
Sysman: A Virtual File System
for Managing Clusters

Mohammad Banikazemi, David Daly, and Bulent Abali – IBM T. J. Watson Research Center

ABSTRACT

Sysman is a system management infrastructure for clusters and data centers similar to the
/proc file system. It provides a familiar yet powerful interface for the management of servers,
storage systems, and other devices. In the Sysman virtual file system each managed entity (e.g.,
power on/off button of a server, CPU utilization of a server, a LUN on a storage device), is
represented by a file. Reading from Sysman files obtains active information from devices being
managed by Sysman. Writing to Sysman files initiates tasks such as turning on/off server blades,
discovering new devices, and changing the boot order of a blade. The combination of the file
access semantics and existing UNIX utilities such as grep and find that operate on multiple files
allow the creation of very short but powerful system management procedures for large clusters.
Sysman is an extensible framework and has a simple interface through which new system
management procedures can be easily added. We show that by using a few lines of Linux
commands system management operations can be issued to more than 2000 servers in one second
and the results can be collected at a rate of more than seven servers per second. We have been
using Sysman (and its earlier implementations) in a cluster of Intel and PowerPC blade servers
containing hundreds of blades with various software configurations.

Introduction

Managing clusters made of hundreds and thou-
sands of servers with various types of storage and net-
work devices consumes a significant amount of system
administration resources. Heterogeneity of devices in a
cluster or data center and a plethora of command line
interfaces, graphical user interfaces (GUI), and web
based solutions available for managing different device
types have made the management of these systems an
ever more challenging task. Ethnographic studies of
system administrators have shown deficiencies in cur-
rent system management tools, including 1) poor situ-
ational awareness from having to interface with sev-
eral management tools, 2) lack of support for planning
and rehearsing complex system management proce-
dures, and 3) incomplete functionality requiring sys-
tem administrators to build their own tools [14]. It is
also shown that the ability to automate and script sys-
tem management functionality is crucial [14].

Currently, there are several monitoring and man-
agement solutions for performing system administra-
tive tasks in data centers and clusters [5, 8, 10, 12, 13,
20, 22, 23, 26]. Each of these solutions use a different
graphical or web based interface. These solutions vary
in how radical they are and how different an approach
they require for dealing system administration and
monitoring tasks. We discuss several of these solutions
in the Related Work section.

In our work we use a simple interface through
which complicated system administrative tasks can be
automated easily. We aim to design and provide a pow-
erful yet familiar interface on top of which various

system administrative tools can be built. In order to
make such an interface successful, instead of provid-
ing all the commands for performing various tasks on
all devices (which is impossible), we design the sys-
tem such that manufacturers (and developers) can add
the required programs and scripts for a given device to
the system. We also design the system such that we
take advantage of a large set of familiar system admin-
istration utilities (such as filesystem utilities that can
be easily used for manipulating large number of files).
We call our system Sysman.

Sysman is an easily extensible framework. Our
work was initiated by the need to manage a large set
of IBM BladeCenters containing tens and hundreds of
IBM blades in our lab. In our first implementation, we
provided agents mainly targeting IBM BladeCenter
[19] platform management and basic Linux server
management. Our BladeCenter platform management
agents leveraged the libraries developed for [16].
However, we designed Sysman such that it can be
enhanced by additional scripts and executables pro-
vided by the users and third parties, using a simple and
well defined interface. No change to the Sysman file
system itself is required for such additions.

Sysman provides a unified and simple interface
for managing various devices found in clusters and
data centers. Sysman provides a /proc-like interface.
The Sysman file system is layered over the command
line interfaces and other tools available for managing
devices, and provides a very simple yet powerful
interface for accessing all these tools in a unified man-
ner. The file system semantics enables the use of for

22nd Large Installation System Administration Conference (LISA ’08) 167

Sysman: A Virtual File System for Managing Clusters Banikazemi, Daly, and Abali

example existing UNIX commands such as find, sort,
and grep, and script programming to manage large
clusters of servers as easily as a single server. Consid-
ering that UNIX (and Linux) file system commands
are very simple yet can be utilized to perform very
complicated tasks operating on many files, Sysman
provides a very powerful and easy to use interface for
cluster management. Furthermore, since most system
administrators are already familiar with UNIX file
system commands and writing shell scripts, they will
have a very short learning curve with Sysman. Figure 1
contains three examples of how simply Sysman can be
used to monitor and/or control a large number of
devices.

