Implementation of SQL3 Structured Types with
Inheritance and Value Substitutability

You-Chin (Gene) Fuh, Stefan Dessloch, Weidong Chen? Nelson Mattos, Brian Tran
Bruce Lindsay', Linda DeMichiel?, Serge Rielau®, Danko Mannhaupt

IBM Santa Teresa Laboratory, 'IBM Almaden Research Center
2Sun Microsystems, 3IBM Toronto Laboratory

Abstract

SQL3 has introduced structured types with
methods and inheritance through value sub-
stitutability. A column of a structured type
in a relation may contain values of the struc-
tured type as well as values of its subtypes.
Integrating structured types with the existing
database engine raises some interesting chal-
lenges. This paper presents the DB2 approach
to enhance the IBM DB2 Universal Database
(UDB) with SQL3 structured types and in-
heritance. It has several distinctive features.
First, values of structured types are repre-
sented in a self-descriptive manner and ma-
nipulated only through system generated ob-
server/mutator methods, minimizing the im-
pact on the low level storage manager. Sec-
ond, the value-based semantics of mutators
is implemented efficiently through a compile-
time copy avoidance algorithm. Third, values
of structured types are stored inline or out-
of-line dynamically. This combines the us-
ability and flexibility with the performance of
inline storage. Experimental results demon-
strate that the DB2 approach is more efficient
in query execution compared to alternative
implementations of structured types.

Tontact author: Weidong Chen, IBM Santa Teresa Labora-
tory, 555 Bailey Ave, Room C347, San Jose, CA 95141. Email:
cwd@Qus.ibm.com. On sabbatical leave from Southern Methodist
University.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

565

1 Introduction

The relational model [3] has revolutionized the infor-
mation system world by providing a simple, high-level
data model and a declarative query interface. The
value-based, declarative nature of the relational model
offers high level data independence where the physical
organization of the data, including storage and index
structures, is separated from the logical schema (or ta-
bles) of the data. This has led to modern relational
database systems with expressive SQL queries, sophis-
ticated query optimization and execution strategies.

Emerging database applications require scalable
management of large quantities of new and complex
data together with traditional business data and flex-
ible and efficient querying capabilities for business
intelligence. To meet the market demands, object-
relational databases have evolved and incorporated
various “object” features into the relational database
technology, such as user-defined structured types,
methods and inheritance [7]. These concepts have
been included in the SQL3 standard [6].

A structured type in SQL3 consists of a name, a
set of attributes, and a set of methods. Attributes
of a structured type are accessed and mutated only
through system generated observer and mutator meth-
ods. Structured types can be nested and one struc-
tured type may be a subtype of another. Inheritance is
achieved through a principle called value substitutabal-
ity in the sense that values of subtypes are accepted
wherever values of their supertypes are valid.

There are two main places to store values of struc-
tured types in an object-relational database: rows in
a table and values inside a table column. Given a
structured type, a table of that type can be created,
where each attribute of the structured type becomes
a column of the typed table. Each row of a typed ta-
ble corresponds to a value of the type. A hierarchy
of tables can be defined over a type hierarchy so that
standard table operations such as SELECT, UPDATE,
and DELETE can be applied to a target table as well
as its subtables. This exhibits a form of inheritance

where subtables inherit columns from the supertable
and operations on the supertable are applicable auto-
matically to all rows in the subtables. The design and
the implementation of typed tables in DB2 UDB, in-
cluding table hierarchies, references, path expressions,
and object views, have been addressed in [1].

Values of structured types can also be stored in ta-
ble columns. A column of a structured type in a table
may contain values of the structured type as well as its
subtypes, which can be of different sizes. A main chal-
lenge of integrating structured types with the exist-
ing database engine is to minimize the impact on low
level components inside the database engine, and at
the same time to support efficient access and manipu-
lation of attribute values of possibly nested structured
types with inheritance.

