1, 12, 13, 14].
In the OLAP context, systems have been proposed to con-
sider automated extraction of hierarchical metadata from
documents [11, 27]. Automated extraction also raises novel
problems for query processing over such uncertain data [8].

The query processing algorithms presented in this paper
are similar in spirit to the WAND adaptive algorithm [6] and
Threshold algorithm in [15]. Like WAND, our algorithms
start assuming no knowledge about the distribution of the
results and improve their performance as data is seen during
query processing. The presence of text and static scores in
our case makes the algorithms in [15] not applicable. For
efficiently processing text tokens in the document-at-a-time
query evaluation model, described in Section 3, all the lists
in the text index must be in the same order. The algorithms
proposed in [15] take as input several lists, each of them
sorted by different criteria.

3. BACKGROUND
In this section we briefly review some basic IR concepts

and terminology.
Inverted index. Most IR systems use inverted indexes as

their main data structure for full-text indexing [33]. There
is a considerable body of literature on efficient ways to build
inverted indexes [3, 5, 18, 23, 30, 33] and evaluate full-text
queries using them [6, 29, 33].

In this paper we assume an inverted index structure. The
occurrence of a term t within a document d is called a post-
ing. The set of postings associated to a term t is stored in a
posting list. A posting has the form 〈docid, payload〉, where
docid is the document ID of d and where the payload is used
to store arbitrary information about each occurrence of t
within d.

Each posting list is sorted in increasing order of docid.
Often, B-trees [20] or skip lists are used to index the posting
lists [18, 30]. This facilitates searching for a particular docid
within a posting list, or for the smallest docid in the list
greater than a given docid.

Free-text queries. Most IR systems support free-text queries,
allowing Boolean expressions on keywords and phrase searches.
In this paper we assume the document-at-a-time query eval-
uation model (DAAT) [32], commonly used in web search
engines. In DAAT, the documents that satisfy the query
are usually obtained via a zig-zag join [20] of the posting
lists of the query terms. To evaluate a free-text query us-
ing a zig-zag join, a cursor Ct is created for each term t in
the query, and is used to access t’s posting list. Ct.docid
and Ct.payload access the docid and payload of the posting
on which Ct is currently positioned. During a zig-zag join,
the cursors are moved in a coordinated way to find the docu-
ments that satisfy the query. Two basic methods on a cursor
Ct are required to do this efficiently:

(1) Ct.getNext() advances Ct to the next posting in its
posting list.

(2) Ct.fwdBeyond(d) advances Ct to the first posting in
its posting list whose docid is greater than or equal to d.
Since posting lists are ordered by docid, this operation can
be done efficiently.

Scoring. Once a zig-zag join has positioned the cursors
on a document that satisfies the query, the document is
scored. The final score for a document usually contains a
query-dependent textual component, which is based on the
document similarity to the query, and a query-independent
static component, which is based on the static rank of the
document. In most IR systems the textual component of
the score follows an additive scoring model like tf × idf for
each term, whereas the static component can be based on
the connectivity of web pages, as in PageRank [31], or on
other factors such as source, length, creation date, etc. In
this paper the score also has a third component, which is
the taxonomy score.

4. INDEX STRUCTURE TO SUPPORT EF-
FICIENT RETRIEVAL

In this paper we extend the use of the inverted index to
allow queries for any node tj of any taxonomy Tj ; this is
in addition to the usual text queries. To support the tax-
onomy node queries in an efficient manner, we choose to
add one additional posting list per taxonomy node. Each
of these lists contains one posting for each document that

674

Document 1:
Palo Alto
Chinese

Document 2:
University Ave.

Pizza

Document 3:
Palo Alto
Trattoria

Document 4:
Menlo Park

Italian

Sample documents

Taxonomy posting lists

Bay Area

South Bay

Palo Alto

Menlo Park

University Ave.

Store

Restaurant

Italian

Chinese

Pizza

Trattoria

d1(Palo Alto)

d1(Palo Alto)

d1(Palo Alto)

d2(Univ. Ave.)

d2(Univ. Ave.)

d2(Univ. Ave.)

d2(Univ. Ave.)

d3(Palo Alto)

d3(Palo Alto)

d3(Palo Alto)

d4(Menlo Park)

d4(Menlo Park)

d4(Menlo Park)

d1(Chinese) d2(Pizza) d3(Trattoria) d4(Italian)

d1(Chinese) d2(Pizza) d3(Trattoria) d4(Italian)

d2(Pizza) d3(Trattoria) d4(Italian)

d1(Chinese)

d2(Pizza)

d3(Trattoria)

Figure 2: Sample documents with their taxonomy
values and corresponding taxonomy posting lists.
All the posting lists are sorted by docids.

belongs to the corresponding subtree of that taxonomy node
(i.e., d ∈ Tj |tj), no matter what their location in other tax-
onomies. In order to allow for precise ranking during query
evaluation, the payloads of postings in these special posting
lists identifies the exact placement of the document d in the
taxonomy tree Tj . The postings in these postings lists are
sorted by docid—in the same order used for the text posting
lists. Therefore these lists can be used in Boolean queries
in the same manner as the text posting lists. The fact that
all posting lists are ordered by docid is crucial for the effi-
cient implementation of DAAT query processing algorithms.
Figure 2 shows the taxonomy posting lists for four sample
documents. The payload values are shown between paren-
thesis. For clarity we show the name of the taxonomy node
as the payload value, but for efficiency these values should
be encoded in the inverted index, for instance, using nu-
merical ids. The Italian posting list shown in Figure 2, for
instance, is a combination of the Pizza and Trattoria post-
ing lists plus the documents that appear on the Italian node
itself (Document 4).