A simple command for finding all servers which are turned on
find /sysman/systems -name power | xargs grep -l on

List all the blade chassis whose temperature is above 35 degrees
find . -name ’temperature_mp’ | xargs grep "" | sed s/:/" "/g | \

awk ’{ if ($2 >= 35.0) print $1 "temperature is: " $2}’

A simple script to collect the vmstat of all servers in background
#!/bin/bash
LIST=‘find /sysman/systems -name command‘
for i in $LIST; do

echo "vmstat " > $i &
done

Figure 1: Examples of Sysman usage.

In addition to collecting data from servers in a
cluster, Sysman uses exactly the same interface to
monitor and manage various types of devices. This
provides an opportunity to integrate various system
management domain into one and reduce the system
management cost. For a device to be Sysman enabled,
it is enough to have a command line interface through
which the device can be monitored and managed.
Once such an interface exist, simple scripts can be
added to the system to provide the basic methods for
managing these devices. Furthermore, as use of virtual
machines become more widely used, Sysman can be
utilized to create, monitor, manage, and destroy them
as well.

System management tasks are performed by
accessing Sysman files. In particular, all tasks are
accomplished by reading or writing a file or a direc-
tory look up operation. Sysman is a virtual file system
similar to the Linux /proc or /sys file systems. Sysman
creates a virtual file system where accessing files in
the /sysman directory results in execution of related
system management tasks. Sysman virtual file system
is typically created on a management server. Each
device or system is represented as a directory. Each
device (or system) directory contains files through
which various components of the device can be man-
aged. Sysman files are not only bytes on disk but con-
tain the active state of managed devices and systems.
One can also consider Sysman as a vehicle for provid-
ing named pipes [6] where one side of the pipe is con-
nected to a remote device. Sysman is an easily

extensible framework. Sysman allows the inclusion of
new devices by simply allowing agents and scripts
developed for these devices be utilized by Sysman.
Here are the contributions of Sysman:

• Sysman simplifies management of HPC clus-
ters and data centers

• Provides a unified interface for managing dif-
ferent system types, servers, storage systems
and network devices.

• File system representation of managed systems
enables the use of simple and familiar, yet pow-
erful UNIX (and Linux) file system commands
for managing hundreds and thousands of sys-
tems as easily as a single system

• Sysman can be extended to support arbitrary
device types provided that device operations
can be represented as file read and write opera-
tions

• Since Sysman and its agents run in user-space,
developing new extensions is easy.

• Graphical and web based interfaces can be built
on top of Sysman

The rest of this paper includes a background fol-
lowed by the basic architecture of Sysman and
advanced design issues. Related work, future work,
and conclusions complete the presentation.

Background

The proc file system [18] is a virtual file system
used in UNIX systems. Information about the system
can be obtained by accessing files in the /proc direc-
tory. Linux, SUN Solaris, and IBM AIX are among
operating systems which support such a virtual file
system. Certain system parameters can be configured
by writing to files in the /proc directory. The /proc file
system, and the similar /sys file system are used for
obtaining information and configuring local resources
only. Sysman operates on a similar basis, but as
opposed to the /proc system, it is used for managing
networked systems. Therefore, it can be used to con-
figure a much more diverse group of systems.

Sysman is a virtual file system developed com-
pletely in user space through the use of FUSE, File
system in User-space [4]. FUSE, is a kernel module,
which provides a bridge to the kernel interface. FUSE

168 22nd Large Installation System Administration Conference (LISA ’08)

Banikazemi, Daly, and Abali Sysman: A Virtual File System for Managing Clusters

is now part of the Linux kernel. It provides a simple
API, has a very efficient user-space kernel interface
and can be used by non privileged users. The path of a
typical file system call is shown in Figure 2a. FUSE
can intercept file system calls and redirect them to a
user-space program for implementing virtual file sys-
tems. Several virtual file systems have been developed
on top of FUSE. These file systems provide various
features, from versioning, to encryption, to simple
methods for accessing special devices. A list of file
systems built on top of FUSE can be found at [3].