This paper describes our approach to enhance the
DB2 UDB with structured types and inheritance
through value substitutability. The main contribu-
tions are as follows. First, values of structured types
are represented in a self-descriptive manner that can
be manipulated only through system generated ob-
server and mutator methods. This minimizes the im-
pact on the low level storage manager and provides
efficient access and manipulation of structured typed
values. Second, the value-based semantics of mutator
methods is implemented efficiently through a compile-
time copy avoidance algorithm. Third, values of struc-
tured types are stored inline or out-of-line dynamically
depending upon their sizes. This combines the flexibil-
ity of subtyping and nesting of structured types with
the performance advantage of inline storage. It should
be mentioned that this paper focuses only on the basic
infrastructure for supporting structured types within
the database engine. Other important issues such as
indexing and query optimization involving structured
types will be dealt with in a separate paper.

The rest of this paper is organized as follows. Sec-
tion 2 reviews SQL3 structured types, methods and
inheritance. Section 3 discusses several different tech-
niques of implementing structured types and describes
the design rationale of our DB2 approach. Section
4 gives a simple compile-time inferencing mechanism
that avoids making unnecessary copies of objects for
mutator method invocations. Section 5 presents a dy-
namic mechanism for inline or out-of-line storage of
values of structured types. Section 6 compares our
DB2 approach with various alternative implementa-
tions of structured types and provides performance re-
sults on real data sets. Section 7 concludes with a brief
summary and some issues for further investigation.

2 SQL3 Structured Types and Inheri-
tance

This section reviews structured types, methods and
inheritance in the SQL3 standard [6]. We illustrate
these concepts through examples.

566

2.1 Structured Types with Observers and

Mutators

Consider a simple structured type for address:

CREATE TYPE Address
AS (street Char(30),

city Char(20),
state Char(2),
zip Integer

) NOT FINAL;

Every structured type comes with a set of ob-
server/mutator methods for accessing and updating
the values of its attributes. For Address, the following
methods are generated automatically by the system:

e observers: each attribute has a corresponding ob-
server method that returns the value of the at-
tribute given a value of the structured type.

Address.street —> Char(30)
Address.city -> Char(20)
Address.state -> Char(2)
Address.zip -> Integer

The single-dot notation is for method invocation
and is left-associative.

e mutators: each attribute has a corresponding mu-
tator method for updating the value of the at-
tribute.

Address.street(Char(30)) -> Address
Address.city(Char(20)) -> Address
Address.state(Char(2)) -> Address
Address.zip(Integer) -> Address

The implementation of structured types is completely
encapsulated in the sense that direct access to its
attributes is restricted to observer/mutator methods
only.

Values of structured types can be constructed us-
ing the “new” notation followed by invocations of the
mutators to fill in the attribute values, e.g.,

NEW Address().street(’555 Bailey Ave’)
.city(’San Jose’)
.state(’CA’)
.zip(95141)

It is also possible for users to define their own con-
structors (with or without arguments) whose names
are the same as the type name.

Structured types can be nested or can be subtypes
of one another. For instance, one may define another
structured type ContactInfo that has an attribute of
type Address:

CREATE TYPE ContactInfo
AS (postal_addr Address,
home_phone Char(10),
work_phone Char(10),

email Char(20),
fax Char(10)
) NOT FINAL;

Tables can be defined that have columns of structured
types, e.g.,

CREATE TABLE AddressBook
(name Char(30),
addrinfo ContactInfo);

Table AddressBook can be modified using the stan-
dard insert/update/delete statements

INSERT INTO AddressBook
VALUES (’Mr.J.Smith’,
NEW ContactAddr()
.postal_addr(
NEW Address()
.street(’555 Bailey Ave’)
.city(’San Jose’)
.state(’CA’)
.zip(95141))
.home_phone(’6502347568°)
.work_phone(’4084635678°)
.email(’ jsmithQus.ibm.com’)
.fax(’4084631234°));
UPDATE AddressBook
SET addrinfo.postal_addr.street =
’123 Almaden Way’
WHERE name = ’Mr.J.Smith’;

In the update statement above, we are updating the
street address for Mr. J. Smith. The semantics of the
update statement is equivalent to the following state-
ment:

UPDATE AddressBook
SET addrinfo =
addrinfo.postal_addr(
addrinfo.postal_addr.street(
’123 Almaden Way’))
WHERE name = ’Mr.J.Smith’;

where the right hand side contains two mutator in-
vocations, one nested inside another. It should be
mentioned that mutator methods in SQL3 [6] have a
value-based semantics in the sense that they do not
have any side effects and simply return values as re-
sults. Therefore they cannot be used directly to up-
date a column of a structured type in a table. Instead
such a table can be updated only through the standard
insert/update/delete statements.