Retrieval is accomplished in the usual way for DAAT
query processing algorithms, by opening a cursor into each
relevant posting list, and then advancing the cursors in a
coordinated fashion to find documents that occur in the in-
tersection of the lists. For example, to find restaurants in
Palo Alto, we perform a Boolean search for “Palo Alto AND
Restaurants.” When a document is returned as the result of
such a query, we know its position in all the taxonomies by
looking at its payload values, and we can therefore compute
its relaxation cost.

Figure 3: Query evaluation options.

The overhead required by this indexing scheme is mini-
mal. First, the number of terms in the index increases by
the number of nodes in the union of all taxonomies; this
number may range into the tens of thousands in extreme
cases, compared to the millions of words that are common
in large document indexes. Second, we must add postings
entries for each document in each tree. However, the docu-
ment will occur in a number of nodes corresponding to the
sum of the average depths of the trees: this will typically be
measured in tens, rather than the many hundreds or thou-
sands of words present in an average web document. Thus,
at least in the context of web search, the expected overhead
of such a scheme is below 1%; see [22] for a system imple-
menting this scheme at minimal cost in another context.

5. QUERY PROCESSING
The overall objective of the query engine is to find the

k documents of least cost under our scoring model (Sec-
tion 1.1), while minimizing the total retrieval cost incurred.
For ease of exposition, we will focus on the case in which
there is no text query and no static score; that is, the cost
of a result is exactly the relaxation cost. The text and static
score components may be incorporated easily.

We first describe the space of possible relaxation costs
(Section 5.1). We then describe the query processing step,
decomposing the problem into two sub-problems: first, an
online search problem to determine the overall level of relax-
ation cost (Section 5.2); and second, a budgeted relaxation
search problem in which all results at a particular relaxation
cost must be produced at minimal cost (Section 5.3).

5.1 The space of relaxation options
Let us consider the query “University Ave. and Pizza”

of our running example. We show the space of possible
two-dimensional relaxations in Figure 3. The bottom-left
corner represents the query point q. The possible relaxations
in taxonomy T1 are placed on the x-axis and the possible
relaxations in T2 are placed on the y-axis. For each axis,
tick marks indicate the points for which a relaxation exists.
For each node topicj(Q), the define the weighted path in
Tj from topicj(Q) to the root as the relaxation path of Q
in Tj . The symbol ‘×’ marks indicate possible relaxations
in the cartesian product of the two relaxation paths, i.e.,
points for which both coordinates lie at a tick mark. The
relaxation cost of a point at position (x, y) is x + y. For
instance, the top right ‘×’ mark corresponds to the node
(Bay Area, Store) and its relaxation cost is 10 + 10 = 20.

675

In general, with m ≥ 0 taxonomies we have an m-dimensional
grid, where each grid point (t1, . . . , tm) is such that tj ∈ Tj .
Each grid point is therefore an element of T1×· · ·×Tm, and
each tj is on the path from topicj(Q) to the root of Tj . The
relaxation cost of a point is exactly its L1 norm, the sum of
its coordinates.

Consider a grid point (t1, . . . , tm). This point implicitly
corresponds to a subset of documents given by the intersec-
tion of the taxonomy nodes at each point; for example, all
objects that have both geography Palo Alto and restaurant
type Italian. Let T |t denote the subtree of T rooted at node
t, and let docs(t) denote the set of documents whose topic
in T lies in the subtree T |t. For a grid point (t1, . . . , tm), we
define:

docs(t1, . . . , tm) = ∩m
j=1docs(tj).

We will require one additional piece of notation. As the
relaxation cost of a point is the sum of its coordinates, we
observe that lines of slope −1 represent thresholds of relax-
ation cost: all points below the line have relaxation cost at
most the x-intercept of the line. Figure 3 shows lines with
relaxation cost 4 and 10. In general, the region of relaxation
cost at most some budget b will be a simplex S(b); in two
dimensions, the simplex is a triangular region defined by
the two axes and the appropriate diagonal line of slope −1.
Adjusting the slope is equivalent to scaling the weights of
the two taxonomies; this effect can alternatively be accom-
plished by modifying the taxonomy edge weights, effectively
scaling one of the axes, so without loss of generality we only
consider lines of slope −1. Formally,

S(b) = {(t1, . . . , tm) | b ≥
mX

j=1

taxj(tj , topicj(Q))},

i.e., S(b) contains all points in the grid that have relaxation
cost at most b. We use the natural notation

docs(S(b)) = ∪(t1,...,tm)∈S(b)docs(t1, . . . , tm),

to denote the set of all documents present in the nodes
defined by the simplex S(b); this represents all documents
with relaxation cost at most b.

As explained in Sections 5.2 and 5.3, evaluation of a user’s
top-k query will be performed by issuing a sequence of re-
trieval commands to an underlying index structure. The
main retrieval primitive we employ returns docs(t1, . . . , tm)
for a given point (t1, . . . , tm).

