
Beyond Bug-Finding: Sound Program Analysis for Linux

Zachary Anderson,1 Eric Brewer,1 Jeremy Condit,1 Robert Ennals,2

David Gay,2 Matthew Harren,1 George C. Necula,1 Feng Zhou1

1 University of California, Berkeley 2 Intel Research Berkeley
{zra,brewer,jcondit,matth,necula,zf}@cs.berkeley.edu {robert.ennals,david.e.gay}@intel.com

Abstract
It is time for us to focus on sound analyses for our crit-

ical systems software—that is, we must focus on analy-
ses that ensure the absence of defects of particular known
types, rather than best-effort bug-finding tools. This pa-
per presents three sample analyses for Linux that are
aimed at eliminating bugs relating to type safety, deallo-
cation, and blocking. These analyses rely on lightweight
programmer annotations and run-time checks in order to
make them practical and scalable. Sound analyses of this
sort can check a wide variety of properties and will ulti-
mately yield more reliable code than bug-finding alone.

1 Introduction

The strength of the systems community has long been
optimization, historically for performance. This “quanti-
tative approach” promotes common metrics and bench-
marks for key properties that in turn become metrics of
success for new work. But for properties such as secu-
rity or privacy or safety, mere optimization is not suffi-
cient. For such properties we need guarantees, and we
believe that in many cases, it is feasible for the program-
mer and the compiler to provide these guarantees. For
example, type checkers for strong type systems routinely
prove deep facts about large programs without impos-
ing an unnecessary burden on the programmer or the
compiler. Guarantees for many important higher-level
system properties can be obtained by similarly practical
techniques, even for existing systems.

In the realm of static analysis for systems code, the
systems community’s focus on optimization has been
manifested as a focus on bug-finding, where the metric
of performance is the number of bugs found. Although
this work has been very successful at revealing specific
flaws in existing software, what we really want is a guar-
antee that no bugs of a specific type can occur—in other
words, we want sound static analysis.

The systems community has historically felt that
soundness requires too much programmer effort to be
practical, either because it requires the programmer to
write complex proofs, or because it requires large-scale
rewriting of software in higher-level languages. In this
paper, we argue that it is practical to provide many im-
portant soundness properties for large-scale systems soft-
ware, even when written in C, and indeed that this is the
approach that the community should be taking.

To demonstrate the feasibility of this approach, we
present three soundness tools that we have developed for
use with the Linux kernel. First, Deputy checks that a
pointer always points to valid data of the correct type,
even in presence of pointer arithmetic. Second, CCount
checks that objects are only freed when there are no dan-
gling references to them. Finally, BlockStop checks that
the kernel does not call blocking functions while inter-
rupts are disabled.

These tools have several properties that we believe are
essential to making soundness practical for large-scale
systems software such as the Linux kernel:

• Lightweight, untrusted annotations: Some anno-
tations to existing source code may be required, but
they are minimal, and they extend the type declara-
tions to express simple ideas that should make sense
to normal programmers. These annotations are not
trusted by the compiler, so errors in the annotations
will be caught along with errors in the code.

• Incremental porting: It is not necessary to anno-
tate an entire program at once in order to gain any
benefit. The system can be made safe one file or
even one line at a time, with increasing levels of
safety as more code is annotated.

• Hybrid checking: Most operations are checked
statically, and the rest are checked at run time. Al-
though detecting bugs at compile time is preferable,
run-time checks are often necessary for practicality.

• Erasure semantics: The tools check, but do not
otherwise modify, the behavior of a program. An-
notations are written such that they can be ignored
(“erased”) by the traditional build process. The pro-
gram is thus not locked into the tool.

• Trusted code: Sometimes the behavior of a particu-
lar code fragment is too complex for a practical tool
to be able to guarantee soundness. In this case, the
programmer should be allowed to mark the code as
trusted for the purpose of analysis, thus raising its
priority for code reviews and testing.

In addition, since we have written and inferred many
annotations in the course of this work, we propose a
shared repository of annotations and properties inferred
for the Linux kernel. This repository, discussed in Sec-
tion 3, would allow researchers to better collaborate
when building such sound analyses in the future.

