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ABSTRACT
Content Management Systems (CMS) store enterprise data such as
insurance claims, insurance policies, legal documents, patent appli-
cations, or archival data like in the case of digital libraries. Search
over content allows for information retrieval, but does not provide
users with great insight into the data. A more analytical view is
needed through analysis, aggregations, groupings, trends, pivot ta-
bles or charts, and so on. Multidimensional Content eXploration
(MCX) is about effectively analyzing and exploring large amounts
of content by combining keyword search with OLAP-style aggre-
gation, navigation, and reporting. We focus on unstructured data
or generally speaking documents or content with limited metadata,
as it is typically encountered in CMS. We formally present how
CMS content and metadata should be organized in a well-defined
multidimensional structure, so that sophisticated queries can be
expressed and evaluated. The CMS metadata provide traditional
OLAP static dimensions that are combined with dynamic dimen-
sions discovered from the analyzed keyword search result, as well
as measures for document scores based on the link structure be-
tween the documents. In addition, we provide means for multi-
dimensional content exploration through traditional OLAP rollup-
drilldown operations on the static and dynamic dimensions, solu-
tions for multi-cube analysis and dynamic navigation of the con-
tent. We present our prototype, called DBPubs, which stores re-
search publications as documents that can be searched and –most
importantly– analyzed, and explored. Finally, we present experi-
mental results of the efficiency and effectiveness of our approach.

1. INTRODUCTION
Content Management (CM) and OnLine Analytical Processing

(OLAP) are two separate fields in information management. Al-
though both fields study models, concepts, and algorithms for man-
aging large amounts of complex data, they started with very differ-
ent applications as their major technology drivers. CM focuses on
uniform repositories for all types of information, document/record
management and archiving, collaboration, integrated middleware,
etc., while OLAP is driven by financial reporting, marketing, bud-
geting, forecasting, and so on. Consequently, the two different
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fields emphasize very different aspects of information management:
information capturing, storing, retention, and collaboration on the
CM side [33], while data consistency, clear aggregation semantics,
and efficiency on the OLAP side [17].

Various advanced applications that have recently emerged, im-
pose modern user and business needs that require the benefits of
both, CM and OLAP technologies. Digital libraries [21] are be-
coming very rich content repositories containing documents along
with metadata/annotations stored in semistructured data formats.
Intranet data, wikis and blogs [4] represent examples of this trend.
The above examples are just a subset of modern applications, where
the traditional information retrieval techniques –e.g., keyword or
faceted search– are not enough, since advanced analysis and un-
derstanding of the information stored are required. On the other
hand, application areas such as customer support, product and mar-
ket research or health care applications with both structured and
unstructured information, are mission-critical and require both CM
and OLAP functionality, as well.

However, the synchronous application of both techniques is not
straightforward. At first, the user models for CM and OLAP are
dramatically different. In CM (as in information retrieval too), a
user is a human with cognitive capabilities. CM queries are best
effort formulations of a user’s information needs, and support an
interactive process of data exploration, query rephrasing, and guid-
ance towards the final query result. In OLAP, a user is more like an
application programmer using MDX, SQL, XQuery or some API
to access the data. OLAP employs a multidimensional data model
allowing for complex analytical queries that are precise, and pro-
vide exact query results as fast as possible. The OLAP query result
is typically a matrix or pivot table, with OLAP dimensions in rows
and columns, and measures in cells. In summary, CM query pro-
cessing depends on ranking, while OLAP query processing is an
aggregation task based on testing and grouping logical predicates.

Additionally, navigating and dynamically analyzing large amounts
of content effectively is known to be a difficult problem. Keyword
and semantic search help alleviate this problem to some extent by
returning only the top-k relevant documents that contain the search
keywords. While this maybe a satisfactory result for short hit lists
and for information retrieval, it is not acceptable when thousands
of documents qualify for the search keywords and the user is inter-
ested in all of them, i.e., ranking is not effective. The user wants to
understand the entire hitlist, look at the result from many different
angles and different levels of detail. Traditional OLAP techniques
seem to be a desideratum to such a problem, since they have been
known to be effective in analyzing and navigating through large
amounts of structured data. Unfortunately, unstructured data does
not lend itself well to traditional OLAP style analysis.

In this paper, we introduce a novel framework for multidimen-
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Figure 1: Keyword Query: “xml”, evolution of discovered topics over years

sional content exploration, MCX. We propose keyword driven OLAP
over both structured and unstructured content to populate static as
well as dynamic dimensions, which allow for roll-up and drill-
down operations based on the content and the link-structure of the
dynamically selected document subset. Analyzing text content and
extracting properties of such dynamic subsets is a challenging prob-
lem. Even more so, since in MCX the system has only a few seconds
to perform the text analysis and the corresponding OLAP aggrega-
tion. Although there is a plethora of work in analyzing text, most
of it is not applicable under the extreme time constraints that we
face. For that reason, we present a novel technique for performing
the core operation of extracting frequent phrases. Our approach
scales extremely well w.r.t to the size of the selected subsets (hit
list.) It is designed so that, as the hit list size increases, the perfor-
mance increases! We demonstrate that such frequent phrases are
the foundations for more elaborate content-based extraction. We
show how to further filter and refine such frequent phrases, by ap-
plying modified well-known techniques (such as relevance boost-
ing and latent-semantic-indexing) to group documents with similar
text together, and even extract representative group descriptions.
Finally MCX incorporates the link-structure among the documents
to extract elaborate measures (like document centrality/importance)
over the dynamically selected subset in order to provide interesting
reports to the user. As a proof of concept, we have implemented
an end-to-end prototype, called DBPubs (see Section 6), which
allows OLAP style analysis –e.g., aggregations, groupings, trend
analysis, and excel-like pivot tables– on top of a CMS containing
a large set of publications from the field of databases and other ad-
jacent areas. Each publication has metadata such as title, authors,
venue, citation links and citation count, year, and so on.

As a motivating example, assume that a user is interested in find-
ing out the various research topics that have been investigated in
the XML domain in the past years, locating each area’s seminal
papers, and finding out the corresponding influential authors. Reg-
ular keyword search using a text index could be used to retrieve
all publications containing the keyword ‘XML’ in the text or meta-
data. However, the query result comprises thousands of papers and
would require extensive browsing and paper reading in order to get
a grip on the subject area. Our approach contributes towards fa-
cilitating such procedure. It uses the navigational and analytical
power of OLAP in synergy with text analysis. Static dimensions
like location, time, venues are combined with dynamic dimensions
based on the publication content like frequent and relevant phrases,
topics, and so on. For the latter, DBPubs analyzes the publications
in the query result. It efficiently extracts the frequent phrases, it
boosts the most relevant phrases (i.e., frequent phrases that appear
proportionally much more often in the result than the full corpus,
like ‘XQuery’), it groups documents with similar relevant phrases

together and it dynamically identifies meaningful group descrip-
tions; e.g., ‘Schema Mapping’ and ‘XPath’ (see Figure 1.) Further-
more, we exploit citations as a link structure to rank the publica-
tions and extract publication importance, and then, by leveraging
the aggregation power of OLAP show, for example, the maximum
importance per topic in the course of time and compare against the
total number of papers and citations (Figure 1.) Hence, the dy-
namic analysis of the query result combined with an OLAP model,
provides the user with the necessary analytical means to slice and
dice the dataspace, discover and understand important trends.