FUSE

Virtual FS

File systems
(ext3, NFS)

VFS

glibc

FS
Interface

glibc

libfuse

kernel

userspace

Sysman

FUSE

System
Management

Tools and Apps

Servers,
BladeCenters,
and
Storage Systems

Sysman
agents

Sysman
API

File systems

(a) (b)

Figure 2: (a) File system call with FUSE and (b) path
of typical system administrative tasks with Sys-
man.

In Sysman, we use FUSE to intercept accesses to
Sysman files. While accesses to other files are not
affected, certain access types to Sysman files result in
information gathering, configuration, and other system
administrative tasks. In particular, Sysman intercepts
accesses to its directories. In the next section we pro-
vide discuss the basic architecture of Sysman.

Basic Architecture

In Sysman, each device is represented as a sepa-
rate directory with its own files and possibly subdirec-
tories under the /sysman subtree. Figure 2b illustrates
the path of typical system administrative tasks. When
as part of a system administration task, a file in the
/sysman directory is accessed, the file system call is
intercepted by FUSE and its processing gets delegated
to the user level Sysman program. In the rest of this
section we discuss various aspects of Sysman in detail.

Virtual File System Operations

Main system management tasks are performed
by either reading from a file in the /sysman directory
or by writing into a file in this directory. When a file
in /sysman directory is accessed, Sysman determines
if there is an agent associated with the requested <file
name, file system operation> pair, and executes the
matching agent, if it exists, before processing the
access as a regular file system read or write. For each
<file name, file system operation> pair, the name of
the corresponding agent is derived by Sysman. For
example, discover_master.write is the agent to execute
on write operations to the file discover_master. Sys-
man stores the agents in a hierarchical manner in a

configurable location and therefore given the complete
path of a file, the corresponding agent name and loca-
tion can be easily found. If such an agent exists, it is
executed. If not, no agents will be executed. In either
case, the file access operation completes as a regular
file system operation. That is, if the file system opera-
tion is a read from a file, Sysman reads the content of
the file, or if the file system operation is a write to a
file, it writes into the file.

In general, read operations are used for obtaining
information about the status of devices that are being
managed. For example, by reading the content of the
file power in a server directory, one can find out if the
server is turned on or not. Sysman supports various
information caching models that affect how often sys-
tem management information is collected. Whenever a
file is read, if the information is not already stored in
the file, necessary action is taken to obtain the infor-
mation, store it in the file and then present it to the
user. If the information is already available, the behav-
ior depends on the caching model used for that partic-
ular file. The cached information can be simply pre-
sented to the user or the content can be refreshed first.
In certain cases, the information is collected periodi-
cally. The caching model is specified in the Sysman
configuration file and can be set for a group of files or
individual files. We will discuss this feature in more
detail in the Special Files and Error Handling section.

On the other hand, writes to certain files result in
performing a task on the corresponding device (or
component). For example, writing a 1 or the word on
into a power file results in Sysman turning on the
server. In cases where the result of the operation is
required to be preserved, the result is stored in the file.
A subsequent read from the file prints out the result in
those cases. Sysman also recognizes certain file and
directory names and extensions and performs certain
predefined actions in response to accessing them. This
feature is discussed in the Special Files and Error Han-
dling section.

The /sysman Directory Hierarchy

The /sysman directory is organized such that
each managed device has its own directory. Further-
more, similar devices (e.g., servers with the same type,
or blades of an IBM BladeCenter) are listed under one
directory. Files in each directory are used for manag-
ing the device represented by that directory. Similarly
files in parent directories are used for obtaining infor-
mation about the group a device belongs to. Figure 3
shows parts (not all) of the /sysman directory structure
for a BladeCenter system in our lab consisting of eight
chassis with 14 blade servers in each chassis (112
blade servers total) and several other servers. The cre-
ation of this directory tree is discussed later when we
discuss the discovery mechanisms. Note the 8 chassis
found under the directory /sysman/systems/chassis/.
Each chassis is represented by a directory named after

22nd Large Installation System Administration Conference (LISA ’08) 169

Sysman: A Virtual File System for Managing Clusters Banikazemi, Daly, and Abali

/sysman

1

14

2
power
cpu
bootorder
macs
Bluelight
ids

chassis

servers

10.10.1.14

10.10.1.1

10.10.8.1

9.2.8.100

9.2.8.101

9.2.8.102

command

eventlog
temperature

blades

systems

discover_master
ids

proc
fs
net
scsi
sys

proc

fs
net
scsi
sys

Figure 3: Partial snapshot of a /sysman directory.

the IP address of the chassis management module, for
example 10.10.1.1.