The major contribution of this paper is the idea that
sound static analysis is a feasible and desirable alterna-
tive to bug-finding. In support of this idea, we present
three analyses that we have used successfully on a work-
ing version of the Linux kernel, showing that it is possi-
ble to apply sound static analysis tools at a large scale.
In addition, we present the basic principles of these tools
that have allowed us to achieve this scalability.

Of course, bug-finding tools still have their place in
the systems community. Heuristically checking complex
properties of systems is often much easier than design-
ing a sound static analysis, and in some sense, it can
be viewed as a precursor to a sound analysis. However,
we urge the community to focus on such sound analyses
whenever possible, since guarantees provide more last-
ing benefits than bug-finding alone.

In the following section, we discuss each of our three
analyses in more detail. Then, we discuss some future
directions for research in sound analyses. Finally, we
discuss related work and conclude.

2 Sound Analyses for Linux

In this section, we discuss three analyses we have ap-
plied to the Linux kernel thus far. This work was per-
formed on a stripped-down version of the Linux 2.6.15.5
kernel, which consists of 435,000 lines of code. This
code includes the basic kernel (kernel/, mm/, and
arch/i386/), the networking stack (ipv4), several
file systems (e.g., ext2 and procfs), and several de-
vice drivers. The resulting kernel is fully functional in
VMware as well as on several machines that the au-
thors use. More details about our experimental kernel are
available at http://ivy.cs.berkeley.edu/.

We focused on this stripped-down kernel in order to
get a working system in place as fast as possible; how-
ever, with sufficient manpower, there is no reason to be-
lieve that these results could not be extended to the full
Linux distribution. In other words, we omitted parts of
the Linux kernel for manpower reasons, not for technical
reasons.

2.1 Type Safety: Deputy

One major source of errors in Linux is the lack of type
safety in C programs. Although a significant portion of
C code is type safe, there are a number of language fea-
tures and programming idioms whose safety cannot be
verified by the C compiler. For example, verifying the
correctness of array indices, union field references, and
type casts is the sole responsibility of the programmer.

Our approach to handling this problem in the Linux
kernel is to use the Deputy type system [CHA+07].
Deputy allows programmers to annotate pointer types
with bounds information written in terms of other vari-
ables in the environment. Deputy also allows annotations
for unions, null-terminated sequences, and polymorphic
data. In return, Deputy is able to enforce the memory
and type safety of the program using a combination of
static checking and run-time checks. Note that these an-
notations are not trusted by the compiler, so if the pro-
grammer introduces an erroneous annotation, that error
will be caught along with any errors in the code itself. In
cases where Deputy’s type system is insufficient to anno-
tate the code properly, Deputy allows the programmer to
explicitly mark code that should be trusted by our tools.

Overall, Deputy guarantees that, at run time, the value
of every program expression corresponds to its compile-
time type, and in doing so, Deputy prevents out-of-
bounds array accesses and misuse of unions. Deputy as-
sumes that trusted code is correct and that code outside
the current module conforms to the provided annotations.
Since all safety guarantees are relative to these assump-
tions about trusted or external code, we attempt to use
Deputy on as much of the source code as possible.

Unlike other safe C variants such as Cyclone
[JMG+02] and CCured [NCH+05], Deputy is incremen-
tal and thread safe. That is, programmers are free to add
annotations and modify code function-by-function. This
is possible because Deputy does not change the repre-
sentation of the data visible across function boundaries,
which allows “deputized” modules to interoperate with
standard modules. While the initial version of the file
may contain several blocks of trusted code, subsequent
versions will gradually eliminate this trusted code in fa-
vor of fully annotated and checked code. The same holds
of run-time checks: programmers can gradually modify
the code to reduce the number of checks that must be

deferred until run time. This approach provides an in-
cremental path towards a fully-annotated and type-safe
Linux kernel.