Contributions. In summary, in this paper, we make the follow-
ing contributions:

• We introduce MCX, a novel extensible framework that allows
the non-technical user to get insight (reports, forecasts, trend
analysis) by combining content-based, structure-based and
link-based explorations of large amounts of content reposi-
tories.

• We describe a formal method for mapping CM metadata to a
structure-based multidimensional schema, and, most impor-
tantly, present means for enriching such schema at query-
time with content-based dimensions based on the properties
of the dynamically selected subsets and measures based on
the link structure of the subsets.

• We propose a novel efficient and accurate algorithm for com-
puting the core content-based property frequent phrases on
the dynamically selected subsets.

• We present an implementation of the above and a case study
with DBPubs that demonstrates that our approach builds highly
accurate and useful dynamic OLAP reports, while requiring
negligible human effort in maintaining and expanding it.

Outline. The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 provides a system overview. Sec-
tion 4 addresses modeling issues and challenges. Section 5 explains
the process of extracting content-based and link-based properties
of dynamically selected subsets. Section 6 describes our case study
and experimental evaluation.

2. RELATED WORK
CMSs store vast amounts of content with limited metadata in

document stores. MCX enriches search on the content in CMSs by
providing an analytical view over the content through analysis, ag-
gregations, groupings, trends, pivot tables, and so forth. There is
a significant amount of literature that addresses different aspects
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of MCX, e.g., content management, search, OLAP, and data ware-
housing. Traditionally speaking, from a data perspective, the re-
lated work is about structured or unstructured data, while from a
processing perspective, the related work is about search or ana-
lytical processing. In the future, these four different perspectives
will converge. MCX contributes to this ultimate goal, by addressing
OLAP on unstructured documents. Depending on the particular re-
search perspective, other solutions towards this ultimate goal are
proposed.

Multidimensional Modeling. Principled multidimensional sche-
ma (MD) design has been researched extensively [24, 29, 23, 22].)
Our work is orthogonal to this body of literature, since we are not
interested in automated multidimensional schema design. Instead,
we focus on (a) identifying the appropriate mappings between the
CM and MD that can be used as input to such approaches, and,
most importantly, (b) enriching the MD with content-based and
link-based properties of dynamic subsets.

OLAP. OLAP traditionally focused on large data warehouses of
structured data. We refer to [9] for an overview of the topic. Dy-
namic Data Warehousing is about adding mining and analysis capa-
bilities and deriving new elements to adapt to change (HP Neoview
and IBM Dynamic Warehousing.) Keyword driven analytical pro-
cessing over warehouses of structural data is described in [34]. Our
work extends OLAP by combining content-based, structure-based,
and link-based reporting over text collections.

Search. Search on unstructured data evolved to multifaceted
search [1] that is often deployed at e-commerce web sites. It pro-
vides a keyword-driven way to search and further refine query re-
sults. For example, Endeca’s “MDEX” engine implements guided
navigation that is integrated with search. Similarly, “Autonomy”
performs automatic categorization, hyperlinking, retrieval and pro-
filing of unstructured data, and therefore enables additional search
operations on such data. To the best of our knowledge, multifaceted
search applications provide only count-based information, while
we support advanced OLAP functionality providing more sophisti-
cated measures, like document importance and link-analysis. Un-
like (multifaceted) search, MCX is not limited to navigating in order
to locate a single interesting document; it provides the means for re-
porting, forecasting, trend analysis, and exploration of aggregates.

Content-based Extraction. Automatically extracting content prop-
erties (like frequent phrases, relevant phrases, topics or summaries
and clusters) is very important and has been the focus of a huge
amount of research work. For example, discovering models [7] or
applying linear projection techniques, such as latent semantic in-
dexing (LSI) [12] are commonly used for topic extraction by repre-
senting high dimensional vectors in a low dimensional space. Lo-
cal regions in the lower dimensional space can then be associated
with specific topics. Several well known document clustering tech-
niques [27] have also been investigated. Most of these techniques
suffer from the drawback that one document can only fall in one
cluster. Probabilistic alternatives like pLSI [19] have also been ex-
plored. While pLSI works well in a number of domains, it has not
been found very effective with new documents that differ consid-
erably from the training data. In MCX, it is extremely important
to perform such extraction over dynamically selected subsets ef-
ficiently, since the system has only a few seconds to present the
results to the user. We experimented with a novel technique for
performing the core operation of extracting frequent phrases and
then for completeness, we applied a classic LSI technique to dis-
cover topics.

Research systems. Although our approach per se is more generic,
still, there are several research projects that are related to our pro-
totype, such as (a) DBLife [13], which is a portal for the database
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Figure 2: Overview of MCX

community that focuses on high accuracy extraction and integra-
tion operators; (b) DBLP [11], a website that manages only the
metadata for publications; and also, (c) Faceted DBLP [14], which
provides faceted search on the bibliographic metadata without ana-
lyzing any content, according to our understanding of its use; e.g.,
citation analysis is not taken into consideration. The latter comment
also holds for some other systems like Eventseer [15], and Publish
or Perish [18]. In a different context, BlogScope [4] is a system for
online analysis of streaming text, which focuses on text analytics,
but does not consider multidimensional OLAP processing.

3. SYSTEM OVERVIEW
In this section, we present an overview of our system. We fo-

cus on the end-to-end description of the dataflow in the system
from submitting the keyword query to returning analytical query
results. In the rest of the paper, without loss of generality, we will
frequently refer to examples adapted from the context of DBPubs,
in order to clarify better the concepts introduced. Sections 4 and 5
will fill in the algorithmic details on modeling and query execution,
respectively.

Figure 2 depicts the system overview. The CMS stores the con-
tent in a document store. It also maintains a content model for the
metadata, which includes links between the documents. The meta-
data can be either simple attributes such as document timestamps,
authors, title, and so on, or more sophisticated attributes extracted
from the content, such as vehicle type in a car insurance policy or a
link to the insurance agent who sold the insurance policy. The CMS
maintains an enriched text index that allows for keyword search on
both the content and the metadata.

For obtaining OLAP style functionality, our goal is to create a
multidimensional, MD, schema by using information from the con-
tent and metadata of the documents stored in the CMS. This proce-
dure generates some modeling and operational challenges.

Modeling issues. The upper right of Figure 2 shows a generic
multidimensional schema. For creating it, we interpret the indi-
vidual concepts of the CMS (i.e., document, content, metadata,
and links) as multidimensional entities (i.e., facts, dimensions, and
measures) of this MD. The mapping should be complete –missing
elements are not allowed– and correct –the aggregation results in
the MD should be correct throughout the navigation into the schema.
In doing so, there are several challenges that we have to deal with,
such as the cases of multi-valued attributes and multi-cubes. The
mapping from CMS to MD is formally presented in Section 4.

Operational issues. The user approaches the system by submit-
ting a keyword query. The query language is generic enough and
supports all usual operators (AND, OR, NOT , and so on) used
in modern textual indices. In fact, our approach may support, as
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well, any form of querying such as NLP, taxonomy search, seman-
tic search, and so forth. Our query processing consists of a se-
quence of operations executed each time a query is issued. First,
the text index on the documents in the CMS is probed with the
query keywords to generate a potentially large hit list. Then, the
population of the MD takes place. The metadata of the documents
in the hit list are used for populating the static dimensions, i.e., the
dimensions that can be created a priori having only the knowledge
emanated from the CMS metadata. Analyzing the content of the
documents in the hit list yields to dynamic dimensions in the MD,
e.g., dimensions based on the topics of the documents, the frequent
or relevant phrases, and so on. Hence, query execution involves the
following operations, that are described in detail in Section 5.

