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ABSTRACT

In recent times a new kind of computing system has emerged: a distributed infrastructure
composed of multiple physical sites in different administrative domains. This model introduces
significant new challenges: common configuration parameters must be shared, local customization
must be supported, and policy domains must be respected. We believe that such features can best
be implemented by a system that provides a high-level configuration language (allowing
structuring and validation of configuration information) and that is modular (allowing for flexible
structuring of the overall infrastructure).

The Quattor configuration management toolkit has been designed to meet these re-
quirements. Quattor uses a declarative model where high-level descriptions are translated into
configurations and enacted by autonomous components running on the configured machines.
Quattor’s Pan language provides features for composing complex configuration schemes in a
hierarchical manner, for structuring configuration information along node or service lines, and for
validating parameters. Finally, the modular architecture of Quattor allows great flexibility in the
placement of configuration servers within a distributed infrastructure.

Quattor is being successfully used to manage distributed grid infrastructures in three
countries. The suitability of the Pan language is demonstrated by the fact that a comprehensive

distribution of configuration templates has been developed as a community effort.

Introduction

Distributed computing paradigms such as grid
and cloud computing are changing the face of system
configuration management. The traditional computing
center made up of hundreds or thousands of computers
located at a single site is being reconstituted as a fed-
erated system where resources are spread across multi-
ple sites. Each of these collaborating sites, whether
independent institutions or departments within a larger
organization, requires enough autonomy to implement
local policies, and hence the management of the over-
all infrastructure must be devolved. Nevertheless, a
consistent view of the overall system must be pro-
vided to resource users. Management strategies for
distributed infrastructures have an inherent tension:
effective mechanisms for sharing common configura-
tion must be provided without restricting the indepen-
dence of individual sites.

The high-energy physics community has ex-
tremely demanding data processing requirements and
has been involved in large-scale computing for decades.
It was one of the first communities to see the need to
rethink the traditional computing center model, and

now concentrates on the creation and maintenance of a
global grid infrastructure. An important consequence
has been a focus on tools for managing the “fabric” of
the grid, namely, the hardware and software installed
at sites around the world. Such tools must be scalable
to deal with the large installations found at grid sites,
flexible to deal with complex services on heteroge-
neous resources, and modular to deal with the wide
range of site structures (including distributed sites).
Quattor was designed and implemented to deliver an
infrastructure management system that meets these
needs.

Grid infrastructures have now moved beyond the
prototype stage and one of the biggest challenges cur-
rently being faced is the provision of sustainable, man-
aged, and monitored production system. In order to
achieve this, a number of grid initiatives have put in
place structures for aggregating multiple locations as
logical sites. In some cases, this arrangement mainly
affects administrative and support structures. In other
cases, an integrated configuration management system
is put in place to reduce the management load on any
one site by allowing individual institutions within a
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logical site to share common configuration parameters
and tools. We believe this is the better approach and
that Quattor is an excellent tool for implementing such
a system.

Principles

The challenge of structuring and sharing compo-
nents in a collaborative system is not new; over the
years programming language designers have attacked
this problem from many angles. While trends change,
the basic principles are well understood. Features such
as encapsulation, abstraction, modularity, and typing
produce clear benefits. We believe that similar princi-
ples apply when sharing configuration information
across administrative domains.

The Quattor configuration toolkit derives its
architecture from LCFG [1], improving it under sev-
eral aspects. At the core of Quattor is Pan, a high-
level, typed language with flexible include mecha-
nisms, a range of data structures, and validation fea-
tures familiar to modern programmers. Pan allows col-
laborative administrators to build up a complex set of
configuration templates describing service types, hard-
ware components, configuration parameters, users,
etc. The use of a high-level language facilitates code
reuse in a way that goes beyond cut-and-paste of con-
figuration snippets. (See the ““Pan Language” section.)

The principles embodied in Quattor are in line
with those established within the system administra-
tion community [2, 3]. In particular, all managed
nodes retrieve their configurations from a configura-
tion server backed by a source-control system (or sys-
tems in the case of devolved management). This
allows individual nodes to be recreated in the case of
hardware failure. Quattor handles both distributed and
traditional (single-site) infrastructures (see Table 1).

We consider devolved management to include
the following features: consistency over a multi-site
infrastructure, multiple management points, and the
ability to accommodate the specific needs of con-
stituent sites. There is no single “correct” model for a
devolved infrastructure, thus great flexibility is needed
in the architecture of the configuration system itself.
Sometimes a set of highly-autonomous sites wish to
collaborate loosely. In this case each site will host a
fairly comprehensive set of configuration servers, with
common configuration information being retrieved
from a shared database and integrated with the local
configuration. This is the model used in the Belgian
grid infrastructure BEGrid [4]. In a closer collabora-
tion, it may be desirable to centralize the majority of
services (configuration database and software package
repository), with a bare minimum of services (maybe
just node installation) hosted at the individual sites.
Grid-Ireland, the Irish grid initiative, is organized
along these lines [5].

Distributing the management task can potentially
introduce new costs. For example, transmitting config-
uration information over the WAN introduces latency
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and security concerns. Quattor allows servers to be
placed at appropriate locations in the infrastructure to
reduce latency, and the use of standard tools and pro-
tocols means that existing security systems (such as a
public key infrastructure) can be harnessed to encrypt
and authenticate communications.
Applicability

Theory is one thing, but practical implementation
brings its own significant challenges. In this paper we
use the GRIF [6] deployment, the research grid infra-
structure in the Paris region, to illustrate the strengths
of Quattor for distributed management. GRIF was
formed in 2005 as a collaboration between five sites
wishing to present a unified view of their disparate
resources. The goal was to amortize the management
load of complex grid software by collaborating on the
development of shared configuration templates, and to
improve service quality by sharing automatically best
practices via these templates. The requirements of
GRIF, along with those from other infrastructures,
have driven the development of a comprehensive set
of Quattor templates, known as the Quattor Working
Group (QWG) templates [7]. This can be thought of as
a “configuration distribution” (after the model of a
Linux distribution); it gathers together all the potential
settings needed to set up basic operating system (OS)
services and middleware.