In Figure 3, under each chassis subdirectory
there is a blades directory and two files, tempera-
ture_mp and eventlog, which report the hardware tem-
perature and hardware events common to the chassis,
respectively. Blades directory contains up to 14 subdi-
rectories named 1 to 14, each representing a blade
server found in the chassis. Reading from files found
under the blade directory, reports the blade status and
properties. For example, the first command in Figure 4
displays the boot order of blade number 3 in the Blade-
Center chassis whose Management Module (MM) IP
address is 10.10.1.1. Likewise, for configuring devices,
Sysman files may be written to. For example, to
change the boot order of the blade, one may execute
the second command in Figure 4.

$ cat /sysman/system/chassis/10.10.1.1/blades/3/bootorder
$ echo "network, floppy, cdrom, harddisk" > bootorder

Figure 4: Examples of reading from and writing to Sysman files.

$ echo "1" > /sysman/discover_master
$ echo "server 10.10.2.15" > /sysman/discover_master

Figure 6: Methods of discovery in Sysman.

Sysman is configured by a single configuration
file. This configuration file specifies among other
things the location of the Sysman agents (Figure 5a)
and where the FUSE directory is mounted. By default,
any access to a Sysman file refreshes the content of
the file first. On the other hand, by default accessing a
directory does not cause refreshing the directory
except for proc and sys directories.

Discovery
Sysman provides three methods for adding new

devices to the system: prompted, automatic, and manual.

The prompted method requires the writing of ‘1’
to the /sysman/discover_master file. Once the file is
written to, Sysman searches for devices known to it and
appropriate directories and files are created upon dis-
covery of new devices. BladeCenter chassis are discov-
ered through the Service Location Protocol (SLP) [25].

The prompted method is used by issuing a command
like the first command in Figure 6. This command
causes Sysman to run the discover_master.write script
which runs an SLP client program. The SLP client
makes broadcast announcements to discover all the
BladeCenter chassis on the local subnet. For each
chassis discovered, a directory is created in the /sys-
man/system/chassis directory, with the IP address of
the chassis management module as the name of the
directory.

power
cpu
bootorder
macs
Bluelight

chassis

servers
command

eventlog
temperature
ids

blades

systems

discover_master
ids

Proc

proc

ids

1

14

2

power
cpu
bootorder
macs
Bluelight

10.10.1.1

eventlog
temperature
ids

blades

proc

power
cpu
bootorder
macs
Bluelight
ids

proc

(a) (b)

sysman_scripts

Figure 5: (a) Parts of a Sysman script directory and
(b) different ids files.

In the automatic method, Sysman periodically
runs the same discovery processes as described above
without user intervention. A discovery frequency is
specified in the configuration file. When a new device
is discovered that contains other devices, discovery is
run automatically on the new device as well. In the
manual method, the name or IP address of the device
(or its management interface), along with the device
type is written to the discover_master file. As a result
of such a write, corresponding directories and files are
created in the /sysman directory. The second com-
mand in Figure 6 adds a server to the system.

Sysman File System Security
Sysman uses the existing file system authentica-

tion and permission system used in Linux to control
access to the files under /sysman. Access to /sysman
can be limited to the root user if need be. If the access
is not limited to root, regular file system permissions
are checked to see if a user can access a file under
/sysman. For example, users in a system administra-
tion group can be given both read and write access to
sysman files, while other users can be limited to read
access. In another example, a user or a group can be
restricted to accessing only a subtree of /sysman,
therefore authorizing those users to manage only a
subset of the managed systems. Furthermore, other

170 22nd Large Installation System Administration Conference (LISA ’08)

Banikazemi, Daly, and Abali Sysman: A Virtual File System for Managing Clusters

available access control lists can be also used for
enhanced file security.