Content-based dimension extraction A core property of dynam-
ically selected documents are the frequent phrases in this subset.
Such frequent phrases form the foundation for much more elaborate
property extraction. Since our the system has only a few seconds
to perform any extraction, we provide a novel technique that scales
extremely well w.r.t. the size of the selected subset and actually,
it performs faster as the selected subset size increases. Finally, we
demonstrate how frequent phrases can be used to group documents
with similar text together and even provide meaningful group de-
scriptions by applying techniques such as relevance boosting and
latent-semantic-indexing.

Importance extraction. Ranking of documents is essential in our
design. Our framework allows for different kinds of ranking tech-
niques, either for example, based on the link structure between doc-
uments or relevance from a text index. Ranks are used as measures
in MD, but also for dealing with scalability issues in discovering
dimensions. Such ranks allow us to focus on the important content
and deal with noisy content otherwise.

The keyword query helps users to easily search for content, and
the MD organizes the results to enable OLAP-style navigation and
allows us to use OLAP tools for interactive reporting. We pro-
vide analytical reports built on the dynamic dimensions –clearly,
one may consider more such dimensions than the above– and high-
lighting interesting observations for helping users better understand
the entire query result, before starting the navigation.

4. MULTIDIMENSIONAL DESIGN FOR CON-
TENT

In this section, we formally present the mapping of the content
and the metadata of a CM system to a multidimensional schema
in order to leverage the aggregation power of OLAP. We introduce
design guidelines for such a mapping, and we discuss modeling
challenges. Particularly, we discuss problems and propose solu-
tions for modeling multi-valued dimensions and we provide means
for coherent navigation across several document types.

4.1 Preliminaries
A finite set containing n members is denoted as Ξ = {ξi} =
{ξ1, . . . , ξn}, where ξi is the ith member, i ∈ [1, n], and its cardi-
nality as |Ξ| = n. We denote a total strict order and a partial order
on a set {ξi} as ≺{ξi}� and 4{ξi}<, respectively. In both cases,
the order is considered from the left (min) to the right (max); i.e.,
≺{ξi, ξj}�⇒ξi<ξj and 4{ξi, ξj}<⇒ξi ≤ ξj .

Content Management System. A CMS comprises different types
of documents –e.g., text documents, web pages, e-mails, and so
on– along with their respective sets of metadata. Documents of the
same type share the same set of metadata, while usually different
sets of metadata correspond to multiple types of documents. Each
document type consists of metadata and content. The latter con-
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Figure 3: Mapping of CM concepts to MD

tains a set of terms and phrases, which are, potentially, overlapping
sequences of consecutive terms. Documents may connect with each
other through links that signify a semantic relationship between the
documents. Formally, a CMS is denoted as a set SCM =≺{DT }�
of document typesDT . Each document di is an instance of a docu-
ment type, consists of metadata, links, and content, and is defined
as di =≺Mdi , Ldi , Cdi�. The metadata of a document follow a
structured schema of attributes, both single-valued, a=≺name,val�,
and multi-valued attributes, a∗=≺name,{val}�, and they are de-
fined as Mdi=≺{a}, {a∗}�. The links of a document are incom-
ing, L−, and outgoing, L+, thus: Ldi=≺L−, L+�. The content
of a document comprises a total ordered set of the terms existed in
the document: cdi=≺{ti}�. The content of document type is de-
fined as the content of all the documents of that type, i.e.,C={cdi}.

Multidimensional Schema. A multidimensional schema (MD)
comprises a set of factual schemata, i.e., SMD=≺{Fi}�. A fac-
tual schema or simply, fact, Fi, comprises a set of dimensional
schemata and a set of measures: Fi=≺{DFi

j },{µ
Fi}�. A di-

mensional schema or simply, dimension, Dj , is defined as a to-
tal ordered set containing a name and a poset of levels, i.e., Dj=
≺name,4{li}<�. The dimensions are orthogonal to each other
or equally, there are no functional dependencies among attributes
from distinct dimension schemata. A level is defined as a total or-
dered set of a name and an attribute, i.e., lk=≺name, a�. The
levels in a dimension are functionally dependent on each other. A
measure µ is an instance of an attribute, that contains values of a
numeric data type. The measures are functionally determined by
the levels occurring in the dimension schemata. Also, the measures
can be computed from each other and they are useful as they allow
to perform roll-ups and drill-downs beyond the hierarchies.

4.2 Creating a multidimensional schema for
content

This section formalizes the mapping of a CMS, SCM , to a multi-
dimensional schema, SMD , i.e.,M: SCM → SMD . The following
definition ensures the correctness of the mapping in the sense that
all the information stored in the CMS should be mapped to a multi-
dimensional schema and that the result of any valid aggregation in
the latter schema would be correct.

Definition 1. For each document type DT
l ∈DT of SCM , a fac-

tual schema Fl is created in the multidimensional schema SMD

through the mapping MDT
l
→Fl

that satisfies the following two
properties: (a) completeness w.r.t. coverage, and (b) correctness.

Completeness w.r.t. coverage. This property ensures that all
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[a]

<doc>
<venue>v1</venue>
<title>t1</title>
<author>a1</author>
<author>a2</author>
<citations>3</citations>

</doc>
<doc>

<venue>v1</venue>
<title>t2</title>
<author>a1</author>
<citations>3</citations>

</doc>

[b]
v t a1 a2 cts
v1 t1 1 1 3
v1 t2 1 − 3

[c]

v t a cts
v1 t1 a1 3
v1 t1 a2 3
v1 t2 a1 3

[d]

v t a∗ cts
v1 t1 {a1, a2} 3
v1 t2 {a1} 3

[e]
v t cts
v1 t1 3
v1 t2 3

t aid
t1 1
t1 2
t2 1

aid a
1 a1
2 a2

[f]

Q1: Sum(Citations) group by author
Q2: Sum(Citations) group by title
Q3: Sum(Citations) group by venue

(b) (c) (d) (e)
Q1: 6, 3 6, 3 6, 3 6, 3 (a1,a2)
Q2: 3, 3 6, 3 3, 3 3, 3 (t1,t2)
Q3: 6 9 6 6 (v1)

Figure 4: Design cases for multi-valued dimensions

the elements of the CMS, and therefore, all the information stored
in it, are represented in the multidimensional schema. Each docu-
ment di of a certain document typeDT

l , its corresponding metadata
Mdi , links Ldi , and content Cdi is mapped to the factual schema
Fl, namely the dimensions DFl

j and the measures µFl . Figure 3
pictorially depicts the aforementioned mappings. Formally, the sat-
isfaction of the first property is ensured by the following definition.

Definition 2. The mappingMDT
l
→Fl

is complete w.r.t. cover-
age iff each element of a document di=≺Mdi , Ldi , Cdi� belong-
ing to a document typeDT

l is mapped to a factFl=≺{DFl
j }, {µ

Fl}�
through the following mappings:

• mapping of di to the dimensions (mapping function f ):
fM : Mdi→D

Fl
j , fL: Ldi→D

Fl
j , fC : Cdi→D

Fl
j

• mapping of di to the measures (mapping function g):
gM : Mdi→µ

Fl , gL: Ldi→µ
Fl , gC : Cdi→µ

Fl

A concrete definition of the mapping functions f and g heavily
depends on the application considered each time. However, a set
of generic properties characterize both functions. (For the formal
representation of those properties, we refer the interested reader to
the long version of the paper, which is available upon request.)