567

Shape

Y

Point Line Polygon

Figure 1: A type hierarchy of shapes
2.2 Inheritance and Value Substitutability

A structured type can be a subtype of another struc-
tured type. The subtype inherits attributes and be-
havior (methods) from its supertypes. Figure 1 shows
a simple hierarchy of shapes.

These types can be defined using the CREATE TYPE
statement:

CREATE TYPE Rectangle
AS (xmin Float,

ymin Float,

xmax Float,

ymax Float

) NOT FINAL;

CREATE TYPE Shape

AS (length Float,
area Float,
mbr Rectangle,
numOfPoints Integer,
geometry Blob(1im)
) NOT FINAL

METHOD distance(s Shape) RETURNS Float

LANGUAGE C

CREATE TYPE Point UNDER Shape NOT FINAL
METHOD Point(x Integer, y Integer)
RETURNS Point LANGUAGE C

CREATE TYPE Line UNDER Shape NOT FINAL
METHOD Line(x1 Integer, yl Integer,
x2 Integer, y2 Integer)
RETURNS Line LANGUAGE C

CREATE TYPE Polygon UNDER Shape NOT FINAL
METHOD Polygon(pl Point, p2 Point,
p3 Point, p4 Point)
RETURNS Polygon LANGUAGE C ...

Each structured type may contain a list of method
specifications. In the example above, we have a
method for computing the distance between two
shapes, and a constructor for each of the subtypes of
Shape. The implementation of a method is created
using a CREATE METHOD statement, e.g.,

CREATE METHOD distance(s Shape) for Shape

EXTERNAL NAME ’shape!distance’;

CREATE METHOD Point(x Integer,
y Integer) for Point
EXTERNAL NAME ’shape!point’;

CREATE METHOD Line(x1 Integer,

y1 Integer,

x2 Integer,

y2 Integer) for Line
EXTERNAL NAME ’shape!line’;

CREATE METHOD Polygon(pl Point,
p2 Point,
p3 Point,
p4 Point)
for Polygon

EXTERNAL NAME ’shape!polygon’;

Values of structured types can be used wherever
system predefined types can occur in SQL, including
table columns and function/method parameters, e.g.,

CREATE TABLE real_estate_info

AS (price Decimal(9,2),
owner Char(40),
property Shape);

INSERT INTO real_estate_info
VALUES (100000, ’Mr.S.White’,
NEW Point(4,4));

INSERT INTO real_estate_info
VALUES (400000, ’Mr.W.Green’,
NEW Line(5,5,7,8));

INSERT INTO real_estate_info
VALUES (150000, ’Mrs.D.Black’,
NEW Polygon(NEW Point(4,4),
NEW Point(6,12),
NEW Point(12,12),
NEW Point(14,4)));

Each row of real_estate_info can have a property
shape of a different subtype. This is called value sub-
stitutability, where a column of a structured type can
contain values of the type as well as values of all its
subtypes.

The principle of wvalue substitutability applies not
only to table columns but also to function and method
parameters. Values of subtypes can be passed to pa-
rameters of their supertypes in functions and methods.
When a method is invoked, dynamic dispatch is needed
to determine the method body to be executed when
there 1s method overriding. In the following query,

SELECT owner, price

FROM real_estate_info

WHERE property.distance(Line(10,10,20,20))
<= 5;

568

if the subtypes of Shape define their own distance
methods, the execution of the query will cause the in-
vocation of a different method for each property value
at run time, depending upon the specific shape of each

property.

3 Implementation of Structured Types
in IBM DB2

We have been implementing structured types with in-
heritance and method support in the SQL3 standard
[6] in the IBM DB2. This section discusses the design
rationale of supporting table columns of structured
types and presents a self-descriptive representation of
values of structured types.