GRIF was built on the foundation of the pre-
existing LAL [8] Quattor configuration, which at that
time was managing 20 machines. Since the inception
of GRIF in 2005, all five sites have added machines to
reach the current (2008) number of more than 600
machines spread over six locations, with 100-200
more expected next year. LAL also uses Quattor to
manage non-grid servers (now roughly 50 machines)
and Linux desktops (25); other GRIF sites are also
starting to manage non-grid systems with Quattor.

One of the main challenges that the development
of the QWG templates had to address was the shortage
of manpower within GRIF. There is little dedicated
manpower, and many of the technical team only work
part-time on administration. In 2005, only three people
had significant Quattor and/or grid experience; Quat-
tor has enabled the incremental growth of a team
which today consists of 20 people with good skills.
However, due to the support for sharing configuration,
only two to three people need to be involved in the
development of core templates. Quattor and QWG,
despite the somewhat steep learning curve, allow this
“sustainable” model wherein the operational over-
head is minimized allowing people to focus on the ser-
vices for which they are responsible.

The rest of the paper is organized as follows. The
next section describes a distributed management work-
flow and shows how it can be implemented in Quattor.
We flesh out the theory by exploring real deployments
of Quattor-managed distributed infrastructure in the
“Real-world distributed management’ section.
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Distributed sites often face several management
issues, so we present our deployment experiences and
then discuss related work, and finally, we outline con-
clusions and future work.

Devolved Workflow for Distributed Management

We now present a typical workflow for devolved
management of a distributed infrastructure and show
how it can be implemented using Quattor. For a more
in-depth treatment of individual Quattor components,
please see a previous work [9].

Figure 1 illustrates the entire “ecosystem” of a
devolved management infrastructure, showing the typ-
ical workflow involved in creating and deploying con-
figurations. To start, administrators create or edit con-
figuration source files, called templates, describing the
services and nodes in the system. These templates are
written in Pan [10, 11], a high-level, declarative con-
figuration language. Administrators then store these
templates in a configuration database, which may
aggregate configuration templates from various
sources. The configuration templates are then pro-
cessed by the Pan compiler which validates their con-
tent and compiles them into an XML representation.
The resulting XML profiles are stored in a machine
profile repository; there is exactly one profile per man-
aged node. Each managed node retrieves and caches
its own profile and autonomously aligns its state with
that described in the profile. Corrective actions are

Devolved Management of Distributed Infrastructures...

performed by specialized agents, or components,
which are triggered upon changes in the part of the
configuration with which they are registered.

Administrators may or may not be located at the
same site as their managed nodes. In the figure, the
organization bar.org manages its own machines; in
contrast, the management of machines in foo.org is
devolved to administrators in baz.org. In fact, Quat-
tor’s architecture means that the communication be-
tween any stages in the workflow may be carried out
across site boundaries.

Configuration Management System

Quattor’s configuration management system is
composed of a configuration database that stores high-
level configuration templates, the Pan compiler that
validates templates and translates them to XML pro-
files, and a machine profile repository that serves the
profiles to client nodes. Only the Pan compiler (see the
“Pan Language™ Section) is strictly necessary in a
Quattor system; the other two subsystems can be
replaced by any service providing similar functionality.

Devolved management in a cross-domain envi-
ronment requires users to be authenticated and their
operations to be authorized. For the configuration
database, we chose to adopt X.509 certificates! be-
cause of the support offered by many standard tools,

TKerberos 5 tickets and encrypted passwords are supported
as well.

Distributed Single-site
Metric BEGrid Grid-Ireland GRIF | CERN CNAF Nikhef UAM
Managed machines 260 417 619 8000 800 301 553
Administrators 8 11 25 100 10 4 3
Physical sites 6 18 6 1 1 1 1

Table 1: Quattor deployments.
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and access control lists (ACLs) because they allow a
fine-grained control (an ACL can be attached to each
template). When many users interact with the system,
conflicts and misconfigurations may arise which re-
quire a roll back mechanism; to this purpose, a simple
concurrent transaction mechanism, based on standard
version control systems, was implemented.

Quattor’s modular architecture allows the three
configuration management subsystems to be deployed
in either a distributed or centralized fashion. In the
distributed approach, profile compilation (at develop-
ment stage) is carried out on client systems, templates
are then checked in to a suitable database, and finally
the deployment is initiated by invoking a separate
operation on the server. The centralized approach pro-
vides strict control of configuration data. The compila-
tion burden is placed onto the central server, and users
can only access and modify templates via a dedicated
interface.

Since the two paradigms provide essentially the
same functionality, the choice between them depends
on which fits the management model of an organiza-
tion better. For instance, the centralized approach fits
large computer centers well because of its strictly con-
trolled workflow, whereas multi-site organizations such
as GRIF prefer the distributed approach because it
allows different parts of the whole configuration set to
be handled autonomously. In this paper, we focus on
the distributed approach (see the “Real-world Distrib-
uted Management” section) as it fits best with the
devolved management model we are presenting.

Pan Language

The Pan language compiler sits at the core of the
Quattor toolkit. It compiles machine configurations
written in the Pan configuration language by system
administrators and produces XML files (profiles) that
are easily consumed by Quattor clients. The Pan lan-
guage itself has a simple, declarative syntax that
allows simultaneous definition of configuration infor-
mation and an associated schema. In this section, we
focus only on the Pan features that are relevant to
devolved management of distributed sites: validation,
configuration reuse, and modularization. The original
specification of Pan can be found in [10]; a better
description of the current features of Pan is available
in [11].

Validation. The extensive validation features in
the Pan language maximize the probability of finding
configuration problems at compile time, minimizing
costly cleanups of deployed misconfigurations. Pan
enables system administrators to define atomic or
compound types with associated validation functions;
when a part of the configuration schema is bound to a
type, the declared constraints are automatically en-
forced.

Configuration reuse. Pan allows identification

and reuse of configuration information through “struc-
ture templates.” These identify small, reusable chunks
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of Pan-level configuration information which can be
used whenever an administrator identifies an invariant
(or nearly invariant) configuration subtree.

Modularization. With respect to the original
design, two new features have been developed to pro-
mote modularization and large-scale reuse of configu-
rations: the namespacing and loadpath mechanisms.