Correctness. The second property of the Definition 1 requires
that the aggregates in the MD should be correct whatever slice of
the MD is used to produce them. Traditionally, the multidimen-
sional design deals with single-valued attributes, for which –and
for the respective levels and dimensions as well– the correctness
is ensured by a summarizability condition. However, this does not
hold for multi-valued attributes, as we discuss in section 4.3.

The notion of summarizability was introduced in [30] as a prop-
erty of statistical objects. Later on, it was described in the context
of OLAP [23, 24, 29], first in [25], in a rather informal way, and
then, formally, in [20]. Summarizability refers to whether a simple
aggregate query correctly computes a single-category dimension
instance from another precomputed single-category dimension in-
stance in a particular database instance. In our approach, we adopt
the definition proposed in [25], and therefore, formally, the sat-
isfaction of the summarizability in our context is ensured by the
following definition.

Definition 3. The mappingMDT
l
→Fl

ensures the summarizabil-
ity iff the following conditions are satisfied: (a) disjointness of lev-
els and dimensions, (b) completeness of the information stored in
the dimensions, i.e., all instances exist in each level and are as-
signed to an instance of an upper level, and (c) type compatibility.

The second condition is enforced during the population of the
multidimensional schema. The third condition is taken into consid-
eration during the selection of the measures, that is, it is considered

as a condition in the application of the function g. In the rest, we
elaborate more on the first condition, which so far has been dealt
with by the research community as an implicit restriction of di-
mension models: the mappings between members of two levels are
many-to-one relations. In the next subsection, we discuss this re-
striction, which is very common in CMS, and we propose a method
for dealing with many-to-many mappings among the levels.

4.3 Multi-valued dimensions
In this section, we deal with the correctness problem occurred

by the presence of multi-valued attributes, as they introduce many-
to-many relationships between two levels of a dimension or across
dimensions. We generalize this issue by referring to it as the multi-
valued dimension challenge. Relational-based DW and OLAP sys-
tems avoid such many-to-many relationships, because they compli-
cate the semantics of the returned aggregates due to double cou-
nting and overlapping problems. However, recent proposals (like
[5] for XQuery) already start to depict the complexity of the prob-
lem in the semi-structured world. It’s becoming increasingly more
clear that we need to incorporate cleanly such many-to-many rela-
tionships in the MD design.

Definition 4. A dimension that has levels containing multi-valued
attributes a∗ is called multi-valued dimension and is denoted asD∗j .
Similarly, those levels are called multi-valued levels and are de-
noted as l∗i .

Consider the xml snippet of Figure 4(a), which describes two
documents: {d1, d2}, of the same type, which have been published
in the venue v1 and have 3 citations each. Also, the first one has
two authors: {a1, a2}, while the second has only one author: {a1}.
Thus, there is a many-to-many relationship between titles and au-
thors. The unique document type should be mapped to a fact F .
However, for the design of the dimensions there are four different
candidate design choices that are discussed below.

Case I: Expand the width of the fact table. Create card(l∗) at-
tributes in the fact table F , each one corresponding (through a FK
relationship) to a different dimension. This solution is clearly infea-
sible in the presence of a reasonably high number of unique values
in that level or even worse, in the general case, where the content
of D∗ is dynamically evolving in time. For the example of Figure
4(a), this case practically signifies the creation of one dimension
per different author (see Figure 4(b).)

Case II: Expand the height of the fact table. Essentially, each
F -tuple expands to the number of D∗-tuples that it can join with.
This case is pictorially depicted in Figure 4(c).

Case III: Treat corresponding D∗-tuples as a set inside F . In
that case, each F -tuple corresponds to exactly one D∗-tuple, but in
that case the multi-valued attribute is of type ‘set’(see Figure 4(d).)
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Case IV: Use a bridge table between F andD∗. Finally, another
case is to use a bridge table [22] for relaxing the many-to-many
relationship. In that case, a bridge table intervenes between the in-
volved entities, containing one tuple per each unique pair of values
from both entities (see Figure 4(e).)

Given that the first candidate cannot scale up in the general case,
we examine the other three cases w.r.t. the correctness of the aggre-
gated results. To facilitate the discussion, we consider the example
aggregate queries listed in Figure 4(f). The second case produces
correct results for the multi-valued level, i.e., authors. Still, due
to the violation of the summarizability condition –the property dis-
jointness of levels does not hold– the aggregated results for the up-
per levels are not correct (see 4(f).)

The last two cases produce correct results. The third case has
solved the disjointness problems among the levels with the use of
a set. The aggregated results for the single-valued levels are ob-
viously correct, while the aggregation for the multi-valued level
can be realized at query-time by the appropriate expansion of the
sets. (Modern DBMS’s support table functions, e.g., XMLTABLE,
which return a table from the evaluation of XQuery expressions
[5]; after the expansion, the groupings are realized as usual.) In
the last case, the use of a bridge table converts the many-to-many
relationship between a single-valued and a multi-valued level, e.g.,
titles and authors, into a many-to-one relationship; in the exam-
ple of Figure 4(e), between the bridge table and the authors table
a many-to-one relationship exists. In our implementation, we fol-
lowed the last approach, since the expansion of multi-valued sets
does not perform well for the amount of data that we are dealing
with.

4.4 Multi-cubes
According to Definition 1, each document type is mapped to a

factual schema. At a later stage, the final multidimensional schema
corresponding to the CMS, probably, would contain more than one
factual schema. Our modeling framework scales up to the calcu-
lation of aggregates through different document types represented
as different facts. For example, assume that the CMS contains
two different document types representing publications and web
homepages of the authors, respectively. Following our modeling
approach, two facts would exist in the multidimensional schema :
FPUBS and FHOMEP. The two schemas may share a number of com-
mon dimensions; e.g., the one about authors, DAUTHOR (see Figure
5b.) In order to create calculated measures on top of those facts
and/or to answer queries by combining information from more than
one fact, we need a virtual fact defined on top of the existing facts
based on the dimensions they share.

For this kind of modeling, we adopt the terminology of [31] and
we refer to that virtual fact schema as a ‘multi-cube’ and to the
columns used to join the original fact tables as the ‘join dimen-
sions’. The construction of multi-cubes is pictorially depicted in
Figure 5(a) and is formally defined by the following definition.

Definition 5. Assume the existence of k factual schemata Fi =
≺{DFi

j }, {µ
Fi}�, i∈[1, k] that share l dimensions. These dimen-

sions are called join dimensions and are represented asD1
j , j∈[1, l].

A multi-cube Fm =≺{DF
m

j }, {µF
m

}� is defined on top of the
k facts as a view that joins the k facts on their join dimensions
s.t. {DF

m

j } =4{DF
1

j }, ..., {DF
k

j }< and {µF
m

} =≺{µF
1
}, ...,

{µF
k

}, {µnew}�, where µnew is a measure calculated from a com-
bination of measures from the k facts constituting the multi-cube.

Notice that a certain record in an instance of a multi-cube may
contain values other than ‘null’ only in the join dimensions. Dur-
ing the navigation of a multi-cube, other dimensions beyond the
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Figure 5: Multi-cubes’ design

join dimensions can be used as well. However, in each navigation
only the join dimensions and the dimensions of one fact can be
used synchronously. In the example of Figure 5(b), when we navi-
gate through the FHOMEP, it is possible to get values from measures
defined on (a) the dimensionDAFFIL, e.g., the number of affiliations
related with a certain homepage, and (b) the FPUBS through the join
dimension DAUTHORS, e.g., the number of papers (co-)authored by
the author having that homepage. However, we cannot get any val-
ues w.r.t. the DTIME, e.g., the number of papers broken-down by
year. In the latter case, null values are returned instead.