The Command File

A generic method for running tasks on a remote
server using ssh is provided by writing the command
into the command file. When a command is written to
a file called command in the /sysman directory tree,
the Sysman executes that command remotely. The
result of the remote execution is written into the com-
mand file. A subsequent read from this file prints out
the result of the command execution. The command
agent provides a simple method for Sysman users to
perform tasks not found under /sysman. This is similar
to the C function system(<string>), except that the
<string> runs on multiple systems found under the
/sysman tree. For example, to get a list of running pro-
cesses from all systems, one could execute the se-
quence of commands in Figure 7.

$ echo "ps -ax" > run_this
$ find /sysman/systems/servers -name command -exec cp run_this {} \;
$ find /sysman/systems/servers -name command -exec cat {} \;

Figure 7: Issuing commands to Sysman devices.

Advanced Features

In this section we describe some of the more
advanced features of Sysman.

Authentication for Access to Managed Systems

Many managed systems and devices require their
own authentication method or information. Since Sys-
man wraps other system management tools, Sysman
must support a way to comply with the authentication
requirements of the lower level tools and cache creden-
tials. This is done through the use of the ids files. The
user id and password are provided by the user by writ-
ing them into the ids file. These values are then
encrypted and kept by Sysman in memory and are not
written to a file as a security measure. Sysman agents
can look up these credentials whenever they need them.

Inheritance and Special Files

Sysman supports inheritance in the /sysman hier-
archy. One example of this feature is the ids file which
contains <userid,password> pairs. In Figure 5b the user
id and password for accessing blade 14 is found in the
ids file under the blade 14 directory. However, blade 1
does not have its own ids file. In Sysman, it is not nec-
essary to create an ids file for each managed device or
system. The user ids and passwords propagate down
directory trees for the convenience of the user.

If a system management operation requires a
user id and password, but there is no ids file in the cor-
responding directory, the ids of parent directory is
searched for such an entry. This process is continued
up in the directory tree until an ids file is found. Then
the user id and password are retrieved by accessing the
ids file. (The /sysman/ids file represents the top level
ids file.)

Special Files and Error Handling
Sysman recognizes some files such as ids files as

special files. Accesses to special files leads to the exe-
cution of predefined tasks by Sysman. Another special
file is the lock file. In cases where a resource is shared
by multiple devices (for example the management
controller of several blades) and access to the shared
resource needs to be serialized, Sysman provides the
required mechanism for locking (by using a file called
lock in the location corresponding to the shared
resource of interest).

Special files are used for handling errors. In Sys-
man, files ending with .status extension are special
files. These files follow a simple format:
<return_value [return_message]>

Sysman and its agents use this file to store the return
value of an operation (an integer) and possibly a
human readable message indicating what the result is.
If the operation succeed the return value will be zero.
For example the status of executing a command initi-
ated by writing to the power file in a directory will be
stored in power.status in the same directory.

This feature can be used to implement various
error handling methods at Sysman level. That is, Sys-
man users can write their programs and scripts such
that depending on the result of an operation, suitable
actions can be taken. Another level of error handling
can be performed at the level of agents. Agents used
for managing devices can do more than passing the
result status by using .status files. Agents can them-
selves be responsive to various error conditions and
try to recover from various failures. (Our current
implementation uses agents which can respond to fail-
ing connections, etc.)

Unified /proc and /sys

Directories called proc and sys are special direc-
tories in Sysman. Sysman consolidates information
provided under the /proc and /sys directories of all
managed Linux systems. Since these directories change
dynamically, their content gets updated by accessing
the corresponding remote device, whenever they are
accessed. In other words, by default these directories
will be refreshed upon access. Additional directories
which require the same treatment can be defined in the
Sysman configuration file.

API and Extensibility

Sysman supports a simple extensible interface
for calling its agents (the underlying scripts and binary
executables). Whenever a Sysman file is accessed the
name and path of the agent to be executed are derived
by Sysman. Then the agent is run and a set of parame-
ters are passed to the agent as options (Figure 8).

22nd Large Installation System Administration Conference (LISA ’08) 171

Sysman: A Virtual File System for Managing Clusters Banikazemi, Daly, and Abali

Currently, in addition to the complete path and file
name of the file being accessed, three options are sup-
ported. User id and password (the -u and -p options)
are used when accessing the device requires the use of
a user id and password. The -i option is used to pass
the information provided by user for accessing the file.
For example, the content the user wants to write into a
file is passed to the agent through the use of this
option. As it can be seen, this interface is very simple
and flexible. Agents for performing new tasks and/or
supporting new devices can be easily developed by
following this interface. Once the agent is developed
and tested, it can be easily added to the Sysman direc-
tory for agents.

agent -f file_name [-u user_id]
[-p password] [-i user_input]

Figure 8: Sysman API.