A full site configuration typically consists of a
large number of templates organized into directories
and subdirectories. The Pan template namespacing
mimics (and enforces) this organization much as is
done in the Java language. The namespace hierarchy is
independent of the configuration schema. The config-
uration schema is often organized by low-level ser-
vices such as firewall settings for ports, account gener-
ation, log rotation entries, cron entries, and the like. In
contrast, the Pan templates are usually organized
based on other criteria like high-level services (web
server, mail server, etc.) or by responsible person/
group.

The namespacing allows various parts of the
configuration to be separated and identified. To effec-
tively modularize part of the configuration for reuse,
administrators must be able to import the modules eas-
ily into a site’s configuration and to customize them.
Users of the Pan compiler combine a loadpath with the
namespacing to achieve this. The compiler uses the
loadpath to search multiple root directories for particu-
lar, named templates; the first version found on the
loadpath is the one that is used by the compiler. This
allows modules to be kept in a pristine state while
allowing sites to override any particular template.

Further, module developers can also expose
global variables to parameterize the module, permit-
ting a system administrator to use a module without
having to understand the inner workings of the mod-
ule’s templates.

The “Real-world Distributed Management™ sec-
tion explains the use of the Quattor Working Group
(QWG) templates used to configure grid middleware
services. The QWG templates use all of the features of
Pan to allow distributed sites to share grid middleware
expertise.

Automated Installation Management

A key feature for administering large distributed
infrastructures is the ability to automatically install
machines, possibly from a remote location. To this
purpose, Quattor provides a modular framework called
the Automated Installation Infrastructure (AII). This
framework is responsible for translating the configura-
tion parameters embodied in node profiles into instal-
lation instructions suitable for use by standard installa-
tion tools. Current AIl modules use node profiles to
configure DHCP servers, PXE boot and Kickstart-
guided installations.

Normally AII is set up with an install server at
each site. However, the above mentioned technologies
allow the transparent implementation of multi-site
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installations, by setting up a central server and appro-
priate relays using standard protocols [12, 13].

Node Configuration Management

In Quattor, managed nodes handle their configu-
ration process autonomously; all actions are initiated
locally, once the configuration profile has been re-
trieved from the repository. Each node has a set of
configuration agents (components) that are each regis-
tered with a particular part of the configuration
schema. For example, the component that manages
user accounts is registered with the path /software/com-
ponents/accounts. A dispatcher program running on the
node analyzes the freshly retrieved configuration for
changes in the relevant sections, and triggers the
appropriate components. Run-time dependencies may
be expressed in the node’s profile, so that a partial
order can be enforced on components’ execution. For
example, it is important that the user accounts compo-
nent runs before the file creation component, to ensure
that file ownership can be correctly specified.

By design, no control loop is provided for ensur-
ing the correct execution of configuration components.
Site administrators typically use standard monitoring
systems to detect and respond to configuration fail-
ures. Nagios [14] and Lemon [15] are both being used
at Quattor sites for this purpose. In fact, Lemon has
been developed in tandem with Quattor, and provides
sensors to detect failures in Quattor component execu-
tion. We discuss integration of external tools further in
the “Integration with External Tools™* section.

While nodes normally update themselves auto-
matically, administrators can configure the system to
disable automatic change deployment. This is crucial
in a devolved system where the responsibilities for,
respectively, modifying and deploying the configura-
tion may be separated. A typical scenario is that top-
level administrators manage the shared configuration
of multiple remote sites and local managers apply it
according to their policies. For instance, software
updates might be scheduled at different times.

Software Management

Quattor offers a software package management
framework based on the separation of package reposi-
tory and configuration. One or more physical reposito-
ries can be placed anywhere provided they are accessi-
ble via HTTP; the repositories’ contents are made
known to the configuration system via special Pan
templates. Each time the content of a repository
changes, the corresponding template must be regener-
ated. A node’s software composition is specified by
package lists placed in the configuration templates:
package names are checked against the repository
templates, and the resulting list is compiled to a
machine profile. In a distributed multi-site scenario,
the benefit of this separation is clear: package reposi-
tories can be placed in strategic locations, typically
close to the user sites, even though package lists are
stored in a remote location.

Devolved Management of Distributed Infrastructures ...

The package manager can be configured to act
either in a secure mode, where locally-installed pack-
ages are automatically removed, or in a flexible mode,
where these packages are ignored. The secure mode
allows tight control over packages installed on a node,
indeed, the package manager will never try to install
anything which is not explicitly listed in the node’s
profile. Rollbacks can be easily performed as the
package manager executes operations transactionally,
checking that no requested change will result in a
dependency conflict. In flexible mode, several ver-
sions of the same package can be installed and the
package manager can be configured to respect manual
installation of packages not listed in the machine pro-
file. This is ideal for devolved management: even
when some central policy strictly dictates the basic
software composition, local administrators may exper-
iment with customized setups while having the guar-
antee that their systems can be cleaned up at any time.

Real-World Distributed Management

The Quattor approach to managing distributed
infrastructure proved to be effective in the deployed
use case detailed in this section. We will focus on the
example introduced earlier: the QWG templates for
managing a collection of resources spread across mul-
tiple institutions as a single grid infrastructure. We
show how Quattor provides sufficient support for
sharing configuration between sites and for structuring
each site according to its own requirements. We illus-
trate this using examples from the GRIF deployment,
which now (2008) comprises more than 600 machines
spread over six locations.

Structuring Shared Configuration

A configuration framework which is based on a
corpus of shared templates needs to address three
main “structuring” issues: template distribution, con-
figuration deployment and organization of the infra-
structure’s configuration. The following sections illus-
trate how the QWG framework tackles them.