5. DYNAMIC CONTENT-BASED EXTRAC-
TION

Having discussed the mapping of CMS to MD, we elaborate on
its population and enrichment by dimensions with content-based
extracted properties of the query subset. In particular, MCX executes
queries by primarily accessing the text index on the documents in
the CMS. The text index is probed with the keyword query, and
the corresponding documents are returned as “hits”. A fundamen-
tal extracted property is the set of frequent phrases in the hit list.
Such phrases provide the foundation for extracting more elaborate
dimensions. With that in mind, we show how to filter the most
“relevant” phrase dimension and finally, combine term/phrase syn-
onymy and document importance in order to group together doc-
uments with similar text and extract representative labels for the
groups. In MCX we deal with extreme time constraints since the
system has only a few seconds to perform any extraction from po-
tentially very large hit lists. Hence, we propose a novel and efficient
algorithm for discovering the core frequent phrase dimension.

5.1 Globally Frequent Phrases
The frequent phrases that consist of two to five words that ap-

pear in more the τ = 5 documents in the corpus are denoted as
globally frequent phrases. For example, globally frequent phrases
in DBPubs are “data mining”, “query optimization”, “data integra-
tion”, and so on. Intuitively, when authors write about something,
they usually repeat the subject-related keywords to keep the atten-
tion of the readers. When the same phrases are repeated a lot in
different documents, then it is a strong indication that the phrases
describe an interesting subject in the entire corpus. We empha-
size that we use the latter definition (distinct document-frequency)
as the frequency of a phrase. In other words, globally frequent
phrases capture interesting information about the corpus and com-
plement the single term information that is typically kept in the text
index. The threshold τ is used in order to filter “noise” phrases that
just happen to appear in a small number of documents.

We “enrich” the text index with posting lists for globally fre-
quent phrases in a preprocessing step, using a sliding window over
the document content, in order to generate the phrases, and lossy-
counting [26] to discover the phrases with frequency above τ . These
posting lists enable the efficient discovery of dynamic frequent phrases
as described below.
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Figure 6: Frequent Phrase/Term Discovery Overview

5.2 Dynamic Frequent Phrases/Terms
Dynamic frequent phrases are the globally frequent phrases that

appear frequently in the documents of the hit list. One way of
discovering the top-k dynamic frequent phrases/terms is to inter-
sect the hit list with each individual phrase/term posting list in
the text index. We maintain a priority queue of the top-k most
frequent phrases/terms in the process. When all the posting lists
have been processed, the queue contains the top-k most frequent
phrases/terms for the query. Finally, we create a multi-valued di-
mension for each document in the hit list by associating it with all
the discovered frequent phrases that it contains.

5.2.1 Pruning Methods
Although the above idea is simple, it does not scale well to post-

ing and hit lists with millions of documents. In order to minimize
the processing required, we deploy two novel pruning methods:
early-out and approximate intersections.

Early-out. We process the posting lists in descending order of
their length [32]. As the algorithm progresses, and we find a post-
ing list with a length less than the current minimum intersection
size in the queue, then it is certain that the rest of the posting lists
cannot make it into the queue, and we can stop the processing.

Approximate intersections. The exact intersection of the full
hit listH with a posting list P requiresO(|H|+ |P |) comparisons.
We propose a novel technique (see section 5.2.3), that provides ac-
curate estimates for the intersection size by performing a small and
bounded number of comparisons. The technique provides perfor-
mance improvements by orders of magnitude as hit and posting
lists contain millions of documents.

5.2.2 Description of the DFP Algorithm
In Algorithm 1, given the hit list H for a keyword query, the

sorted posting lists P for the phrases/terms from the text index and
the number k, we efficiently find the top-k frequent phrases/terms
for the documents in the hit list.

The effects of early-out and approximate intersections are de-
picted graphically in Figure 6. Notice, that both methods nicely
complement each other. On the vertical dimension, early-out bounds
the total number of posting list intersections that are performed,
while on the horizontal dimension, approximate intersections limit
the number of individual comparisons between the hit list and the
current posting list.

5.2.3 Approximate Intersections (AI)
We describe a technique to efficiently discover frequent phrases

by approximately intersecting posting lists. By estimating the inter-
section size in line 10 of Algorithm 1, we get a huge performance
benefit without sacrificing the quality of the returned top-k results.

Algorithm 1 Dynamic Frequent Phrase Discovery (DFP)
1: P : Posting lists sorted by descending order of length
2: H: Hit list
3: k: number of frequent phrases/terms
4:
5: queue: priority queue of 〈phrase,count〉
6: for i = 0 to |P | do
7: if |P [i]| < minimum count in queue then
8: break // early-out (section 5.2.1)
9: end if

10: count← P [i] ∩H // approximate intersections (section 5.2.3)
11: insert 〈P [i]phrase, count〉 in queue
12: if queue contains more than k items then
13: pop entry with smallest count from queue
14: end if
15: end for
16: find the document ids in H for each frequent phrase/term in queue

Algorithm 2 Posting List Randomization
1: L: Posting list to randomize
2: h: hash function into (0, 1) domain
3:
4: for i = 0 to |L| do
5: L[i]← h(L[i])
6: end for
7: sort L in increasing order

The idea behind the estimation is to “randomize” all the posting
lists using Algorithm 2, which hashes each document id into a ran-
dom number in the (0, 1) domain, and then sorts the hashed values
in increasing order. We can exploit certain properties of the hashed
values to estimate the union and intersection size very efficiently.
We apply Algorithm 2 to randomize all the posting lists in the text
index as a preprocessing step. At query time, we use the same al-
gorithm to randomize the hit list, and then we use Algorithm 3 to
estimate the intersection size in line 10 in Algorithm 1.

The approximate intersection Algorithm 3 takes as input two ran-
domized posting lists P1, P2, the maximum number M of compar-
isons and the maximum number I of common points. The algo-
rithm returns an accurate estimate of the intersection size |P1∩P2|.
The operation of the algorithm is illustrated in Figure 7. We per-
form a “zipper” algorithm to intersect the posting lists (lines 8-35).
Initially the indexes c1 and c2 point to the beginning of the ran-
domized posting lists. We compare the pointed at values, and we
forward the pointer that points to the smaller value. The nI counter
maintains the common points found while zipping the two posting
lists together. This would be a classic zipper algorithm, but we
introduce two novel optimizations:

1. we skip uniformly over the randomized posting lists (lines 21
and 28), and

2. we stop after M comparisons (line 10) or after we’ve found
I common points (line 18.)

The intuition behind the two optimizations is, that the hashed
values in the randomized posting lists resemble closely uniform
points in the (0, 1) domain. We call gap1 (and gap2) the average
distance between two consecutive values in P1 (and P2 ). Notice,
that the expected distance between two consecutive points in P1 is
gap1 = P1[|P1| − 1]/|P1| due to the uniformity of the points.