Asynchronous Execution

The main strength of Sysman is that it can be
used along with a variety of file system and operating
system commands and utilities. Sysman can be uti-
lized in an asynchronous manner simply by accessing
Sysman files asynchronously (i.e., in the background).
This feature is very useful when hundreds and thou-
sands of devices are being managed by Sysman. Let
us consider a case where we want to obtain the CPU
utilization (and other information provided by the
vmstat command) of our compute nodes. If we collect
this information node by node it will take a long time
before all nodes are contacted. Alternatively by ac-
cessing corresponding files in the background as
shown in the example below by using the ‘‘&’’ sign
we can initiate access to the nodes without waiting for
the responses to arrive (Figure 9).

A simple script to collect the vmstat
of all servers in background
#!/bin/bash
LIST=‘find /sysman/systems -name command‘
for i in $LIST; do
echo "vmstat " > $i &

done

Figure 9: Asynchronous execution of Sysman com-
mands.

Figure 10 shows how long it takes to get this
information from up to more than 2000 nodes syn-
chronously and asynchronously. It can be observed
that when the operation is done asynchronously, the
parallelism in obtaining the information from different
nodes results in an order of magnitude reduction in
total time.

Related Work

The difficulties in managing clusters containing
many physical machines and now hundreds and thou-
sands of virtual machines have led several research
and development groups to work on various methods

for automating system administrative tasks. Very dif-
ferent approaches have been taken by these groups. In
this section we discuss some of the related work.

Plan 9 is a distributed system built at AT&T Bell
Laboratories [24] in which all system resources are
represented by a hierarchical file system. Files in this
file systems are not repositories for storing data on
disk. However, resources are accessed using file-ori-
ented read and write calls. The network protocol used
for accessing and manipulating system resources is
called 9P. Sysman uses a similar method for perform-
ing system management tasks.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

Number of Remote Nodes

T
im

e
(s

ec
)

Asynchronous

Synchronous

Figure 10: Sysman synchronous and asynchronous
execution modes.

Xcpu [22] is a 9P based framework for process
management in clusters and grids developed as Los
Alamos National Laboratory intended to be a replace-
ment for the bproc system for managing processes
across a cluster. The system uses 9p to develop a
directory tree to control the scheduling and execution
of jobs on a large cluster. Each node in the system is
represented by a directory, including subdirectories for
all sessions running on the nodes. All processes are
run within a session.

The session directory includes the files arch, ctl,
exec, and status among others. The arch file can be
read indicating the architecture of the node, and the
status file reports on the status of the session. The ctl
and exec files are used to control the execution of a
process in the session. The target image to run on the
node is specified by copying the image to the exec
file, while the control of the session is controlled by
writing various values to the ctl file.

Xcpu uses a similar architecture in representing
system resources as directories and files that can be
accessed for system management tasks. Configfs [2] is
a user-space driven approach for configuring kernel
objects. Similar to Xcpu and Sysman, resources are
presented in a directory hierarchy and configuration
tasks are achieved by accessing files. While Xcpu is
mainly used for process management and Configfs is
used for configuring kernel objects, Sysman is used

172 22nd Large Installation System Administration Conference (LISA ’08)

Banikazemi, Daly, and Abali Sysman: A Virtual File System for Managing Clusters

for managing a larger and more diverse set of re-
sources.

Nagios [8] is a host and network monitoring
application for monitoring private services and at-
tributes such as, memory usage, CPU load, disk usage,
and Running processes. Nagios watches hosts and ser-
vices specified to it, and alert the user when things go
bad and when they get better. It provides the ability to
define event handlers to be run during service or host
events. Ganglia [5] is another distributed monitoring
system for high-performance computing systems such
as clusters and Grids. It uses It uses widely used tech-
nologies such as XML, XDR, and RRDtool for data
storage and visualization. IBM Cluster Systems Man-
agement (CSM) [1] is a management tool for clustered
and distributed Intel and PowerPC systems. CSM sup-
ports Linux and AIX operating systems and can be
used for system deployment, monitoring and manage-
ment. In particular, CSM is designed to provide the
parallelism required for efficient management of clus-
ters made of hundreds of nodes. In contrast with these
tools and products, for system administrators familiar
with UNIX and UNIX-like environments, Sysman is
very simple and can be deployed and used effectively
in a very short amount of time.