Structured Configuration Distribution

The configuration of grid software (for example,
the Globus [16] and gLite [17] middleware) is in itself
a challenge for configuration management systems.
Grid software includes a wide variety of logical ser-
vices (worker node, compute server, storage server,
etc.), and it is possible for these to be combined on a
single physical node. In a distributed infrastructure,
certain parameters are common across entire infra-
structures (such as the addresses of central grid
servers), there are also many configuration parameters
specific to each site (such as network settings, local
user details, etc.), and local variations in how the ser-
vices are configured or combined. The challenge in a
distributed infrastructure is how to share common con-
figuration while retaining maximum flexibility for
local site customizations.
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The solution to this problem in our context has
been to develop a core distribution of Quattor tem-
plates that can be used with minimal customizations
by sites. This distribution, known as the QWG tem-
plates, is the result of a collaborative effort among a
set of European grid sites. This distribution can be
used “as is” by collaborating sites; all they need to do
is configure site-specific parameters (e.g., network
addresses). New services or OS distributions need
only to be integrated once into the core distribution,
and can then be used by all collaborating sites. Addi-
tionally, there is substantial scope for customization.
The standard templates contain variables that condi-
tionally include local templates with custom settings,
providing great flexibility without requiring modifica-
tion of the core templates. Together, these features
reduce the potential for creating incompatible forks
and minimize the number of templates maintained at
each site.

The QWG distribution has grown dramatically as
new services and OS distributions have been added.
At the time of writing, a checkout of the QWG tem-
plates includes 2805 Pan templates: 1167 for 10 OS
distributions, 964 for grid services, 550 for standard
components, 115 example templates, and 9 legacy
templates. A large proportion of these templates is
automatically generated by processing package lists
distributed by OS or grid vendors. Even so, a distribu-
tion of this size needs to be carefully structured to be
manageable; indeed, Pan namespaces are used exten-
sively to tie templates to locations in the directory
structure.

Structured Deployment

In order to use the QWG templates, a site must
implement a suitable configuration database as de-
scribed in the “Devolved workflow for distributed
management”” section. We have developed the Subver-
sion Configuration Database (SCDB) [18] to provide a
configuration database suitable for cross-domain use.
Authorization is enforced by the version control sys-
tem (Subversion by default, although CVS has also
been successfully used). In this way, standard
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credentials can be used and a rich set of source control
options are available.

In order to share administration load, several
projects employ a single Quattor instance to manage a
grid infrastructure distributed over multiple sites. Ex-
amples are GRIF [6] in Paris, BEGrid [4] in Belgium,
and Grid-Ireland (see Table 1 for characteristics). A
feature of such management schemes is that access to
the configuration must be controlled based on the
identity of the user, so that administrators from differ-
ent sites can safely implement their own modifications
without disrupting other sites. This is easy to imple-
ment when configuration information is stored in a
version control system.

For example, within GRIF, administrators at each
site have full control of their own clusters and site
templates, but the right to modify standard and GRIF-
wide templates is restricted to a set of experts. This
ensures that the core contains only well-tested tem-
plates. However, this does not prevent local adminis-
trators from deploying a modified version of a core
template at their own site. To ensure autonomy for
local administrators, somebody who does not have the
right to modify a “global” template can make a copy
in his own cluster or site area and then modify it.
When he has tested and validated his changes, he can
submit the new template to one of the experts for inte-
gration in the standard template set. This approach
encourages contributions from all users, yet enforces
strict control over the core distribution.

A variety of techniques is used for integrating
templates from the core repository with a particular
site’s (or infrastructure’s) own configuration database.
Within GRIF and BEGrid, QWG templates are
merged into the local repository. Grid-Ireland uses
Subversion’s ‘““‘externals” [19] mechanism which
allows direct inclusion from an external repository,
effectively inserting a pointer to a particular revision
of the core templates, causing them to be automati-
cally updated as required. Local templates are then
certified against a particular revision of the core tem-
plates, which is then used until new features are

Local Software Local
Grid list Grid
params Central params
Net\{vork Local server GRIF Net\{vork Local
settings users info users settings users
LAL in GRIF DAPNIA

os
standard

LAL
Grid nodes

LAL
desktops

X includes: includes:
includes: sites/LAL sites/DAPNIA
sites/LAL sites/GRIF sites/GRIF
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standard

os
standard

DAPNIA

Grid nodes (_ sites

D Clusters

Figure 2: Sites and clusters in QWG.
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needed from the core — at this point a new revision of
the core templates is certified.
Structured Infrastructure Configuration

The configuration is usually organized using the
concepts of site and cluster. A cluster is an arbitrary
grouping of machines that share configuration informa-
tion (for example, “compute nodes” or “grid servers”).
A site is a logical group that defines a set of configura-
tion elements to be shared by different clusters. For
example, in Figure 2, there are three sites. The “LAL”
and “DAPNIA” sites contain local configuration data
such as network settings and user accounts; the
“GRIF” virtual site contains configuration parameters
common to all GRIF machines (location of central
grid services, common software lists, and user
accounts). The LAL and DAPNIA grid clusters
include templates from their local site and GRIF,
while the LAL desktops cluster only includes the
local LAL templates as it is not part of the GRIF infra-
structure.

The sites associated with a cluster are specified
as an ordered list that defines their precedence in the
template search path. For example, for the “LAL Grid
nodes” cluster, if the template users.tpl exists in both
the LAL and GRIF sites, the version from LAL will be
selected as LAL appears first in the list. This tech-
nique is used within QWG to create a hierarchical
structure; a template in the core distribution can be
easily overridden by creating a copy of it in a higher-
priority site (e.g., the local site).

Local Customization

Quattor and Pan as used in the QWG templates
provide two main methods for customization: load-
paths, which are used for high-level switches between
versions and hook variables, which allow the inclusion
of custom templates to tweak a specific area of the
configuration space.

Loadpaths. Each site is likely to deploy a differ-
ent mix of base OS types, each of which needs its own
package lists and configuration. From time to time, a
node (say a web server) will need to be upgraded to a
new OS release, while preserving any custom configu-
ration. For example, consider a Xen host machine
which needs to install OS-specific RPM packages for
the core Xen software; the machine’s “object” tem-
plate includes the template rpms/xen/host:

object template xenhostO01l;
variable LOADPATH = list(’os/sl450-x86_64");
include {’rpms/xen/host’};
and the template referenced is available for two plat-
forms in two different directories:
0s/s1450-x86_64/rpms/xen/host.tpl
0s/s1510-x86_64/rpms/xen/host.tpl
The LOADPATH definition instructs the compiler to
prefix its search path with the string 0s/sl450-x86_64,
so that the template found is 0s/sl450-x86_64/rpms/
xen/host. By simply changing the loadpath, the
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machine profile can be upgraded to use a different ver-
sion. A similar technique can be applied for version-
specific configuration, for example variables that take
different values depending on the OS version. In
QWG the loadpath for OS templates is set using a
simple hash structure that maps machine names to OS
version. A configurable default is also provided re-
moving the need to set up a mapping for each
machine.