A classic zipper algorithm visits all the points in P1 and P2.
However, in our case, we can exploit the uniformity of the points
by skipping in a principled way over comparisons that can never
be true. As an example, let’s consider the first comparison that the
zipper algorithm performs between values P1[0] and P2[0] in Fig-
ure 7. We see, that P2[0] is greater than P1[0] and therefore we
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must increase the index on the P1 list. We can use the distance
(P2[0] − P1[0]) as an indicator for the position where the corre-
sponding point (if any) on P1 can be. More precisely, since the
points resemble uniform random points, we uniformly skip (P2[0]−
P1[0])/gap1 points on P1. Similar skipping can occur on P2. Since
the hash function is not perfect and the hash values are not exactly
equi-distributed in the (0, 1) domain, it is possible that the skipping
may “overshoot”. If overshooting happens, then we abort the skip
and increase the corresponding index by one. This case is handled
in lines 22 and 29 in Algorithm 3. One can observe, that uniform
skipping is very effective, when posting lists of very different sizes
are intersected as wide skips happen over the large posting list. On
the other hand, when posting lists of similar sizes are intersected,
more frequent overshooting happens, which can effect in a negative
way the performance of the algorithm. Thus, we propose to disable
the uniform skipping, when the posting lists have about the same
size.

Figure 7 shows that the pattern of comparisons is normal and
repetitive (due to the uniformity of the hashed values). We avoid
doing comparisons all the way to the end of the posting list, and
we stop as soon as we’ve performed M comparisons in total or
we’ve found I common points. Typically, M is chosen to be much
smaller than |P1| + |P2|. It is important to mention that M is ac-
tually independent of the actual posting list sizes (which could be
many million points in practice) and that the values of M and I
provide a strict confidence interval. M bounds the absolute error,
while I bounds the relative error. We leave the details of the ex-
act confidence interval computation as a future work, but most of
the results in [6] apply in this domain too. We must emphasize,
however, that our technique and our assumptions are very differ-
ent from KMV-synopses[6]. We are not interested in producing
small set-synopses for performing generic set operations. Instead,
we maintain the full set and optimize the number of comparisons
required to compute only the intersection size. However, both, our
approach and the KMV-synopses, share the same randomization
idea and the methodology/proofs developed in [6] can still be ap-
plied for our technique.

Since we are not performing all the comparisons (but at most
M ), we apply the formula in line 39 to estimate the actual in-
tersection size based on only these observations. We can show,
that this formula is a tight estimator for the intersection (for space
consideration, the details can be found in [6]). The intuition how-
ever is, that (a) the quantity c1 + c2 − nI maintains the number
of distinct points in the union of P1 and P2 that we have seen
at any given moment, and c1+c2−nI−1

max{P1[c1],P2[c2]} is an estimator for
|P1 ∪ P2|. (b) The quantity nI

c1+c2−nI
is an estimator of the Jac-

card Distance J = |P1∩P2|
|P1∪P2|

. By multiplying the Jaccard Distance
estimator with the union estimator, we get the estimator for the in-
tersection (|P1 ∩ P2|).

With the early-out and the approximate intersection optimiza-
tion, we can intersect huge posting lists by performing a very small
number of comparisons. In our implementation, we use a simple

Algorithm 3 Approximate Intersections
1: P1: first randomized posting list
2: P2: second randomized posting list
3: M : maximum number of comparisons
4:
5: nM ← 0; nI ← 0
6: c1 ← 0; c2 ← 0
7: gap1 ← P1[|P1| − 1]/|P1|; gap2 ← P2[|P2| − 1]/|P2|
8: while c1 < |P1| and c2 < |P2| do
9: nM ← nM + 1

10: if nM >= M then
11: break
12: end if
13: if P1[c1] = P2[c2] then
14: c1 ← c1 + 1
15: c2 ← c2 + 1
16: nI ← nI + 1
17: if nI >= I then
18: break
19: end if
20: else if P1[c1] < P2[c2] then
21: c′1 ← c1 + (P2[c2]− P1[c1])/gap1 // attempt uniform skipping
22: if P1[c

′
1] <= P2[c2] then

23: c1 ← c′1 // successful skipping
24: else
25: c1 ← c1 + 1 // unsuccessful skipping
26: end if
27: else
28: c′2 ← c2 + (P1[c1]− P2[c2])/gap2 // attempt uniform skipping
29: if P2[c

′
2] <= P1[c1] then

30: c2 ← c′2 // successful skipping
31: else
32: c2 ← c2 + 1 // unsuccessful skipping
33: end if
34: end if
35: end while
36: if c1 = |P1| or c2 = |P2| then
37: apIntersect= nI
38: else if nI > 0 then
39: apIntersect= ( nI

c1+c2−nI )(
c1+c2−nI−1

max{P1[c1],P2[c2]} )

40: else
41: apIntersect= 0
42: end if
43: return apIntersect

linear hash function to randomize the posting lists.

5.3 Relevant Phrases/Terms
Although dynamic frequent phrases describe sufficiently the con-

tent of the hit list, in practice they still contain a large list of stop-
word combinations and uninteresting phrases. In order to remove
such noise, we define relevant phrases and we propose a technique
that attempts to weight appropriately the relevant phrases from the
irrelevant phrases.

A relevant phrase is defined as a frequent phrase in the hit list
that appears disproportionally more often in the hit list w.r.t to the
full corpus. For example, consider the query “Jim Gray”. Phrases
like Gray’s email address, affiliation, address, “isolation level” and
“transactional consistency” appear much more often in the hit list
w.r.t. to the full corpus and identify the content of hit list much
better and concisely than the frequent phrases. On the other hand,
phrases like “database performance” appear equally often in the hit
list as they do in the full corpus and is denoted an irrelevant phrase.
Relevant phrases describe the hit list in a much more concise and
exact way than frequent phrases do. Irrelevant phrases on the other
hand offer almost no hit list specific information, since they cannot
discriminate among the hit list and the full corpus.

Algorithm 4 summarizes the process of discovering the relevant
phrases/terms for each document in our hit list. It’s input is the top-
k frequent phrases previously discovered, the size |H| of the hit
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list, the total number nDocs in our corpus and the number l (< k)
of most relevant phrases that we want to compute. The algorithm
processes all the dynamic frequent phrases that we discovered with
Algorithm 1 and computes a relevance score using the formula in
line 10. This formula boosts phrases/terms, that are infrequent
in the full corpus but frequent in our hitlist, a similar intuition to
TF·IDF. Algorithm 4 is very efficient since it only has to process
the top-k (typically a few thousand) frequent phrases discovered in
Section 5.2, and is independent of the size of the corpus.

Once the top-l relevant phrases have been discovered, we create
another multi-valued dimension by associating each document in
the hit list with all the discovered relevant phrases that it contains
(line 16).

Algorithm 4 Dynamic Relevant Phrases/Terms
1: Freq: Dynamic Frequent Phrases/Terms from Algorithm 1
2: H: Hit list
3: nDocs: total number of documents in the corpus
4: l: number of relevant phrases/terms
5:
6: queue: priority queue of 〈phrase,relevance〉
7: for each phrase in Freq do
8: phrasef ← frequency of phrase in Freq
9: phrasepost ← posting list length of phrase

10: relevance← log(phrasef )(log(|H|)+1)

(log(phrasepost)+1) log(nDocs)

11: insert 〈phrase,relevance〉 in queue
12: if queue has more than l items then
13: pop item from queue with the smallest relevance
14: end if
15: end for
16: find the document ids in H for each relevant phrase/term in queue

5.4 Importance extraction & Topics Discovery
We further filter and enhance the list of relevant phrases by (a)

taking document importance into account and (b) analyzing the oc-
currences of relevant phrases in the important documents.