3.1 Design Rationale

From an implementation point of view, there are sev-
eral different options for integrating values of struc-
tured types into table columns. One option is to use
some existing datatype to represent values of struc-
tured types. Since values of structured types can be of
different sizes, due to subtyping and variable-sized at-
tributes, one might use variable-length binary charac-
ters or binary large objects. Access and manipulation
of structured types can be achieved using user-defined
functions and methods. For example, the concept of
distinct types in IBM DB2 [2] or opaque abstract data
types in Informix [5] can be used to implement this
approach. However, since an invocation of a user-
defined function or method is an expensive operation,
this approach can cause significant overhead for run-
time query execution.

Another implementation possibility is to expand
a table column of a structured type into multiple
columns, one for each attribute of the type. While
this may provide efficient access, it becomes compli-
cated for nested structured types or subtypes when
every attribute of a structured type is expanded into a
separate column. This approach also makes 1t difficult
to support inheritance and value substitutability since
subtypes may have additional attributes and values of
a subtype can appear anywhere values of its supertypes
are valid.

Still another implementation option is to use a sepa-
rate side table to store values of structured types. This
approach has been used in geographic information sys-
tems such as ESRI’s SDE [4]. A difference for struc-
tured types would be that the database engine will
be aware of such side tables and may be able to opti-
mize queries involving these side tables. Nevertheless
the side tables are normally hidden from users, who
access attributes of structured types through regular
tables that contain other business data. This means
that access and manipulation of attributes of a struc-
tured type inside a table column require extra joins

with the side table, increasing the cost of query opti-
mization and execution.

We have three design goals for the representation
and manipulation of values of structured types: (a) to
minimize the impact of structured types on the low
level storage manager; (b) to support efficient access
and manipulation of structured types; and (c) to allow
arbitrary nesting and subtyping of structured types.

Our representation of structured types is completely
opaque to the storage manager, which sees only a se-
quence of bytes for a value of a structured type. The
representation of structured types is encapsulated and
can be accessed or manipulated only through a small
set of operations, minimizing the impact of structured
types on low level components.

The direct access and manipulation of structured
types is possible only through builtin operations for
observer/mutator methods, avoiding the extra over-
head of user-defined functions. The representation
of structured types is self-descriptive and carries its
own meta information so that 1t can be operated upon
at run time without requiring any extra information.
This also makes it easier to change the representation
of structured types for future enhancements.

Values of structured types can be of variable sizes
for several reasons. First, the concept of value substi-
tutability means that values of subtypes can appear
wherever values of supertypes are valid. Subtypes
often have attributes in addition to those inherited
from supertypes. Second, values of structured types
can be mutated, constructing new values of different
sizes. Third, a structured type may have attributes
that are large objects (called LOBs). To accommo-
date the variable sizes of values of structured types
and to support mutations efficiently, we allow values
of structured types to be stored in a non-linearized for-
mat in memory. When values of structured types are
stored in tables on the disk, the same representation
1s used except that values of attributes of a structured
type will be in a linearized format as they are written
to the disk. The use of the same representation avoids
any extra conversions when values of a structured type
are moved between the disk and the memory.

3.2 Self-Descriptive Representation of Struc-
tured Types

Given a structured type, a minimum value of the type
(i.e., with all attributes set to null) consists of a fixed-
size header, an attribute pointer array, and an at-
tribute type array. The fixed-size header contains,
among other things, the following fields:

e length: the total length of the structured typed
value;

e type id of the structured type;

e the total number of attributes including inherited
ones, which also indicates the size of the attribute

569

pointer array and the attribute type array in the
variable-length part of the structured type header;

It should be mentioned that the length field of a
structured type value may not be exactly the num-
ber of bytes that it currently occupies in memory. A
structured typed value may contain empty spaces in-
side when the new value of an attribute after mutation
has a shorter length. If it is stored in a non-linearized
form, the value of the length field may be less than
the minimum length of the structured type in the lin-
earized form due to the padding spaces required for
alignment.