Hook variables. Another approach commonly
used in QWG is the use of hook variables that allow
sites to integrate their own custom templates. Most of
the core templates that configure services or node
types contain a conditional include block. The block
checks the value of a variable and includes the refer-
enced template if the variable is set.

For example, the template that sets up the basic
services for a cluster head node contains the following
line:

variable CE_CONFIG_SITE ?= null;
# Add local customization to standard

# configuration, if any
include { CE_CONFIG_SITE };

In order to customize a local head node, an ad-
ministrator creates a new template containing the cus-
tomization (say tcd_torque_config.tpl) and then simply
sets the variable CE_CONFIG_SITE to the name of this
template. The basic machine type can thus be cus-
tomized without modifying the core template. Note
also the use of 7= in the variable assignment: this is a
conditional assignment meaning “assign if a value is
not already set.” This allows default values to be set
that will be used if no local configuration is defined.

A Concrete Example

Figure 3 shows a partial inclusion graph of a
worker node foo in the cluster bar at LAL.

The QWG framework defines a set of “machine
types” corresponding to typical grid service elements
and represented by dedicated templates in the names-
pace machine-types. The part enclosed in the dashed-
line box represents the customization space: these
templates are looked up in a cluster-dedicated names-
pace site/bar/ set externally as an inclusion path to the
compiler. A first level of local LAL’s site-wide cus-
tomization is done in machine-types/wn, where a hook
variable WN_CONFIG_SITE defines a possible extra
template subtree as discussed above: for instance,
some of the “local grid parameters,” as shown in Fig-
ure 2, are set here. A second level of customization for
the OS is done in site/cluster_info, where the variable
NODE_OS_VERSION_DB defines the template in which
the mapping between machine names and platforms is
done (site/os/version_db): here foo is mapped to sl450-
i386. At this point, all the information for selecting
OS-dependent templates is almost completely defined:
the last bit is the loadpath which is set in os/version;
then config/glite/3.1/base and its cascading templates are
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searched in the namespace 0s/sl450-i386. With refer-
ence to Figure 2, all the information in this subtree
comes from the GRIF site’s template set.

To give an idea of the configuration space size of
a worker node, there are 32 platform-dependent tem-
plates and 195 platform-independent templates with
local site-wide customizations. In addition, there are
25 upstream platform-dependent templates (out of
1208 OS templates) and 138 upstream platform-inde-
pendent templates (out of 1109 grid and standard tem-
plates) without local site-wide customization.

Flexible Deployment Architecture

The use of a high-level language and a source
control system facilitate maintainable sharing and cus-
tomization of configuration information between sites.
However, flexibility of deployment architecture is also
important for integrating disparate sites.

It is important not to mandate a deployment
architecture for sites wishing to collaborate. Local
preferences or policies may lead to different imple-
mentations at partner sites. Because Quattor is highly
modular, each site can choose which elements of their
infrastructure to share and which to keep private.
Often a similar configuration will be used for all sites
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within a collaboration, but this is not required. Figure
4 shows a variety of sites participating in a single dis-
tributed infrastructure. There is a common configura-
tion database holding core templates and parameters
common to all sites, and a shared package repository
holding common software. Each site has a set of local
machines and an installer that performs their initial
installation.

e Site 1 is an advanced site with a high degree of
customization. It hosts its own local configura-
tion database with site-specific templates. These
are combined with the core templates from the
common database to generate a complete config-
uration for the site, with machine profiles served
locally. This is essentially the model used within
BEGrid [4].

Site 2 still requires local configuration but to a
lesser extent. It does not install custom software
locally and so uses the shared package reposi-
tory exclusively. While the local configuration
database is logically distinct, it may actually be
hosted on the same server as the shared reposi-
tory. This is the case within GRIF [6].
¢ Site 3 is completely dependent on the shared
configuration and is thus centrally managed.

Inclusion prefix
site/bar/ set
externally

l foo l

A

Local site-wide
------------- customization

{ WN_CONFIG_SITE }

machine-types/wn H[other static WN fealures]]

site/config

A
machine-types/base

Set NODE_OS_VERSION_DB =
'site/os/version_db"

Map foo ->
s1450-1386

[OS-independent part]

Set LOADPATH = 'os/
$1450-i386" from
information in
site/os/version_db

— _

Inclusion prefix is
0s/s1450-1386/

config/glite/3.1/base

A

[OS-dependent part]

Figure 3: A partial inclusion graph of a worker node in QWG.
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All configuration and software are sourced
from the shared database. High-level templates
are compiled to low-level profiles at the central
site and pushed out to a machine profile reposi-
tory at the site. A similar process is used for
software; packages are mirrored locally, but are
treated as part of the same logical repository.
This is the model used within Grid-Ireland [5].

For comparison, Site X is a traditional comput-
ing center where all configuration and software pack-
ages are retrieved from local servers, as happens at
CERN’s computer center [20].

Experience with Distributed Deployment

The QWG templates have been used to configure
production sites since 2005. As such, we have gath-
ered some experience on using Quattor to manage
sites, and we present some reflections here.

What Worked Well

Distributed configuration database. The origi-
nal installation of Quattor at CERN uses a single con-
figuration database which is accessed via a proprietary
interface that enables users to check in and compile
templates. This approach does not allow offline work-
ing as it requires a connection to the central database
at all times. For this reason, a Subversion-based con-
figuration database was developed which allows ad-
ministrators to treat configuration like source code,
using all the features of the version-control system
directly. Thus configurations can even be developed
and tested (at least to confirm that they compile cor-
rectly) on an offline laptop, and then deployed when
network connectivity is available again.

Complete representation of system state. One
of the key benefits of Quattor profiles is that they hold
the complete configuration state of a particular system
in a structured form. Within a particular machine’s
configuration, this means that multiple components
can access the system configuration (for example, the
list of users defined could be accessed both by the ssh
component and the accounts component). Machines
can also access the configurations of other machines,
which is useful for configuring monitoring servers that
need to aggregate descriptions of the whole site, and
for virtual machines, where host VMs need access to
the configuration of their guests. This is done in a con-
trolled way, via Pan constructs that allow to access
machine profiles’ contents.