Usher [21] and MLN [15] aim for providing an
extensible framework for managing large clusters and
networks. In particular, Usher is a virtual machine
management system with an interface whereby system
administrators can ask for virtual machines and dele-
gate the corresponding administrative tasks to modular
plug-ins. The architecture of Usher is such that new
plug-ins can be developed and utilized by users. The
goals behind the architecture of Sysman is similar to
those of Usher in that they both aim to provide an
extensible framework where users can add their own
modules (scripts) when need be. Sysman differs from
Usher in its scope and the fact that it tries to target
wider array of systems (including virtual systems) and
devices such as storage and network devices.

Future Work and Conclusions

An early version of Sysman with limited set of
features has been available on SourceForge [9]. We
are extending our work to support storage devices as
well. Currently we have developed several agents for
managing IBM DS4000 series storage systems. These
agents are used to create LUNs and map them to
appropriate host systems. Although not discussed in
the current version of the paper, we have completed
this work. We are also extending Sysman to monitor
and manage networking devices (in addition to those
network switches which can be managed through IBM
BladeCenter management modules and are supported).

We are investigating scalable methods for sup-
porting simultaneous and asynchronous execution of
multiple instances of agents. We plan to work on pro-
viding a more robust error handling mechanism. We

also plan to extend Sysman to cover the management
of virtual machines as well. Using the interface for
managing Linux KVM [7], Xen [17] and VMware
[11] virtual machines, Sysman will be used to create
and manage virtual machines. This will include the
management of storage volumes for these virtual
machines as well. Another direction for future is to
enhance Sysman to become a distributed management
system in which multiple Sysman servers cooperate
with each other to provide a higher level of scalability
and fault tolerance. We are investigating the use of
multicast messages for issuing the same commands to
multiple systems too.

In this paper, we presented Sysman, a new infra-
structure for system management. Sysman provides a
simple yet very powerful interface which makes the
automation of system management tasks very easy.
Since Sysman is presented to end users as a virtual file
system, all UNIX file system commands can be uti-
lized to manage a cluster of possibly heterogeneous
servers and other devices. Sysman is designed to be
easily extensible. Agents for new devices can be
developed and added to the system easily. Further-
more, graphical and web based interfaces can be
added on top of Sysman.

Author Biographies

Mohammad Banikazemi is a research staff mem-
ber at IBM T. J. Watson Research Center. His research
interests include computer architecture, storage sys-
tems and simplifying server and storage management.
He has a Ph.D. in Computer Science from Ohio State
University, where he was an IBM Graduate Fellow. He
has received an IBM Research Division Award and
several IBM Invention Achievement Awards. He is a
Senior member of both the IEEE and the ACM.

David Daly is a research staff member at IBM T.
J. Watson Research Center. He received a B.S. degree
in computer engineering in 1998 from Syracuse Uni-
versity. He received Ph.D. and M.S. degrees in Electri-
cal Engineering in 2005 and 2001 respectively, both
from the University of Illinois at Urbana-Champaign.
Since joining IBM in 2005, he has worked on com-
puter system performance analysis and modeling, ana-
lyzing financial workloads for high performance com-
puting, and simplifying server management.

Bulent Abali received his Ph.D. from the Ohio
State University in 1989. He has been a research staff
member at IBM Research since then.

Bibliography

[1] Cluster Systems Management (CSM), http://www.
ibm.com/systems/clusters/software/csm/index.html .

[2] Configfs, http://www.mjmwired.net/kernel/
Documentation/filesystems/configfs/ .

[3] File Systems Using FUSE, http://fuse.sourceforge.
net/wiki/index.php/FileSystems .

22nd Large Installation System Administration Conference (LISA ’08) 173

Sysman: A Virtual File System for Managing Clusters Banikazemi, Daly, and Abali

[4] FUSE: File System in Userspace, http://fuse.
sourceforge.net/ .