5.2 Top-k relaxation search
In this section we study how best to search over the space

of relaxation budgets, in order to retrieve the top k docu-
ments as cheaply as possible. Recalling that S(b) represents
the simplex of points with relaxation cost ≤ b, and that
docs(S(b)) represents the set of documents with at most this
relaxation cost, we can state our formal goal as follows: find
the minimal relaxation budget b∗ such that |docs(S(b∗))| ≥
k. We will define a series of “levels” that are the natural
candidate relaxation budgets to consider. In terms of our
visualization of the problem given in Figure 3, imagine slid-
ing a line of slope −1 from the origin up and to the right.
Each time the line intersects a tick mark, there is a candi-
date budget corresponding to the x-intercept that may con-
tain more documents than any smaller budget. In Figure 3,
such lines are shown corresponding to budgets 4 and 10;

of course, other candidate budgets exist, but are not drawn
in. Formally, we will search a precomputed list of levels B =
b1, . . . , bL, with bj ∈ [0,

Pm
j=1 taxj(root(Tj), topicj(Q))] such

that for any b′ ∈ [bj , bj+1) we have docs(S(b′)) = docs(S(bj)).
Levels in B occur in increasing order of budget and L is the
maximum level.

Depending on the nature of the taxonomy weights, this
set of levels may be unnecessarily large, so it is possible to
prune the set of levels we consider to a more manageable
subset. In our experiments, we will restrict our attention
to levels in which the line intersects an axis tick mark, and
declare these to be the candidate relaxation budgets. Our
goal is then to search through these budgets for the smallest
one that yields k documents.

In the next subsection we present a family of algorithms
based on a conservative search method that moves to a new
level once it is 100% certain that the current level is un-
suitable. It is possible to use an aggressive search method
that may choose to abandon a level early based on statisti-
cal evidence; we leave it as an interesting future direction to
investigate.

5.2.1 Conservative search methods
Let us define the main data structures for our algorithms.

Let ` denote the current level and let R denote the current
set of results; we store the results in a heap so that it is
becomes efficient to keep the top k results.

Recall that at each level `, the documents at that level are
given by docs(S(b`)). We begin processing documents in this
set by traversing the underlying index using one or more
retrieval queries as dictated by the method for budgeted
relaxation search (described in Section 5.3) with budget b`.

If we finish processing all documents at level `, but have
not obtained k results, then we need to consider a more
relaxed level (larger value of `). In our running example, for
query (University Ave., Pizza), suppose k = 2 and we begin
with ` = 0. We find exactly one document whose relaxation
cost is 0 (Document 2). We are trying to find at least two
documents (since k = 2), so we must try again with a larger
value of `, say ` = 1.

In general, larger values of ` give us more results, and
hence a greater chance of getting at least k results—but at
a greater query cost. The goal is to perform an iterative
search over different ` values, to converge on one that gives
us k results without incurring excessive cost.

We have a generic procedure for performing this search
for the best level. Our generic search procedure is governed
by two functions. The first function, initialLevel(), controls
the level at which we begin our search. The second function,
getNextLevel(`), picks a new level to explore, if we decide
that the current level ` is not a good choice. Different mani-
festations of these functions yield different search strategies.

We first give the generic search algorithm, which is param-
eterized by the functions initialLevel() and getNextLevel(),
and then describe specific algorithms that use specific man-
ifestations of these functions.

Generic search procedure. We now present a generic
algorithm that performs processing given the two functions
initialLevel() and getNextLevel(). The pseudocode is given
next.

676

Algorithm ConservativeSearch (Q)
1. ` = initialLevel()

2. levelDone = false
3. while (|R| < k ∨ ¬ levelDone)
4. levelDone = processNextDoc (Q, R, b`)
5. if ((|R| ≥ k)∨ levelDone)
6. ` = getNextLevel (`)

The basic idea behind this algorithms is as follows. Once
the level is chosen, in line 4 the algorithm invokes the func-
tion processNextDoc(Q, R, b`) to retrieve documents for that
level, i.e., documents of cost ≤ b`. It returns a Boolean
value (levelDone) indicating if there are more documents to
be processed for that level.

As the level changes, processNextDoc() must restart this
enumeration as necessary to process documents in order
from the requested level. If during processing of the next
document the set R of results reaches size k and all the
documents in R have total cost at most b` this is an indi-
cation that specialization is possible without compromising
the desired number of results. In this case, the level will
be specialized (` is decreased) in the call to getNextLevel()
(line 6—we enter the if since |R| ≥ k). If processNextDoc()
finishes scanning all the documents in docs(S(b`)) and still
|R| < k the level needs to be relaxed (` is increased), which
will happen in the call to getNextLevel() (line 6—we enter
the if since levelDone is true).

We now describe three natural instantiations of this tem-
plate, which are realized by different variants of the func-
tions initialLevel() and getNextLevel(). It is important to
note that in all these instantiations, the top k scoring doc-
uments are returned.

(1) Bottom-up search. We start with the most specific
query possible, such as (University Ave., Pizza). If there
are at least k documents in the current level `, we are done.
Otherwise, we relax by increasing the current level, e.g., to
` + 1. In this case, we need to restart the querying process,
issuing a new query to the budgeted relaxation search algo-
rithm with budget b`+1. We only call getNextLevel() (line
6) to relax the query if levelDone is true and we still did not
find k results.

Let us consider again the documents from Figure 2. The
bottom-up search for the top-2 documents is illustrated in
Figure 4. For query (University Ave., Pizza) Document 1
has relaxation cost 2+4 = 6, Document 2 has relaxation cost
0, Document 3 has relaxation cost 2+1 = 3, and Document
4 has cost 6 + 1 = 7. Therefore, if we are interested in the
top-2 documents we want to retrieve Documents 2 and 3, in
this order.