Namespaces and loadpaths. These two features
(new since the earlier Pan paper) have proved to be
extremely useful in managing the large set of tem-
plates now in use. Namespaces allow hierarchical
naming schemes to be enforced, resulting in a clear
structure for the overall distribution (for example, a
component schema definition template (schema.tpl)
with the name components/accounts/schema must be
located in a directory whose path ends in compo-
nents/accounts.
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Loadpaths have proved useful in keeping ma-
chine template code OS-agnostic as detailed earlier in
the paper. They allow large portions of a machine or
service configuration to be easily switched to a differ-
ent OS or middleware version (the template does not
usually have to be changed at all, as the change is made
in an external file). They have also been used to imple-
ment “stage-based deployment.” In this approach, tem-
plates are classified as “development” or “produc-
tion,” and stored under different paths accordingly.
Again, the switch from development to production can
be quickly affected by changing the value of the load-
path variable. Furthermore, loadpaths are used for
installing and configuring different versions of the same
component.

What Does Not Yet Work Quite So Well

Here we list some ongoing limitations that im-
pact on the day-to-day task of managing sites, together
with our current thoughts on resolving them.

Software dependency management. Quattor’s
software package manager is declarative: administra-
tors define the exact list of packages to be installed on
a node, and the package manager is normally run in an
enforcing mode so that no other packages are permit-
ted to be installed locally. This behavior is different
from other commonly-used package managers such as
YUM and APT which automatically pull in packages
to satisfy the dependencies of a newly-installed or
updated package.

The advantage of this approach is that adminis-
trators have strict control over software on managed
nodes. The disadvantage is that package dependencies
must be comprehensively defined at configuration
time rather than allowing the package manager to
resolve them automatically. If a package list is de-
ployed which contains unsatisfied dependencies, then
the whole package manager transaction will fail. As
many other components depend on the package man-
ager having run successfully, the result is often that
the new configuration does not take effect. As this
failure mode was only detected after deployment, it
proved extremely frustrating (becoming known in the
community as ‘“RPM dependency hell”).

This is a difficult problem to solve at the time of
profile creation because package dependency informa-
tion is contained in the packages themselves which are
typically stored in a central repository. Rather than
implementing our own dependency checker, we de-
cided to leverage the YUM package manager, whose
functions are easily accessible from Python code. We
have written a Python program that processes a given
Quattor profile, extracts details of software reposito-
ries used, generates YUM repository descriptors to
represent them, and then invokes YUM code to indi-
cate whether there are missing dependencies in the
RPM set. This approach relies on YUM metadata
being kept up to date on the package repository server,
but this can easily be automated.
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Dependencies on external tools. One of the
goals of creating a shared configuration distribution is
to reduce the learning curve needed to establish a new
Quattor installation. Quattor has been designed to
make as much use of standard services as it can. For
example, network installation in Quattor uses DHCP,
PXE, and Kickstart, as well as relying on correct DNS
configuration. In principle this is a good thing as it
makes Quattor easier to integrate with existing infra-
structures. However, when new, inexperienced people
want to join a collaboration with a new site, they must
master all of these services (at least to the point where
they can debug problems) before they can install a sin-
gle box!

Fine-grained authorization. As configuration
management becomes more widely distributed through
a larger number of people, authorization and control
become extremely important in maintaining the qual-
ity of the deployed machine configurations. A critical
issue in distributed management is that of fine-grained
access control to restrict users from interfering with
configuration that lies outside their sphere of control.
To date, this has been handled by enforcing authoriza-
tion for templates in the configuration database. For
example, administrators of a particular cluster might
be restricted to editing the templates for their own
cluster machines in an effort to prevent them from
modifying the configuration of core services. How-
ever, this is not a sufficient solution, as any template
can modify any part of the configuration namespace.
A solution is needed that ties authorization at the tem-
plate level (enforced by the configuration database) to
authorization at the level of portions of the profile
namespace (this must be enforced by the compiler).

Structure templates (see the “Pan Language”
section) provide a partial solution for this. An admini-
strator allowed to edit such a template can modify
only a small and well defined sub-tree of the configu-
ration hierarchy. However, a structure template can
read the entire hierarchy, and this still has to be
restricted in some way.

Debugging a complex configuration. The trade-
off for having so much flexibility is an increased diffi-
culty in debugging a complex configuration instance.
Indeed, the high-level Pan representation is based on
dynamic includes which are resolved at compilation
time, so that, “navigating” the templates becomes
almost impossible. This has increasingly generated
frustration among QWG users, limiting the possibility
of a closer than just operational approach for people
who wish to better understand and contribute to Quat-
tor developments. As a response, we are developing
some facilities for visualizing and browsing a site’s
configuration via different graphic formats.

Lessons Learned

Here we describe the features which have proved
to be crucial in sharing configuration between sites.
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Stability of the core configuration. One of the
key problems for early adopters of the QWG template
distribution was the instability of configuration mech-
anisms. The developers were still working out the best
way to represent the complex configuration, and so the
underlying data structures frequently changed. This
caused great frustration for those using the configura-
tion as local templates had to be continually adapted.
As a result of this experience, backward-compatibility
is now a key goal for the QWG templates. In many
cases, this is achieved by hiding the internal details of
the data structures behind simpler functions. For
example, the configuration of Xen guests is performed
by setting various parameters (e.g., the list of guests
on a particular machine) and then including the config-
ure_xen_guests template which fills in the relevant part
of the profile. The internal representation may change,
but the interface for users remains the same.

Low-effort mechanisms for applying updates.
Quattor is principally used to configure grid systems
that rely heavily on external distributions both for
basic OS functionality and grid middleware. Updates
to both are regularly released and must be deployed to
ensure that systems remain secure. The general ap-
proach taken in QWG is to automatically include a
template that “upgrades” any packages selected to the
latest versions from the OS or middleware’s updates.
The update list is automatically generated from the OS
or middleware updates directory.