Document ranking is extremely important since it helps separate
the really important documents from noise documents. An effec-
tive way of statically ranking documents that have link information
is PageRank [8]. Similarly for dynamically selected documents a
better algorithm for ranking is ObjectRank [3]. Such algorithms
essentially compute a measure of “centrality” of a document, i.e.,
how easy it is to reach that document by following a small number
of links from other documents. For example, in DBPubs, rank-
ing based on citations returns the most cited (seminal) papers. In
MCX, we can incorporate directly such measures as OLAP measures
(called importance in the Figures), in order to compute interesting
aggregations. In addition to that we can also use the most important
papers to further filter the relevant phrases.

Our approach is inspired by Latent Semantic Indexing (LSI [12]),
which is a technique in natural language processing for analyzing
relationships between a set of documents and the terms that they
contain by producing a set of topics related to the documents and
terms. LSI uses a sparse term-document matrix, which describes
the occurrences of terms in documents. For the weighting of the
elements of the matrix we used the typical TF·IDF score.

In our case, we construct a relevant phrase-document matrix us-
ing the relevant phrases we discover using Algorithm 4. A full
relevant phrase-document matrix however, is presumed too large
for our computing resources and our interactive navigation require-
ments. We only take the top-l (typically 100) relevant phrases and
the top-m (typically 400) ranked documents into account while
constructing the (sparse) occurrence matrix.

After the construction of the occurrence matrix, we find a low-
rank approximation to the relevant phrase-document matrix using
Singular Value Decomposition (SVD) [16] in the spirit of LSI.

In our implementation, we use the top-fifteen most important
eigenvalues of the SVD, which conceptually return an approximate
occurrence matrix for the top-fifteen most important topics in the
ranked hit list. Each topic is associated with both documents and
relevant phrases/terms. For each such topic, we pick the relevant
phrase with the biggest cosine similarity with the documents in that
concept as a representative topic description.

Once the representative topic descriptions have been discovered,
we create another multi-valued dimension by associating each do-
cument in the hit list with all the topic descriptions, that the docu-
ments contain.

5.5 Hierarchical Dynamic Dimensions
So far, the discovered dimensions have been flat (single-level)

dimensions. In this section, we describe how the exact same algo-
rithms are re-used to create hierarchical dynamic dimensions. The
idea is to create lower levels in the hierarchy for each one level
that we’ve already computed, until the levels correspond to a small
number of documents (in our implementation fifteen documents.)
For example, consider the documents corresponding to the topic
with description “Schema Mapping”, which we discovered given
the keyword query “xml”. We can apply the previously introduced
algorithms to discover frequent phrases, relevant phrases, and top-
ics for the documents in this concept, and start creating sub-levels
for “Schema Mapping”. Although we apply the same algorithms
for all discovered topics, we do not compute those levels immedi-
ately for performance reasons. Only as the user drills down, we
trigger the population of the appropriate dynamic dimensions.

6. EVALUATION
We have conducted a case study by applying the MCX framework

to build DBPubs, a system that allows the dynamic analysis and
exploration of research publications. We first present our prototype
system DBPubs, while in section 6.2, we experimentally evaluate
the efficiency and effectiveness of our approach.

6.1 DBPubs - Case Study
DBPubs currently stores the content of approximately 30,000

publications from major venues (e.g., SIGMOD, VLDB, TODS,
VLDB J., SIGIR, PODS, STOC) in the field of databases and other
adjacent areas. The publications are gathered from the Sigmod An-
thology Collection as well as downloaded from the Web. DBPubs
also contains the associated metadata from the DBLP entries [11],
matching citations from CiteSeer [10], and geographical informa-
tion from the Mondial database [28] (see Figure 8). We com-
pleted the citations taken from Citeseer by extracting citations from
the publication content [2]. This way, we collected approximately
210,000 citations. We converted the PDF files to text, and created a
Lucene text index on both the text and some metadata fields such as
title, authors, venue, year, location of the conference, and so forth.

As described in Section 5.4, we used the citations as a link struc-
ture and defined the importance of a publication as its computed
static page rank [8]. (Self-citations were not considered.) Also, we
consider importance of a publications w.r.t. the query issued as its
computed dynamic rank using ObjectRank [3].

The system uses the open-source OLAP server Mondrian1 run-
ning in Tomcat as a webapp. Mondrian uses the JPivot1 framework
that renders OLAP tables and charts for interactive reporting. In

1http://mondrian.pentaho.org/ and http://sourceforge.net/projects/jpivot
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Mondrian, the MD schema is described as an XML file and com-
prises multi-cubes, facts, and dimensions. In our case, this file –i.e.,
the MD– is created on-the-fly once a new keyword query issued.

Figure 8 shows the query interface for the end user. The user can
submit a keyword query having several options; e.g., fielded search
on the metadata, range queries, and so on. As described in Section
4, the metadata of the publications populate static dimensions in the
MD, and also measures such as count of citations and importance
based on static page rank. As described in Section 5, the publica-
tions in the hit list are dynamically analyzed for frequent phrases,
relevant phrases, and topics. The results are populated as dynamic
dimensions in the MD. Apart from the traditional, frequently-used,
count-based measures, we also offer analytical opportunities based
on dynamically created measures such as importance –based on
dynamic ranking– of authors and papers per keyword query or sev-
eral citation measures like H-index, impact factor, and so on. Fi-
nally, our prototype, offers visualization of the results in a graphical
view and exploits location information –e.g., conference venues,
affiliations– to annotate appropriately a geographic map.

Consider as an example the query: +venue:"sigmod" +year:1997.
The system pinpoints that the SIGMOD 1997 paper by J. Heller-
stein, P. Haas, and H. Wang on Online Aggregation, which received
the 2007 SIGMOD test of time award, was the highest ranked pa-
per. As another example, the system shows, besides many other
features, that “Web Browsers”, “Document Stores”, “OLAP Data
Cube”, “Data Mining”, and “Index and Retrieval” where the top 5
most important topics in 1997.

More information about DBPubs can be found in [2].

6.2 Experiments
We present our extensive performance and qualitative evaluation

of the MCX framework using DBPubs as a testbed.

6.2.1 Efficiency
This section provides a comprehensive performance evaluation

of our system. We used a set of twenty keyword queries depicted
below, with hit lists varying from 3% to 75% of the corpus.

keyword query hits keyword query hits keyword query hits
OLAP 810 optimization 7459 management 13987
Garcia Molina 1650 architecture 7824 design 14592
Stonebraker 1867 framework 9073 model 17279
XML 2523 network 10073 research 19964
semantic 5730 query 12025 system 20683
schema mapping 6649 implementation 12388 data 21759
service 7107 database 13882

Figure 9 presents how the hit list size affects the response time

in the various system components. More specifically, Figure 9(a)
depicts the Dynamic Frequent Phrase Discovery (DFP) algorithm,
that we described in Section 5.2 for discovering top-k frequent
phrases for various k values. We compare it to the Lossy Cou-
nting (LC) algorithm [26], which has been shown to perform very
well in streaming environments for discovering frequent itemsets
accurately. The x-axis shows the hit list size, and the y-axis depicts
µs response time in log scale. We see that both approaches scale
well with respect to the #hits, however DFP is many orders of mag-
nitude faster. We also observe that DFP is affected very slightly by
the parameter k. For that reason, we pick k = 1000, for the study
of the behavior of DFP in the next subsection. LC is not affected at
all by k, since it has to keep all frequent phrases above a minimum
support always in memory, regardless of the requested top-k. For
this experiment, we used M = 64 and uniform skipping for DFP.