The variable-size part of a structured type header
contains two arrays, one indicating the values of all the
attributes and the other indicating the type of each
attribute. The size of both arrays is the number of
attributes in the structured type.

e attribute pointer array: each element points to
the value of the corresponding attribute. A value
zero indicates a null attribute value.

e attribute type array: each element indicates
whether the corresponding attribute is of a base
type, a structured type, or a large object type,
and in case of a large object type, what kind of
large object it is.

An attribute value of a base type or a large object
type consists of a length field and a data field. If an
attribute is of a structured type, the attribute value is
represented in the same manner.

From an implementation perspective, when a user
invokes an observer or a mutator method to access or
mutate the attribute value of a structured typed value,
the observer or mutator invocation is converted into
an invocation of a builtin operation. Several builtin
functions have been introduced for direct access and
manipulations of structured types, including:

e three observer operations based upon the three
categories of attributes: adt_observe base,
adt_observe_lob and adt_observe_adt. For base
or large object attributes, the attribute value or
a large object descriptor is copied into an output
buffer. No output buffer is needed when observing
an attribute of a structured type inside another
structured type.

e three mutator functions based upon the three
categories of attributes: adt_mutate base,
adt mutate _lob and adt mutate_adt. They mu-
tate values of structured types in place. To imple-
ment the value-based semantics of mutator meth-
ods, there is also a builtin adt_copy function,
which will be discussed in the next section.

Since values of structured types can be accessed and
manipulated by users using the system generated ob-

server and mutator methods and invocations of ob-
server and mutator methods are converted into invo-
cations of the builtin operations above, these builtin
functions provide the only internal interface through
which values of structured types can be accessed or
mutated. Therefore any future changes in the repre-
sentation of structured types can be localized to these
builtin operations.

4 Copy Avoidance for Mutators

In SQL3 [6], mutator methods have no side effect and
return values as results. However, our implementation
uses builtin functions that update values of structured
types in-place. A naive way to ensure the correctness
with respect to the value-based semantics of mutator
methods 1s to precede each mutator invocation with a
copying operation so that mutation always takes place
on a new copy. However, it leads to too many un-
necessary copies of structured typed values. Consider
the table AddressBook in Section 2.1 and the INSERT
statement there:

INSERT INTO AddressBook
VALUES (’Mr.J.Smith’,
NEW ContactInfo()
.postal_addr(
NEW Address()
.street(’555 Bailey Ave’)
.city(’San Jose’)
.state(’CA’)
.zip(95141))
.home_phone(’6502347568°)
.work_phone(’4084635678°)
.email(’ jsmithQus.ibm.com’)
.fax(’4084631234°));

It has five mutator invocations for type ContactInfo
and four mutator invocations for type Address, lead-
ing to five potential copies of ContactInfo values
(including five copies of Address values inside) plus
four potential copies of Address values. The excessive
number of copies of structured typed values and the
potentially large size of these values can cause signifi-
cant performance overhead.

We have developed a simple compile-time algorithm
that traverses a parse tree and determines when a copy
operation 1s needed for a mutator method invocation.

When an SQL query is compiled, parse trees for in-
vocations of the observer/mutator methods are trans-
formed into parse trees for invocations of the builtin
operations. Specifically,

e An invocation of the “NEW” notation is trans-
formed into a call to the builtin function
adt_constructor for constructing a new value of
a structured type with all attributes set to null;

e A call to an observer method is transformed into
a call to adt_observe_base, adt_observe_lob or

570

adt_observe_adt, depending upon the type of the
corresponding attribute;

e A call to a mutator method 1s transformed into
a call to adt_ mutate_base, adt mutate_lob or
adt_mutate_adt, depending upon the type of the
corresponding attribute.

The copy avoidance algorithm for mutator methods
is based upon the following observations:

e Expressions such as column references, which re-
fer to values in a shared space by all transactions
such as the buffer pool, cannot be mutated in-
place. This also avoids the direct update of a
table through mutator methods, which the SQL3
standard prohibits. Instead tables with columns
of structured types can be updated only through
the standard INSERT, DELETE and UPDATE state-
ments.

e All other occurrences of expressions represent
values that are wused only once in an ob-
server/mutator method invocation. Therefore if
the incoming argument can be mutated safely in-
place, the result can also be mutated safely in-
place.

e Any call to a constructor results in a new value
that can be mutated safely in-place.