Integration With External Tools

Implementing a distributed infrastructure requires
peaceful coexistence with systems already in place at
various sites. Collaborating sites often have existing
commitments to deployed tools for monitoring, man-
agement, or reporting. A key requirement for a distrib-
uted configuration management system is the ability to
integrate smoothly with such local systems. Because
configuration information is stored in a structured fash-
ion, it can easily be reused to generate configuration
files for new external tools.

This topic is a major focus for the expanding
Quattor community as new tools are encountered. In
this section we describe some existing integration work
that links systems for monitoring, virtualization, and
user desktop management into Quattor infrastructures.

Monitoring. Configuration of monitoring tools
such as Nagios [14] and Lemon [15] often requires the
administrator to define lists of machines with their
associated services. This information is needed to
determine how to group machines together for report-
ing and which sensors to read on a given machine.

With Quattor, this information is already avail-
able, as configurations are structured in terms of ser-
vice and node types. Hence the configuration lists
needed for monitoring tools can be automatically
derived from the configuration database. It has proved
straightforward to implement Pan functions that
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extract information about all existing nodes and pro-
vide it to the Nagios templates. These templates can
then generate complex, fine-grained policies, for in-
stance raise an alarm if the load on a single-CPU
node goes above three, but hold that same alarm on
four-CPU nodes until the load reaches 8, without
explicitly instructing Nagios about how many proces-
sors each node has. Also, node-specific checks can be
specified, and hosts not listed in the configuration
database can be added to the Nagios configuration.
This is useful when monitoring external services, such
as routers.

Virtualization. A major strength of a Quattor
configuration database is the ability to reference con-
figuration parameters from other services or even
machines. This has proved particularly useful in the
configuration of virtualization, where a number of
guest nodes are hosted as virtual machines (VMs) on a
host. The configuration of a VM has two dimensions:
the configuration of the node itself (its network set-
tings, users, services, etc.) and the configuration
needed on the host to run the VM (location of file sys-
tem storage, virtual MAC address, boot mechanism,
etc.). The node configuration resides in the profile as
normal, and much of the “external” configuration
resides in the machine’s hardware description template
which lists disk sizes, RAM size, and network cards.
The host can thus reference this information and use it
to generate the VM configuration files.

In broader terms, Quattor supports virtual ma-
chines using the concept of an enclosure. An enclo-
sure is an entity composed of a parent and one or
many children. The parent is always a Quattor repre-
sentation of a physical machine whereas a child can
represent either a physical or virtual machine. This
allows modeling of real hardware enclosures as well
as virtual machines.

Quattor-based virtualization management using
Xen has already been deployed in production environ-
ments [21] and OpenVZ virtualization has also been
implemented. A variety of methods for instantiating
VM file systems has been used, ranging from full
PXE-based automatic installation to bootstrapping
from pre-built images. In all cases, All is used to
guide the installation and bootstrap procedure for vir-
tual machines.

User desktops. Once administrators see the bene-
fit of having grid clusters and services under Quattor
management, they often look around to see whether
other parts of their infrastructure can also benefit. At
UAM, Quattor is used to manage Linux installations on
about forty user desktops that also have a Windows par-
tition. Typically, desktop users have little knowledge of
system administration, and often tend to deviate from
security policies, for instance, by installing unautho-
rized software.

Using Quattor allows administrators to keep all
machines in compliance with site’s policies. Quattor’s
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management tools can be configured to automatically
remove any unauthorized software and user accounts.
Other security measures such as firewall rules or con-
trolled privilege escalation (i.e., sudo) can also be con-
figured by the administrators without imposing addi-
tional burdens on users.

AlI can detect and preserve existing file systems
on the disks, and so Windows installations can live
side by side with Quattor-managed Linux installations.
This is a specific example of a general principle in
Quattor, where parts of the machine’s configuration
can effectively be ignored in order to delegate their
management to other tools. This flexibility enables
system administrators to “‘start small,” initially just
managing a small set of critical services. By gradually
extending Quattor management, they can consolidate
configuration information, making the most of their
investment in Quattor.

Related Work

Fabric management systems abound in both the
open source and the commercial sector. Some systems
like Oscar [22] and Rocks Clusters [23] use pre-built
system images, creating new machines by installing
and customizing a pre-built file system. Active Direc-
tory [24] provides a hierarchical schema for managing
network resources, but it does not easily allow handling
arbitrary (i.e., non-Microsoft) services and SW pack-
ages. Other systems define declarative languages [3] to
facilitate the configurations of machines within the fab-
ric. For a complete survey, see the literature [25, 26].
We believe that systems using high-level declarative
languages can provide the flexibility needed to imple-
ment distributed management infrastructures. Here, we
compare the language features in four systems — LCFG
[1], Cfengine [27], Puppet [28], and PoDIM [29] — to
those in Pan.

LCFG relies on configuration source files ex-
pressed in a high-level declarative language which are
transformed into low-level, machine-readable XML
profiles, similar to Quattor. However, LCFG’s config-
uration language, based on the C pre-processor, is lim-
ited when compared to Pan. It lacks user-defined
types, user-defined functions, and validation con-
structs for expressing constraints (although see PoDIM
discussion below). It doesn’t provide any equivalent to
Pan’s namespaces and loadpath, whose importance we
have demonstrated for devolved management of re-
motely distributed clusters based on different architec-
tures. A number of the authors have experience with
using LCFG to manage grid sites. The main limita-
tions we found in practice were the lack of an overall
configuration schema, which made it difficult to share
information between components, and the lack of
easy-to-use programming-language features such as
hash data structures and iterators.

Cfengine is a policy-based configuration man-
agement system in which each managed host belongs
to one or more classes for which some policies apply.
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Since a policy specifies the actions requested to align
a part of the system with the desired state, the configu-
ration description is partly procedural [3]. This makes
it difficult to reason about the relations of different
configuration parts; in fact, there is no validation sup-
port. Although Cfengine’s language provides func-
tions for manipulating parts of the managed system,
such as symbolic links, it lacks more refined con-
structs like type definitions and inclusion statements.
This paradigm does not easily allow hierarchical
schemes, limiting the possibilities for devolved man-
agement over distributed sites.