[5] Ganglia, http://ganglia.sourceforge.net/ .
[6] Introduction to Named Pipes , http://www.

linuxjournal.com/article/2156 .
[7] Kernel Based Virtual Machine , http://kvm.

qumranet.com/kvmwiki .
[8] Nagios, http://www.nagios.org/ .
[9] Sysmanfs: A Virtual Filesystem for System

Management, https://sourceforge.net/projects/
sysmanfs .

[10] The openMosix Project http://openmosix.
sourceforge.net/ .

[11] VMware, http://www.VMware.com .
[12] Amar, L., A. Barak, E. Levy, and M. Okun, ‘‘An

On-Line Algorithm For Fair-Share Node Alloca-
tions in a Cluster,’’ Proceedings of Seventh IEEE
International Symposium on Cluster Computing
and the Grid (CCGrid’07), 2007.

[13] Amar, L., J. Stoesser, A. Barak, and D. Neumann,
‘‘Economically Enhanced Mosix for Market-
based Scheduling in Grid OS,’’ Proceedings of
Workshop on Economic Models and Algorithms
for Grid Systems (EMAGS) 2007, 8th IEEE/ACM
International Conference on Grid Computing
(Grid 2007), 2007.

[14] Barrett, R., E. Kandogan, P. P. Maglio, E. Haber,
L. A. Takayama, and M. Prabaker, ‘‘Field Studies
of Computer System Administrators: Analysis of
System Management Tools and Practices,’’ Pro-
ceedings of ACM Conference on Computer Sup-
ported Cooperative Work, 2004.

[15] Begnum, K., ‘‘Managing Large Networks of Vir-
tual Machines,’’ LISA ’06: Proceedings of the
20th Conference on Large Installation System Ad-
ministration, p. 16, 2006.

[16] Daly, D., J. H. Choi, J. E. Moreira, and A. P.
Waterland, ‘‘Base Operating System Provisioning
and Bringup for a Commercial Supercomputer,’’
Proceedings of The Third International Workshop
on System Management Techniques, Processes
and Services (SMTPS), 2007.

[17] Dragovic, B., K. Fraser, S. Hand, T. Harris, A.
Ho, I. Pratt, A. Warfield, P. Barham, and R.
Neugebauer, ‘‘Xen and the Art of Virtualization,’’
Proceedings of the ACM Symposium on Operat-
ing Systems Principles, 2003.

[18] Faulkner, R. and R. Gomes, ‘‘The Process File
System and Process Model in UNIX System V,’’
USENIX Winter, pp. 243-252, 1991.

[19] IBM BladeCenter, http://www.ibm.com/systems/
bladecenter/ .

[20] Massie, M. L., B. N. Chun, and D. E. Culler,
‘‘The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience,’’ Paral-
lel Computing, Vol. 30, Num. 7, 2004.

[21] McNett, M., D. Gupta, A. Vahdat, and G. M.
Voelker, ‘‘Usher: An Extensible Framework for

Managing Clusters of Virtual Machines,’’ Pro-
ceedings of the 21st Large Installation System
Administration Conference (LISA), November,
2007.

[22] Minnich, R. and A. Mirtchovski, ‘‘Xcpu: A New,
9p-Based Process Management System for Clus-
ters and Grids,’’ Proceedings of IEEE Interna-
tional Conference on Cluster Computing, 2006.

[23] Mirtchovski, A. and L. Ionkov, ‘‘Kvmfs: Virtual
Machine Partitioning for Clusters and Grids,’’
Proceedings of The Linux Symposium, 2007.

[24] Pike, R., D. Presotto, K. Thompson, H. Trickey,
and P. Winterbottom, ‘‘The Use of Name Spaces
in Plan 9,’’ Operating Systems Review, Vol. 27,
Num. 2, 1993.

[25] RFC 2608, Service Location Protocol (SLP), Ver-
sion 2, http://tools.ietf.org/html/rfc2608 .

[26] Sacerdoti, F., M. Katz, M. Massie, and D. Culler,
‘‘Wide Area Cluster Monitoring with Ganglia,’’
Proceedings of IEEE International Conference on
Cluster Computing, 2003.

174 22nd Large Installation System Administration Conference (LISA ’08)