The algorithm is implemented by associating, with
each node in a parse tree, a mutation safe flag that
is initialized to false.

e If the parse tree node references a table column,
set the flag to false;

e If the operation in the parse tree node is
adt_constructor, set the flag to true;

e If the operation in the parse tree node is an
observer (adt_observe_{base,lob,adt}), set the
flag to the flag of the parse tree node for the sub-
ject of the observer method;

e If the operation in the parse tree node is a mutator
(adt mutate_{base,lob,adt}), then set the flag
to true if the flag for the parse tree node of the
subject of the mutator is true. Otherwise, insert
an adt_copy function for the subject of the muta-
tor and set the flag for the mutator operation to
true.

5 Dealing with Variable Length At-
tributes and Subtyping

When values of a structured type are stored in the
memory, they may not be in a linearized format in the
sense that all attribute values may not follow after one
another or follow immediately after the header. When

they are stored in tables on the disk, they are lin-
earized when they are written to the disk. Because of
subtyping and variable length attributes such as large
objects, values of a column of a structured type can
have drastically different sizes. It may not be possible
to store all of them inline since the size of the record
buffer for a row in a table is often limited by the page
size. On the other hand, it is not wise to store all of
them out-of-line like large objects as accessing large
objects in a separate storage space is more expensive.
Our approach is to store values of structured types in-
line or out-of-line dynamically depending upon their
actual sizes. In addition, large object attributes inside
a structured type can also be stored inline whenever
possible.

To provide some control by the user over the inline
storage of structured typed values in a table column,
we have introduced a new column option named IN-
LINE LENGTH that can be specified for a structured
typed column when a table is created. The value of
INLINE LENGTH is an integer that represents a number
of bytes. Column values whose size is larger than the
inline length will be stored outside the table, in the
form of a large object.

Inline Storage of Large Object Attributes

Structured types are often used to encapsulate large
objects, e.g., to manage image and textual documents,
together with other attributes and with methods. It
is important to handle large object attributes inside
structured types efficiently. While large objects often
have a large maximum size, large object values in an
application may have drastically different sizes. For
example, a geometry large object may contain only a
single point, a small polygon, or a large bitmap for
an area. In general, large objects are represented by
descriptors that indicate where the data are actually
stored, usually in a separate tablespace. Therefore
chasing large object descriptors to the actual data is
an expensive operation.

To avoid these problems, We store small values of
large object attributes of structured types in an inline
fashion under two situations:

o If the size of a large object descriptor is larger
than the size of the actual data, we always store
its value nline.

e If the inline length specified for a table column can
accommodate the inline representation of a large
object attribute in a value of a structured type,
then store the large object attribute nline. This
decision is made based upon a “first-come first-
serve” basis. For instance, if a value of a struc-
tured type contains two large object attribute val-
ues inside, the one that is encountered first may
be stored inline, while the other large object value

571

may have to be stored out-of-line and is repre-
sented by a large object descriptor.

Turning Values of Structured Types into Large
Objects

Values of structured types are stored inline whenever
possible. However, it 1s possible that even if every
large object inside a value of a structured type is rep-
resented by a large object descriptor, the resulting size
still exceeds the maximum size of the record buffer of
a row. If that i1s the case, we turn the value of the
structured type itself into a large object. The corre-
sponding large object descriptor is then stored inline.
Notice that there may still be large object values stored
inline inside the value of the structured type when the
size of the large object value is less than the size of
a large object descriptor. This kind of “lobification”
is applied to values of structured types that are not
nested inside other values.

6 Performance Comparison

This section reports some preliminary performance re-
sults comparing several alternative implementations of
structured types. All the queries are run using IBM
DataJoiner 2.1.2 on a server machine.

We use a table for the census block data for the
state of Kentucky with 137173 rows. The table has
10 columns of builtin types and one column of a struc-
tured type (called polygon). The type polygon has 13
attributes, one of which is a binary large object storing
all points in the polygon.