Puppet uses a high-level declarative language
with a feature set similar to that of Pan’s. In the Pup-
pet language one can define resources with associated
attributes. The language permits the administrator to
define values as well as providing defaults. In addi-
tion, classes can be defined to group resources into
high-level units. Further, modules can be defined and
shared with others. The real difference with Pan is the
validation. Puppet validates the schema on the server,
but only validates the attribute values once the config-
uration is instantiated on the client. This provides late
notification of problems and limits the possibilities of
cross-machine validation.

PoDIM is a recently proposed language aiming,
like Pan, to provide high-level configuration manage-
ment [29]. Compilers for both languages operate in the
same manner, converting source configuration files
into a series of XML configuration files, one for each
managed node. Pan uses a declarative syntax and
PoDIM uses a rule-based one. One distinctive feature
of PoDIM is its ability to define cross-machine con-
straints via the rules declared by the system admini-
strator. Pan provides similar features via validation
functions that can verify consistent configurations
between machines. The primary difference is how
inconsistent configurations are resolved. PoDIM
solves for alternate configurations consistent with the
declared rules; Pan requires that a system administra-
tor change the configuration to resolve the identified
problem.

Other important features of high-level configura-
tion languages are the ability to define a configuration
schema, mechanisms for propagating common config-
uration parameters between machines, and multiple
inheritance of attributes and constraints. Both lan-
guages have facilities for all of them. PoDIM defines a
schema through class attributes, rules, and invariants;
Pan, as shown above, uses an extended typing system.
In Pan, a managed object may only read information
from another object’s configuration. This is accom-
plished through use of the value() function and is criti-
cal for cross-object validation. PoDIM uses commands
to allow managed objects to set attributes within other
objects. PoDIM naturally allows multiple inheritance
through the underlying Eiffel implementation. With
Pan, any path can have multiple types bound to it,
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thereby allowing multiple inheritance of validation
constraints.

PoDIM has an internal mechanism to authorize
(or deny) certain changes to a configuration based on
identity, an important feature in environments where
many people maintain a fabric’s configuration. Pan
currently has no equivalent functionality. The Quattor
toolkit instead controls access to particular source con-
figuration files; this avoids accidental modifications
but cannot prevent malicious changes.

Recent collaborative work between the LCFG
and PoDIM teams [30], has shown that integration of
the two is possible. It also identified a couple issues
(slow performance and configuration oscillation) that
will need to be eliminated before PoDIM can be used
in production. The paper also indicates that a unified
language combining the features of LCFG and PoDIM
is desired; Pan to a large extent does combine them.
Moreover, production use of Pan has been shown to be
scalable and manageable, handling up to 8K machines
efficiently in the deployment at CERN’s computing
center.

Conclusions and Future Work

With the adoption of grid computing, it has
become increasingly common for different institutions
to group their resources and present them as a single
logical site. The consequence is a new type of fabric —
a co-managed, distributed infrastructure composed of
multiple physical sites in different administrative do-
mains. Quattor meets the main requirements for the
management of such a system: sharing of common
configuration data, possibility of local site customiza-
tions, use of standard secure communication proto-
cols, and flexibility.

Quattor’s effectiveness mostly comes from the
use of Pan, a declarative high-level configuration lan-
guage which allows the definition of hierarchical con-
figuration schemes using a simple syntax. The names-
pacing and loadpath features permit large-scale reuse
of a configuration’s parts and foster the collaborative
deployment and management practices which enable
the use case described in this paper. The most interest-
ing result of this collaboration is a complete configu-
ration framework, the QWG templates, intended for
the configuration of grid services.

Having more actors on the scene requires a
tighter control. Pan supports validation, that is, defini-
tion and checking of constraints before deployment.
Also, appropriate means for authenticating and autho-
rizing users and machine profile transfers are provided
by Quattor. The result is an effective devolved man-
agement mechanism, with a reduced probability of
service disruption due to misconfigurations or mis-
chievous interventions.

Quattor’s modularity and use of standard proto-
cols make it attractive in a wide spectrum of different
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site configurations. The elements of the Quattor tool-
kit — the configuration databases, tools for software
installation management, tools for package repository
management, and automated installation facilities —
can be used, ignored, or replaced to meet the specific
needs of a site, while peacefully coexisting with other
management tools. The proof of this flexibility is the
variety of use cases described in this paper: BEGrid
relying mainly on local customizations for the config-
uration, GRIF which uses a local configuration reposi-
tory and a shared package repository, and Grid-Ireland
which depends completely on shared, centrally man-
aged, repositories.

The Quattor toolkit is a mature solution used by
a large number of diverse sites. Mature, however, does
not mean static: the Quattor toolkit continues to
evolve incrementally in response to the needs of the
Quattor community, which now includes industrial as
well as academic users. While Quattor usage is still
concentrated within the academic grid community, the
model we propose is more widely applicable. For
example, large multi-national corporations already run
their own grid-like infrastructures spread across geo-
graphical locations. Policies at individual sites may
differ due to local historical or legal constraints,
resulting in the same requirements for sharing and
specialization we have already described. Mergers and
acquisitions may result in an ever-changing set of pol-
icy domains and local tools that must all be integrated
into a coherent whole. These are similar problems to
those faced by distributed grid sites; similar solutions
could be applied.

Quattor also functions well as a general fabric
management system and is being used successfully in
other, more traditional scenarios, such as that of a
large centralized computer center like at Nikhef,
CNAF, and CERN. In fact, many of those who started
using Quattor to manage their grid infrastructures are
now putting other aspects of their operations (mail
servers, desktops, etc.) under Quattor control.

Quattor is a complex tool with a steep learning
curve: although the community provides an active
support, we need to improve our knowledge base,
which entails providing clear use cases and possibly
out-of-the-box solutions. We are also actively working
on mitigating the difficulties encountered by new
users via tools for visualizing a site’s configuration.
Another area for further development is the integration
with tools for handling migration of virtual machines:
this is somewhat conflicting with the base line dictat-
ing that a node should look as it is declared to be,
since dynamically changing the location of a virtual
machine necessarily modifies the node’s configura-
tion. Moreover, in response to increasingly rising
security concerns, we are discussing how to extend
Pan to support an authorization mechanism that di-
rectly protects parts of the configuration schema (not
just templates). On the same line, we are working on
integrating Quattor with SELinux: we need to define
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minimum contexts for the core services and confine
them accordingly, as well as to manage target nodes’
configuration via an NCM component.
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