As shown in Figure 4 we start processing at ` = 0 with
posting lists University Ave. and Pizza and retrieve Docu-
ment 2 from the zig-zag join of these two posting lists. Since
we are interested in top-2 results, we have k = 2 and we get
to line 5 in the algorithm with |R| = 1 and levelDone =
true. At this point we need to relax the query in order to
try to obtain the second result we are looking for. We then
set ` = 1 and use posting lists University Ave. and Italian.
This join generates no results different than Document 2,
since the only document in the University Ave. posting list
is Document 2, and therefore we need to generalize again.
The next level to try is ` = 3, using posting lists Palo Alto
and Italian (there is no posting list combination that we can
try for ` = 2 in this example). The zig-zag join using these

level = 0

Palo Alto
d1(Palo Alto) d2(Univ. Ave.) d3(Palo Alto)

University Ave.
d2(Univ. Ave.)

Pizza
d2(Pizza)

level = 1

University Ave.
d2(Univ. Ave.)

Italian
d2(Pizza) d3(Trattoria) d4(Italian)

level = 3

Italian
d2(Pizza) d3(Trattoria) d4(Italian)

Figure 4: Bottom-up search example.

two posting lists generates Document 2, which we already
have, and Document 3. Since we now have |R| = 2 we exit
the loop and return the results to the user.

It should be clear that bottom-up performs well if there
are enough documents that match the query well, requiring
minimal relaxation. In particular, it is optimal if there are at
least k documents at relaxation cost 0 (for instance, it would
be optimal if we were interested in the top-1 document in
our example). When that is not the case, it can be expen-
sive since it needs to reinitiate the query at higher levels of
relaxation from the beginning of the posting lists—since the
positing lists for the higher levels have all the documents in
their subtree, bottom-up keeps rediscovering the same so-
lution over and over. Figure 4 shows 8 cursor movements
(calls to either getNext() or fwdBeyond()), from which 6 are
used to find Document 2.

(2) Top-down search. We start at ` = L, the most
general level available. If there are k or less documents at the
current level `, we are done since specializing further will not
help. Otherwise, it is possible to specialize and still obtain
k documents with better scores. So we specialize the query
by decrementing `, e.g., to level ` − 1, after we have seen
k documents at level `. We only call getNextLevel() (line
6) to specialize the query if we have already seen k results
although levelDone is false. However, unlike in the bottom-
up case, we do not have to abandon the results R that have
been computed so far. We just apply a post filtering to
R to realize the specialization: this corresponds to setting
R = R ∩ docs(S(b`−1)). An important benefit is that the
budgeted relaxation search for S(b`−1) need not begin at
the very start of the posting lists, and may use information
gleaned at the more general level to help plan the query
processing at the more specific level.

Figure 5 shows the behavior of the top-down search for our
running example of obtaining the top-2 documents for query
(University Ave., Pizza). We start at the most generic level,
` = 20, using posting lists Bay Area and Store. After seeing
the first 2 documents, we have |R| = 2 and we enter line 6
of the algorithm to get a new level. At this point, we have
Document 1, which has relaxation cost 6, and Document 2,
which has relaxation cost 0 in the result set. Given these
two documents in R, for a new document to enter the result
set it has to have relaxation cost smaller than or equal to 6.
We can then safely specialize the level down to ` = 10 since

677

Bay Area

South Bay

Restaurant

d1(Palo Alto)

d1(Palo Alto)

d2(Univ. Ave.)

d2(Univ. Ave.)

d3(Palo Alto)

d3(Palo Alto)

d4(Menlo Park)

d1(Chinese) d2(Pizza) d3(Trattoria) d4(Italian)

level = 20

Store
d1(Chinese) d2(Pizza) d3(Trattoria) d4(Italian)

level = 10

d4(Menlo Park)

level = 3

Palo Alto
d1(Palo Alto) d2(Univ. Ave.) d3(Palo Alto)

Italian
d2(Pizza) d3(Trattoria) d4(Italian)

Figure 5: Top-down search example.

any document that is not part of either the South Bay or
the Restaurant subtrees would have relaxation cost bigger
than 6 and would not be part of the result set.

We can then proceed with posting lists South Bay and
Restaurant. Moreover, we can start processing in these post-
ing lists at docid 3, since we already processed all documents
with docid smaller than 3. That can be accomplished by
using the fwdBeyond() method when initializing the South
Bay and Restaurant posting lists. We then process Docu-
ment 3, which has relaxation cost 3, adding it to the result
set to replace Document 1 in the result heap. Then we again
enter line 6 of the algorithm with |R| ≥ 2. Now the biggest
relaxation cost in the result set is 3 and we know that for
a new document to enter the result set its relaxation cost
must be at most 3. We can then safely go to ` = 3, using
posting lists Palo Alto and Italian, since we know that any
document outside these two subtrees would have relaxation
cost above 3. Moreover, we can start at docid 4 at the new
level. Since the posting list for Palo Alto does not have any
document with docid ≥ 4 we are done and can return the
documents in our result set to the user.

It is clear that top-down performs quite well if a fair
amount of relaxation is needed to obtain k documents. More-
over, top-down is more incremental than bottom-up since it
allows us to reuse the documents already in the result set
when going to a more specialized level. In this simple ex-
ample, top-down was done with 7 cursor movements (i.e., 7
calls to either getNext() or fwdBeyond()).

(3) Binary search. We start at the middle level, i.e., L/2.
Depending on whether there are enough documents at the
current level `, we either move up or down the levels, as in a
normal binary search. Figure 6 shows how the binary search
would work for our running example. It starts at the middle
level with ` = 10 and from then on behaves similarly to top-
down. Note that after having seen the first two documents,
|R| = 2 and we enter line 6 of the algorithm. However, at
this point, just like for the top-down algorithm, no further
specialization is possible without potentially missing results.
Therefore, we keep using the same posting lists until we see
Document 3, at which point specialization becomes possible.