CREATE TYPE Polygon

AS (srid int, numpoints int,
geometry_type smallint,
xmin double, ymin double,
xmax double, ymax double,
zmin double, zmax double,
area double, length double,
anno_text varchar(256),
points blob(im)) NOT FINAL;

CREATE TABLE census

(name varchar(20), rowid int,

al decimal, a2 decimal, a3 decimal,

a4 decimal, a5 decimal, a6 decimal,

a7 decimal, a8 decimal, shape Polygon);

Several alternative implementations of structured
types are considered:

e VARCHAR: The type of column shape is changed
to varchar(3930) for bit data; Its values are
truncated if necessary in this case. While the var-
char representation has the advantage of inline
storage, its size limitation is a serious shortcom-
ing for representing values of structured types.

e BLOB: The type of column shape is changed to
blob(im). Compared to VARCHAR, the BLOB
representation has a much larger maximum size.
However, the actual data for shape will be stored
out-of-line, separate from the rest of the data in
the table.

e SIDE TABLE: Column shape is eliminated and all
values of the column are stored in a separate side
table. Column rowid serves as the foreign key
linking the side table to the original table con-
taining other business data.

e FLAT TABLE: Column shape is expanded into
multiple columns, one for each attribute of type
Polygon. The difference from SIDE TABLE is
that all attributes of the structured typed col-
umn shape are stored in the same table with other
business data, avoiding the extra join in the SIDE
TABLE representation.

Attributes of structured types are accessed by using
builtin functions in DB2, user-defined functions in the
VARCHAR or BLOB approach, or regular table column
access in the SIDE TABLE or FLAT TABLE approach.
User-defined functions can be either fenced or un-
fenced. If a user-defined function is fenced, it will be
executed in a process or address space that is separate
from that of the database manager. In general a func-
tion running as fenced will not perform as well as a
similar one running as unfenced. Indexing is not used.
The following queries for the IBM DB2 approach
and their corresponding variants for alternative imple-
mentations of structured types are executed:

e QALL — retrieve all attributes (except the anno-
tation text) of column shape of the entire table

(with 137173 records) :

SELECT shape.srid, shape.numpoints,
shape.geometry_type,
shape.xmin, shape.xmax,
shape.ymin, shape.ymax,
shape.zmin, shape.zmax,
shape.area, shape.length,
shape.points

FROM census

e QSCALAR1 — retrieve some scalar attributes of
column shape using a predicate on business data:

SELECT shape.numpoints,
shape.xmin, shape.ymin,
shape.area

census

al =0

FROM
WHERE

The query result contains 45417 records.

572

e (QBLOB — retrieve the binary large object at-
tribute of column shape using a predicate on col-
umn rowid:

SELECT shape.points
FROM census
WHERE rowid < 30001

The query result contains 30000 records.

e (QSCALAR2 — retrieve some scalar attributes of
column shape using a predicate on column rowid:

SELECT shape.numpoints,
shape.xmin, shape.ymin,
shape.area

census

rowid < 10001

FROM
WHERE

The query result contains 10000 records.

e QCOUNT1 — count the number of records using
an equality predicate on an attribute of a struc-
tured type:

SELECT count (*)
FROM census
WHERE shape.numpoints = 100

e (QCOUNT2 — count the number of records using
a complex predicate on attributes of a structured

type:

SELECT count (*)

FROM census

WHERE (shape.length
between 1 and 200) and
(shape.numpoints
between 10 and 100)

For all queries except QSCALAR1 that has a depen-
dency on the business data, there are two versions for
the SIDE TABLE approach. One version involves col-
umn rowid in the main table and a join with the side
table. The other version does not involve a join and,
instead, retrieves data from the side table directly. The
latter version assumes that the query optimizer is in-
telligent enough to avoid the join. This may not be
trivial since users pose queries using the main table,
unaware of the side tables being used to store values
of structured types. The sole N/A entry in the table is
for the case where the join with the side table cannot
be avoided.

Table 1 shows the sum of the CPU time and syn-
chronous I/O time (in seconds) for all the queries in
different approaches.