Figure 9(b) shows how the performance of the topic discovery
algorithm is affected by the #hits and for various values of the pa-
rameter m (since we use the top-m important publications based
on topic discovery.) We experimented with two methods for eval-
uating the importance (see section 6.1): the static and the dynamic
ranking. In the first case, the topic discovery takes almost constant
time and it is independent ofm, since all publications are ordered a
priori by page rank. In the latter case, the topic discovery scales al-
most linearly with the #hits, although we are using only the top-m
documents. The reason is that we have to order on-the-fly the full
hit list by the ObjectRank value, and then apply the topic discovery.
The small discrepancy in the performance for large hit lists has to
do with the query plan our OLAP engine chose for the query.

In Figure 9(c), we demonstrate how the system response time
is broken down into the various components. The x-axis shows
the #hits, and the y-axis shows the total response time in secs.
We denote as ‘Frequent Phrases’, the time the DFP algorithm re-
quires to extract the top-1000 frequent phrases (with M=64 and
uniform skipping), ‘Relevant Phrases’, the time we require to boost
the scores for the frequent phrases that appear a lot in the hit list
but not in the full corpus, ‘Topics’, the time for the topic-discovery
(here we used the top-m = 100 most important publications based
on dynamic ranking), and finally ‘Total Time’ for the total time
spent. ‘Frequent Phrases’ scales extremely well w.r.t to the #hits (as
explained below, the early-out kicks in sooner for larger hit lists.)
The time for ‘Relevant phrases’ is constant and very small, since it
takes one pass over the top-1000 frequent phrases. ‘Topics’ scales
as explained in Figure 9(b) and becomes the dominant factor for the
‘Total Time’ due to the ranking technique used. However, this de-
lay is not an inherent problem of our technique, rather it is a bottle-
neck imposed by ObjectRank. The execution time is significantly
improved when the static rank is considered instead. But even in
the worst case of dynamic ranking, the ‘Total Time’ seems to be rel-
ative stable, due to the fact that as #hits increases the time needed
for ‘Frequent Phrases’ decreases and balances the delay of ‘Top-
ics’. Experimentation with an improved version of ObjectRank or
other suitable algorithm is an interesting future challenge for dy-
namic ranking. Finally, ‘Total Time’ does not consider the time
needed by the text index, since it is negligible.

In Figure 10, we analyze in detail the behavior of the DFP al-
gorithm for discovering the top-1000 most frequent phrases. More
precisely, in Figure 10(a) we depict on the y-axis in log scale, the
depth until the early-out optimization kicks in w.r.t the #hits on
the x-axis in linear scale. We point out, that for all values of M ,
the early-out optimization kicks in sooner as the #hits increases.
The reason is, that as the hit list becomes larger, the distribution
of the frequencies of the phrases in the hit list, matches closer the
distribution of the global frequent phrases. The latter is already
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Figure 10: DFP Performance Analysis for top-1000

precomputed, and therefore it takes very few posting lists intersec-
tions, before the top-1000 list is computed. We observe, that theM
parameter affects only slightly the early-out depth, because of ap-
proximation errors on the intersection size estimates might trigger
the early-out either sooner or later. In Section 6.2.2, we discuss in
detail the quality of the frequent phrases that we discover.

In Figure 10(b), we show on the y-axis (log scale) the total #com-
parisons that it takes for DFP with uniform skipping to return the
top-1000 most frequent phrases for varying #hits (on the x-axis, log
scale) and M values. It is surprising, at first glance, that the perfor-
mance of DFP gets better as the hit list gets bigger, and that’s true
for all M values depicted. The reason has to do with the early-out
optimization that is being triggered much sooner for large hit lists,
as depicted in Figure 10(a).

Finally, Figure 10(c) depicts the effect of uniform skipping in the
performance of DFP. The x-axis shows the #hits, and the y-axis (log
scale) the total #comparisons required for discovering the top-1000
most frequent phrases. We observe, that uniform skipping helps a
lot (requiring about half the total #iterations without skipping) for
relatively small hit lists, but actually hurts for large hit lists. As
explained in Section 5, uniform skipping helps, when a small post-
ing list is intersected with a large one, because it jumps over large
gaps on the large posting lists, avoiding comparisons with points,
that are most probably useless. However, when the posting lists to
be intersected have about the same size, then the uniform skipping
overshoots quite often, resulting in extra comparisons. This obser-
vation leads us to check the sizes of the postings lists in the DFP
and avoid uniform skipping, if those sizes are about the same.

6.2.2 Effectiveness
In this section, we describe the quality of the returned results. It

is challenging to provide a qualitative evaluation of the end results
of a system that incorporates an inherently imprecise keyword-
based system. It is even more difficult in MCX, since we are dealing
with the content of the full hit list. For the dynamic dimensions, we
depict how the approximate nature of DFP affects the quality of the

recall of the top-k returned frequent phrases. For the topic descrip-
tions, we show actual results from DBPubs for keyword queries
and publications that the database community is familiar with.

In Figure 11(a), we depict the average recall of the DFP algo-
rithm with M = 64 and uniform skipping for various top-k most
frequent phrases for the testset of twenty queries. More precisely,
we use as a baseline the exact top-k frequent phrases, and then we
depict the recall on the bar titled “top-k”, i.e. how many of those
phrases, DFP managed to find. We notice for example, that for
k = 100, DFP found 95% of all the correct top-k values. Further
analysis of the missing phrases revealed, that the tail of the discov-
ered frequent phrases had pretty similar frequencies. Since DFP is
an approximate algorithm, the estimated frequencies trigger some
frequent phrases in the tail to make it into the top-k, and others not.
However, the higher ranked frequent phrases were always there.
We show this effect in Figure 11(a) with the bar called “top-0.9k”.
This bar demonstrates what happens, if we ignore a small part of
the tail in the top-k returned phrases. For example, if we use DFP
with k = 100, we see all the top-90 phrases in the result.

Figure 11(b) shows representative sample results from the opera-
tion of our system. We picked two representative keyword queries:
xml and OLAP. We depicted the discovered topics in the corre-
sponding “Topics for” column. In the “Hits” columns, we show
the number of documents with that topic description. We remind,
that a document may be assigned many different topic descriptions.
The “Imp” column depicts an importance measure for the corre-
sponding group of documents. In this example, we computed the
importance of a topic as the maximum importance –based on static
page rank– among the papers belonging to that group. So, if for ex-
ample we roll-up in the topic dimension, the “Imp” for ‘xml’ will
be 69.09 and for ‘OLAP’ 87.18. If we drill-down to a certain topic,
e.g., ‘Path Index’, one or more papers will have “Imp” equals to
60.9, while the others will have lower values. Different aggregate
functions can be applied as well; e.g., sum, avg, and min.
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7. SUMMARY AND FUTURE WORK
In this paper, we introduce our general framework MCX for ef-

fectively analyzing and exploring large amounts of content with
limited metadata by combining keyword search with OLAP-style
aggregation, navigation, and reporting. We formally describe the
organization of the CMS content and metadata in a multidimen-
sional structure, and present our novel algorithms for efficiently
discovering and populating the dynamic dimensions. We introduce
our case study DBPubs, that implements our approach to dynami-
cally analyze and explore database publications.

Currently, DBPubs [2] is a working system available to the CS
group at IBM’s Almaden Research Center. During its operation,
we have gathered several fruitful comments and feedback from our
colleagues and due to them our system has been improved a lot.
Our on-going research involves different ranking schemes for dif-
ferent application domains such as patent data and email archives.
For future work, we plan to investigate techniques for visually ex-
ploring large amounts of data and sharing interesting highlights in
slices and dices of the multidimensional dataspace.
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