South Bay

Restaurant

d1(Palo Alto) d2(Univ. Ave.) d3(Palo Alto)

d1(Chinese) d2(Pizza) d3(Trattoria) d4(Italian)

level = 10

d4(Menlo Park)

level = 3

Palo Alto
d1(Palo Alto) d2(Univ. Ave.) d3(Palo Alto)

Italian
d2(Pizza) d3(Trattoria) d4(Italian)

Figure 6: Binary search example.

5.3 Budgeted relaxation search
In this section we focus on the budgeted variant of relax-

ation search: find all documents with relaxation cost ≤ b
at minimal retrieval cost. Recall that budget b defines a
simplex S(b) containing document docs(S(b)).

For a set of grid points G, let lca(G) denote their least
common ancestor, defined as the coordinate-wise least com-
mon ancestors in the corresponding trees (e.g., if G = {g, g′}
with g = (t1, . . . , tm) and g′ = (t′1, . . . , t

′
m), then lca(G) =

(lca(t1, t
′
1), . . . , lca(tm, t′m))). For example, in Figure 3, we

have lca(S(4)) = (Palo Alto, Restaurant) and lca(S(10)) =
(Bay Area, Store). Note that by definition

docs(S(b)) ⊆ docs(lca(S(b)).

Therefore, an easy way to obtain docs(S(b)) is to send
lca(S(b)) as a “query” to the underlying index. For example,
in Figure 3, to access documents in docs(S(4)), the query
would be “Palo Alto AND Restaurant.” However there are
other ways of obtaining docs(S(b)) as well, such as to issue
two separate retrieval queries, say “Palo Alto AND Italian”
and “University Ave. AND Restaurant” (which jointly cover
all ‘×’ marks in the simplex region S(4)), and then take the
union of the results.

The original one-query approach has the drawback of be-
ing less selective, but the two-query approach incurs redun-
dant processing (i.e., Italian restaurants in University Ave.
are retrieved twice)4. Which option is cheaper? The answer
depends on the joint distribution of documents in taxonomy
nodes, making this a query optimization issue. Figure 7
shows a more general case of multiple rectangular queries
that jointly cover a simplex and partially overlap—there are
regions in the diagram covered once, twice, and three times
by this set of queries, and other regions are covered once
even though they lie outside the simplex of interest.

To choose among the various possible plans, cost-based
query planning may be used. We assume query costs can
be estimated on the fly based on statistics gathered thus
far in query processing (if any). The availability of reliable
statistics depends on the outer search method used (Sec-
tion 5.2). In top-down evaluation, fairly good statistics are
available relatively early, since the most general posting lists
are scanned first. On the other hand, in bottom-up evalu-
ation no statistics are available when moving to a higher
level. Binary search has good statistics to work with some
of the time, depending on the exact search progression.

4Of course, already retrieved documents can be cached by
the engine, so that they are not scored again.

678

Figure 7: Three queries cover a simplex.

Note that the statistics needed for query planning have to
do with the joint distribution of documents into nodes on
the relaxation paths. Relaxation paths are query-specific.
Gathering and storing accurate statistics on the full carte-
sian product of taxonomy nodes is unlikely to be feasible,
especially given that many real-world taxonomies have tens
of thousands of nodes. For this reason, in this paper we fo-
cus on adaptive query processing approaches that work with
query-specific statistics gathered on the fly.

We describe our query planning algorithm for the case of
two taxonomies, which is based on dynamic programming
and is guaranteed to find the cheapest plan, in Section 5.3.1.
This algorithm is independent of the model used to gener-
ate costs and if they are generated on the fly or estimated,
the algorithm can still benefit from this information. In
Section 5.3.2 we present a planning algorithm that finds an
approximately good plan in the general case of more than
two taxonomies. For situations in which no reliable statistics
are available (e.g., bottom-up evaluation), our query planner
opts for a single-query plan (i.e., the query lca(S(b))).

5.3.1 Query planning with two taxonomies
With two taxonomies, queries are points in a two-dimensional

plane. A particular query (x, y) returns a set of documents;
we refer to this set as docs(x, y). Observe that if x′ ≤ x
and y′ ≤ y then docs(x′, y′) ⊆ docs(x, y). Thus, for any
query (x, y), we may draw the rectangle whose corners are
{(x, y),(x, 0),(0, y),(0, 0)} to indicate the set of queries that
are subsumed by the query (x, y). To generate all possible
objects within a particular budget, we must simply select a
set of rectangles that cover the simplex. Each query may
be annotated with the cost C(x, y) of performing the query
(x, y), and we may then ask for the minimum-cost cover for
a particular simplex; this will represent the optimal solution
to the budgeted relaxation search problem whose budget
corresponds to the given simplex.

Theorem 1. There is an efficient algorithm to solve the
query planning problem with two taxonomies.

Proof. For a fixed simplex S(b), let (x, S(b, x)) denote
the point at which x intersects the diagonal face of the sim-
plex, and let B(x0) denote the cost of the best cover of those
points of the simplex with x ≥ x0. Let next(x) denote the
first x-axis tick mark strictly greater than x. Then,

B(x0) = min
x≥x0

C(x, S(b, x)) + B(next(x)).

Filling in this dynamic program requires time propor-
tional to the number of points in the simplex. The final
solution is simply B(0).

5.3.2 General query planning
Although the query planning problem for two taxonomies

has a polynomial time solution, the exact optimization be-
comes NP-hard even with three taxonomies. After present-
ing the NP-hardness reduction we turn to approximation
algorithms, and show that a simple greedy approach can
achieve a good approximation.

Theorem 2. The query planning problem with three tax-
onomies is NP-hard.