For the first four queries, the access of attributes of
structured types occurs in the SELECT clause. In the

Queries Qall | Qscalarl | Qblob | Qscalar2 || Qcountl | Qcount2
DB2 96.4 17.2 27 10.1 6.7 7.4
varchar (unfenced) 160 24.01 30.1 11.1 11.3 13
varchar (fenced) 320 33 35.5 16 29 60
blob (unfenced) 520 70 32.3 15.9 59 107
blob (fenced) 740 108 44.8 25.4 81 178
side table (w/join) 320.3 24.04 33.8 14.2 9.7 9.5
side table (w/o join) || 159 N/A 29.7 10.1 4.3 4.1
[fat table [182 | 180 | 2956 | 118 | 56 6.7 |

Table 1: Performance measurements of retrieval of attributes of structured types

VARCHAR approach, even though all values of struc-
tured types are stored inline (and truncated in some
cases), the overhead of invoking user-defined functions
is much higher than that of executing builtin opera-
tions. The reason is that builtin operations are part of
the database engine and do not require extra environ-
ment setup or protection to be run. When the num-
ber of such invocations increases (from (QSCALAR2 to
QALL), the relative performance of the VARCHAR ap-
proach to DB2 deteriorates. The use of fenced user-
defined functions adds even more overhead. The BLOB
approach is similar to VARCHAR except that all bi-
nary large objects are stored out-of-line and have to be
retrieved and materialized for the invocation of user-
defined functions.

The DB2 approach performs better than the side
table approach for two reasons. First, the SIDE TABLE
approach requires an extra join, which is normally the
case since users access attributes of structured types
in side tables from business tables and the side tables
are hidden from users. Second, binary large object at-
tributes inside a structured type can be stored inline
whenever possible in the DB2 approach, while binary
large objects inside a regular table column are stored
out-of-line. When the extra join is eliminated man-
ually in the SIDE TABLE approach and in the FLAT
TABLE approach, DB2 still retains its performance ad-
vantage for queries QALL and QBLOB due to its dy-
namic inline/out-of-line storage of binary large object
attributes in structured types and holds its ground for
the access of scalar attributes in queries QSCALARI1
and QSCALAR2.

For the two count queries, the access of attributes
of structured types occurs in the WHERE clause. The
DB2 approach still performs better than the SIDE TA-
BLE approach with join. However when the join 1is
eliminated manually, the direct access of structured
types in the side table (without going through the orig-
inal table of business data) is more efficient. Similarly
the FLAT TABLE approach also performs better in this
case. The reason is that our attribute access is per-
formed by builtin operations, but predicates involving
observer /mutator methods are not pushed down deep
enough into the database engine by the query opti-

mizer.

7 Conclusion

We have presented an implementation of SQL3 struc-
tured types with inheritance in DB2. Its salient fea-
tures include: (a) encapsulation of the implementa-
tion of structured types, minimizing the impact on low
level components of the database engine; (b) compile-
time copy avoidance algorithm for efficient implemen-
tation of the value-based semantics of mutator meth-
ods; and (¢) dynamic inline/out-of-line storage of LOB
attributes inside structured types and of structured
types themselves. For future work, we intend to inves-
tigate further the performance and query optimization
issues of structured types.

Acknowledgment

The authors thank Michael Carey for his detailed com-
ments on an an early draft of this paper and thank the
anonymous referees for their feedback on this paper.

References

[1] M. Carey, D. Chamberlin, S. Narayanan, B. Vance,
D. Doole, S. Rielau, R. Swagerman, and N.M. Mat-
tos. O-O, what have they done to DB27 1In Intl.
Conference on Very Large Data Bases, September

1999.

D. Chamberlin. A Complete Guide to DB2 Univer-
sal Database. Morgan Kaufmann Publishers, Inc.,

1998.

E.F. Codd. A relational model of data for large
shared data banks. Communications of ACM,
13(6):377-387, June 1970.

ESRI. Environmental System Research Institute
(ESRI). Home page http://www.esri.com.

Informix. Informix DataBlade Products, 1997.
http://www.informix.com.

573

[6] ISO Final Draft International Standard (FDIS)
Database Language SQL — Part 2: Foundation
(SQL/Foundation), February 1999.

[7] M. Stonebraker and P. Brown. Object-Relational
DBMSs: Tracking the Next Great Wave. Morgan
Kaufmann Publishers, Inc., 1999.

574