Proof Sketch. For the purposes of the reduction, con-
sider the following, simplified version of the problem. There
are three taxonomies T1, T2, T3 and each document is asso-
ciated with a node from each of these taxonomies. Let the
relaxation cost of each document be b∗; thus each document
is a point on the boundary of the three-dimensional simplex
S(b∗). Without loss of generality we need to consider only
the query points with relaxation cost at least b∗. Note that
a query (x, y, z) returns all documents in docs(x, y, z) at a
cost C(x, y, z) and the projection of this three-dimensional
query point onto the simplex S(b∗) yields a triangle.

Now, the query planning problem is identical to the fol-
lowing geometric set cover problem. Given X , a set of n
points in R2 (the documents) and a set T = {t1, . . . , tm} of
triangles (the queries), with triangle ti having cost ci, select
S ⊆ T of triangles of minimum total cost that covers all of
the points in X . Furthermore, we set the costs ci so that all
triangles under consideration have the same size.

This problem is a constrained version of set cover, and
has been previously studied under the restriction that each
ti is an axis-parallel rectangle (instead of a triangle as it
is here) and shown to be NP-hard by Fowler et al. [19].
However, their proof does not require the covering sets to
be axis-parallel rectangles. In fact, it can be easily amended
to have the sets ti consist of equal-sized triangles, as is our
case. Thus, the query planning problem is NP-hard, even
with three taxonomies.

On the other hand, the geometric set cover problem is well
studied and yields non-trivial approximation algorithms. Let
n be the total number of documents that have low enough re-
laxation cost. Using the standard greedy set cover algorithm
we can obtain an O(log n) approximation to the query plan-
ning problem, regardless of the total number of taxonomies.
However, since the problem has a nice geometric structure it
is possible to obtain better approximation algorithms. In the
case of d taxonomies, the set of triangles (when d = 2) and
simplices (when d > 2) has VC-dimension of O(d). There-
fore, the randomized covering technique of Bronnimann and
Goodrich [7] achieves an O(kd log k) approximation where
k is the size of the optimal solution; note that when only
a small number of database queries suffices, this is much
smaller than log n. Recently, Clarkson and Varadarajan [10]
showed how to compute an O(k log log k) approximation al-
gorithm to this problem in the case of d = 3, i.e., three
taxonomies. While their algorithm improves the cost guar-
antees, its unlikely to be competitive on real data due to its
complexity.

679

6. EXPERIMENTS
In this section we describe a set of preliminary experi-

ments to evaluate the proposed algorithms. We use a syn-
thetic data set so that we can vary taxonomy characteristics
such as depth, fanout, and multiplicity and a real-world data
set. For these experiments we modified the Lucene open
source text indexer (lucene.apache.org) to support relax-
ation search over multiple taxonomies. The primary goal
of our experiments is to evaluate the relative performance
of our algorithms against the baseline. To make the pre-
sentation simpler, we do not present results involving static
score—our results consider only the keyword and taxonomy
restrictions of the query.

We sought to evaluate the intrinsic performance proper-
ties of the various search algorithms, independent of low-
level issues such as posting list compression, memory and
disk speed, and caching. Hence, as done in [17], we use the
total number of cursor movements as our performance met-
ric, i.e., the total number of posting entries accessed by calls
to getNext() and fwdBeyond() to answer the query. (The
bookkeeping overhead of our algorithms is minimal; running
time is dominated by cursor-based traversal of index posting
lists.)

The baseline algorithm, against which we evaluate our new
family of algorithms, is one that retrieves documents that
satisfy the textual portion of the query and post-processes
such documents using the taxonomy metadata. The post-
process is done during the traversal of the posting lists, as
documents are inserted into the heap that stores the top
k results. This algorithm constitutes a direct application
of standard IR processing to our context, and hence it does
not exploit the hierarchical taxonomy structure during query
processing. The baseline algorithm is as follows.
(1) Identify documents that match the keyword portion of
the query (keyw(Q)) in the usual way using the text index.
(2) For each document d satisfying keyw(Q), lookup d’s po-
sition in each taxonomy T and use this information to com-
pute d’s overall score.
(3) Retain the top k documents in a heap.

These three steps are executed during posting list traver-
sal. For each document d returned by step (1), we execute
steps (2) and (3). The baseline algorithm is equivalent to
a variant of our top-down policy that never “moves down,”
i.e., it always stays at level L and never accesses taxonomy
posting lists corresponding to non-root nodes.

Our synthetic taxonomies are balanced trees of varying
fanout and depth. Each taxonomy has fixed depth d and
fanout f , and contains every document. The documents
are distributed among the leaves uniformly at random. The
parameters we vary are the following.

Number of taxonomies 1–4
Fanout of taxonomies 2–8
Depth of taxonomies 4, 8
Selectivity of keywords 1.0–0.01
Number of results (k) 10, 100, 1000

6.1 Processing with one query per level
Recall that our framework for processing relaxation queries

consists of two pieces: first, a scheme for moving up and
down the levels of relaxation (Section 5.2); and second, an
algorithm for producing a query plan to scan relevant doc-
uments at each level of relaxation (Section 5.3). In this

section we simplify the second problem by assuming that
in all cases, the relevant documents at each level are sim-
ply produced by a single query, even if this query must be
sufficiently broad to include some overly-general documents
as well. We fix k = 10 and examine four search algorithms:
baseline, bottom-up, top-down, and binary search. Later, in
Section 6.2, we will extend our scope to study the impact of
scanning a level by applying multiple distinct queries, each
covering a piece of the overall space.

Figure 8 shows the performance of the four algorithms,
when the selectivity of the textual portion of the query is
1 (i.e., either all documents contain the requested keywords
or the query did not specify any keywords). We vary the
following: taxonomy depth (4 or 8), taxonomy fanout (2 or
6), and number of taxonomy restrictions in the query (x-axis
of each plot). The y-axis of each each plot shows the number
of cursor movements, normalized with respect to the baseline
(i.e., the baseline is always at y = 1). In all four plots,
we see that with only one taxonomy restriction, all of our
algorithms dramatically outperform the baseline algorithm.
The reason is that they quickly zero in on a leaf node of the
single taxonomy that contains the top 10 results, whereas
baseline scans all documents. For depth = 4 and fanout
= 2, the performance of non-baseline algorithms is almost
identical, even with taxonomy restrictions = 4. However, the
performances start to diverge for greater depths and higher
fanout. As the number of taxonomy restrictions grows, the
performance of the non-baseline algorithms degrades and at
some point becomes no better than that of baseline (in some
cases it is worse). Here, full relaxation in every taxonomy is
required in order to find 10 results, due to the random and
independent assignment of documents to taxonomy nodes
in our synthetic data. In such cases none of our algorithms
can improve upon baseline, which simply scans the posting
lists of the taxonomy roots.

The bottom-up algorithms performs very poorly as the
number of taxonomies grows, because it wastes significant
effort before converging on the right level (i.e., the root
level). Binary search converges somewhat faster. Top-down
never performs worse than baseline (since baseline is a de-
generative case of top-down), and sometimes performs sig-
nificantly better.

Figure 9 shows how performance is affected by making
the textual portion of the query selective. The baseline al-
gorithm exploits selective keywords to narrow its search. For
queries with unselective keywords (0.1 or higher), all the al-
gorithms outperform or match baseline. For queries with se-
lective keywords, baseline outperforms or matches the other
algorithms. Recall that in this section we configure our algo-
rithms to always issue a single query per level. This restric-
tion handicaps the ability to exploit the taxonomies, so when
the keywords are even mildly selective, no benefit is derived
from early taxonomy-driven filtering. Next we study the use
of multiple queries per level which improves the ability to
exploit taxonomy restrictions early in the processing.

6.2 Multiple queries per level
In this section we apply our algorithms to control the level

of relaxation. At each level, we show results for using a single
query, as in the previous section, or multiple queries. To
determine the appropriate set of multiple queries to submit,
we employed the dynamic programming technique described
in Section 5.3.

680

Figure 8: Performance on a low-selectivity text query (all documents contain the query term) on multiple
taxonomies. The y-axis is the number of cursor movements, relative to the baseline.

The dynamic program requires the cost of each query. We
do not have this cost available. As our algorithm is forced to
replan each time the level changes, it is natural to maintain
dynamic statistics. We keep for each point of the full simplex
the count of documents and the largest docid examined so
far. Based on this, we estimate the cost of performing each
query. When no count is available, as for example when we
are generalizing upwards, we treat all queries equally. How-
ever, to focus on the difference between single and multiple
queries, we ask the algorithm to return multi-query solu-
tion when no information indicates otherwise. For example,
if the algorithm is asked to cover two taxonomies at relax-
ation budget 2, in the absence of other information it will
return three queries: (0,2), (1,1), and (2,0).

Figure 10 shows the performance of the binary search al-
gorithm for both single and multiple queries. The bene-
fits of multiple queries for taxonomies with larger depths
and higher fanout can be clearly seen from this figure. As
an illustrative example, consider two taxonomies, each with
fanout 8, and a relaxation budget of 2. The query (2, 2) will
access two postings, each of which is a factor of 64 times
larger than the leaf postings for that taxonomy. Instead,

Number of results
Algorithm k=10 k=100
baseline 11277
bottom-up 819 1582
top-down 61 242
binary search 62 242

Table 1: Avg. number of cursor movements.

the queries (1, 2) and (2, 1) will access only one large post-
ing and one posting that is eight times smaller; thus, each
query will touch roughly an eighth as much data and only
two such queries are required to cover the space. This exam-
ple shows why a situation of high fanout may be particularly
amenable to multiple queries.

6.3 Experiments on real-world data
We evaluated the performance of our algorithms on the

Reuters dataset RCV1 [28] that contains 810K English lan-
guage news articles from the period of Aug 20, 1996 to Aug
19, 1997. The total uncompressed size of the data is about
2.5GB. Each document in this collection is classified into
two taxonomies. The first is the “industry” taxonomy that

681

Figure 9: Performance wrt keyword selectivity of
query.

Figure 10: Performance wrt single (s) versus multi-
ple (m) queries per level.

has 996 leaf nodes; the maximum depth of the taxonomy is
7. The second is the “date” taxonomy that has 1140 leaf
nodes; the top level in this taxonomy represents the year,
the second level represents the month, and the third level
represents the day.

For this dataset we picked 1000 random queries consist-
ing of pairs of nodes from the first and second taxonomies.
To demonstrate the impact of the algorithms, only nodes at
depth five or greater from the first taxonomy were consid-
ered. Table 1 shows the number of cursor moves for all the
queries for each algorithm, varying the number of results
requested (k).

Top-down performs extremely well, especially since the
second taxonomy is quite shallow. Binary search is on par
with top-down and may be more robust for deeper tax-
onomies. Both top-down and binary search outperform the
baseline and bottom-up by orders of magnitude.

7. SUMMARY
We studied relaxation search in taxonomies by propos-

ing a general framework. We integrated this framework
into the IR context to obtain a novel document retrieval
model, which has several and diverse applications, ranging
from product search to online advertisement. We proposed
efficient indexing and query processing algorithms to im-
plement this new search paradigm and extensively evalu-
ated our algorithms on both synthetic and real-world data.
Our experimental results show that (1) this novel search
paradigm is viable and (2) the algorithms we proposed out-
perform the standard IR solutions for the problem by orders
of magnitude. We also reported theoretical results for the
budgeted query processing problem, showing that in the gen-
eral case it admits efficient approximation algorithms with
provable guarantees.

In our work we have assumed that the taxonomy and the
weights are provided as input to the framework. This works
well in many practical settings. However, when the taxon-
omy is not well-specified or when it is not clear how to chose
the weights, learning the taxonomy and defining reasonable
weights become interesting research questions themselves.

Acknowledgments
We thank the anonymous referees who provided many help-
ful suggestions.

8. REFERENCES
[1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling

multidimensional databases. In Proc. 13th ICDE,
pages 232–243, 1997.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In Proc. 18th ICDE, pages 5–16, 2002.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[4] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proc. 30th ACM STOC, pages 161–168,
1998.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. WWW/Computer
Networks, 30(1-7):107–117, 1998.

[6] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Y. Zien. Efficient query evaluation using a two-level
retrieval process. In Proc. 12th ACM CIKM, pages
426–434, 2003.

[7] H. Bronnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. In Proc. 10th ACM
SoCG, pages 293–302, 1994.

[8] D. Burdick, P. M. Deshpande, T. S. Jayram,
R. Ramakrishnan, and S. Vaithyanathan. OLAP over
uncertain and imprecise data. In Proc. 31st VLDB,
pages 970–981, 2005.

[9] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient
query processing in geographic web search engines. In
Proc. ACM SIGMOD, pages 277–288, New York, NY,
USA, 2006. ACM.

[10] K. L. Clarkson and K. Varadarajan. Improved
approximation algorithms for geometric set cover. In
Proc. 21st ACM SoCG, pages 135–141, 2005.

[11] W. F. Cody, J. T. Kreulen, V. Krishna, and W. S.
Spangler. The integration of business intelligence and

682

knowledge management. IBM Systems Journal,
41(4):697–713, 2002.

[12] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Diamond in the rough: Finding
hierarchical heavy hitters in multi-dimensional data.
In Proc. ACM SIGMOD, pages 155–166, 2004.

[13] R. Fagin, R. Guha, R. Kumar, J. Novak,
D. Sivakumar, and A. Tomkins. Multi-structural
databases. In Proc. 24th PODS, pages 184–195, 2005.

[14] R. Fagin, P. Kolaitis, R. Kumar, J. Novak,
D. Sivakumar, and A. Tomkins. Efficient
implementation of large-scale multi-structural
databases. In Proc. 31st VLDB, pages 958–969, 2005.

[15] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. JCSS,
66(4):614–656, 2003.

[16] D. Florescu, D. Kossmann, and I. Manolescu.
Integrating keyword search into XML query
processing. Computer Networks, 33(1-6):119–135,
2000.

[17] M. Fontoura, V. Josifovski, E. Shekita, and B. Yang.
Optimizing cursor movement in holistic twig joins. In
Proc. 14th ACM CIKM, pages 784–791, 2005.

[18] M. Fontoura, E. J. Shekita, J. Y. Zien,
S. Rajagopalan, and A. Neumann. High performance
index build algorithms for intranet search engines. In
Proc. 30th VLDB, pages 1158–1169, 2004.

[19] R. J. Fowler, M. Paterson, and S. L. Tanimoto.
Optimal packing and covering in the plane are
NP-complete. IPL, 12(3):133–137, 1981.

[20] H. Garcia-Molina, J. Ullman, and J. Widom. Database
System Implementation. Prentice Hall, 2000.

[21] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. DMKD, 1(1):29–53, 1997.

[22] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Y. Zien. How to
build a WebFountain: An architecture for large-scale
text analytics. IBM Systems Journal, 43(1):64–77,
2004.

[23] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. JASIST, 54(8), 2003.

[24] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational
databases. In Proc. 29th VLDB, pages 850–861, 2003.

[25] H. V. Jagadish, L. S. Lakshmanan, and D. Srivastava.
What can hierarchies do for data warehouses? In
Proc. 25th VLDB, pages 530–541, 1999.

[26] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional
expansion for keyword search on graph databases. In
Proc. 31st VLDB, pages 505–516, 2005.

[27] E. Kandogan, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar semantic
search: A database approach to information retrieval.
In Proc. ACM SIGMOD, pages 790–792, 2006.

[28] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new
benchmark collection for text categorization research.
JMLR, 5:361–397, 2004.

[29] X. Long and T. Suel. Optimized query execution in
large search engines with global page ordering. In
Proc. 29th VLDB, pages 129–140, 2003.

[30] S. Melnik, S. Raghavan, B. Yang, and
H. Garcia-Molina. Building a distributed full-text
index for the web. In Proc. 10th WWW, pages
396–406, 2001.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[32] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. IPM, 31(6), 1995.

[33] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann, 1999.

[34] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest LCAs in XML databases. In Proc.
ACM SIGMOD, pages 537–538, 2005.

[35] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst.
Faceted metadata for image search and browsing. In
Proc. ACM CHI, pages 401–408, 2003.

[36] X. Zhou, J. Gaugaz, W.-T. Balke, and W. Nejdl.
Query relaxation using malleable schemas. In Proc.
ACM SIGMOD, pages 545–556, 2007.

683