In order to convert code to use Deputy, we replace gcc
with deputy in the kernel makefiles. When Deputy is
invoked on a C source file, it prints errors for any code
that is considered illegal in its type system, such as casts
between pointers with different base types. In order to re-
solve such errors, the programmer must add annotations
(such as information about bounds or polymorphism),
alter the code, or tell Deputy to trust the code. Once
Deputy accepts the code, it will insert any necessary run-
time checks and then compile with gcc. Booting the
new code typically results in a number of warning mes-
sages due to incorrect or incomplete annotations; once
these are revised, Linux runs as expected.

In previous work [ZCA+06], we described our expe-
rience using Deputy on Linux device drivers alone; how-
ever, we have now applied Deputy to the full 435,000-
line kernel described above. We added standard Deputy
annotations to approximately 2627 lines (about 0.6%),
and we trusted approximately 3273 lines (less than
0.8%). (Note, however, that the significance of trusting a
given line of code varies greatly according to how each
line of code is used in the program text and how often
it is executed at run time.) This conversion required ap-
proximately 7 person-weeks, but the conversion speed
increased significantly in the later part of the process due
to improvements in the tool and improvements in our
ability to identify and apply common annotation patterns.

The dep columns of Table 2.1 show the relative per-
formance of a 1.6 GHz Pentium M system with the
Deputy-enabled kernel compared to the original Linux
kernel, measured with the hbench [BS97] suite of
benchmarks. Benchmarks in the bw column are band-
width tests (larger is better) and those in the lat col-
umn are latency tests (smaller is better). Most tests show
that Deputy incurs relatively small overhead. The worst
cases are a maximum slowdown of 17% for the local
TCP bandwidth test, and a 48% of latency increase for
the local UDP latency test. We believe that these results
are promising, since they suggest that type safety can be
achieved at a modest performance cost.

2.2 Deallocation: CCount

Memory management bugs are a significant cause of
software failures and vulnerabilities in C programs. If an
object is freed when references to it still exist, then sub-
sequent accesses to the freed object may actually access a
new object that has been allocated in the same space, re-
sulting in crashes, security vulnerabilities, and violations
of type-safety properties assumed by other analyses.

The standard way to avoid memory management prob-

bw ... Rel. Perf. lat ... Rel. Perf.
tests dep mem tests dep mem
bzero 1.01 1.00 connect 1.10 2.10
file rd 0.98 0.99 ctx 1.15 1.17
mem cp 1.00 1.00 ctx2 1.35 1.13
mem rd 1.00 1.00 fs 1.35 2.73
mem wr 1.06 0.99 fslayer 1.04 0.98
mmap rd 0.85 0.93 mmap 1.41 1.21
pipe 0.98 0.97 pipe 1.14 1.12
tcp 0.83 0.66 proc 1.29 1.30

rpc 1.37 2.01
sig 1.31 1.23
syscall 0.74 1.22
tcp 1.41 2.55
udp 1.48 1.82

Table 1: Relative performance of the Linux kernels
modified for Deputy (dep) and CCount (mem) on the
hbench benchmark suite. Networking results measured
with localhost.

lems is to use garbage collection, where objects are au-
tomatically freed when they are no longer referenced.
However, while previous work shows that it is possible
to build an operating system kernel that uses garbage
collection for memory management [HLA+05, Mit96,
WP97], we believe that retrofitting a garbage collector
onto a large legacy kernel such as Linux would be ex-
tremely difficult since it would require making signifi-
cant changes to the way the kernel manages memory.

To address this issue, we have designed CCount, a C-
to-C compiler and runtime system that uses reference
counting to check the correctness of a C program’s ex-
isting manual memory management. CCount’s compiler
modifies all pointer writes to maintain an 8-bit reference
count on each 16-byte chunk of memory (a 6.25% space
overhead), and the runtime system uses this data to check
that frees are safe. Bad frees of objects with k∗256 refer-
ences will be missed by such a system, but we expect this
case to occur very infrequently in non-malicious code.
For total safety, an overflow check could be used.

Using CCount for the Linux kernel required two sig-
nificant changes. First, we modified Linux’s mem-
ory management routines to check reference counts
and to zero all allocated storage (necessary to avoid
decrementing random reference counts when initializ-
ing pointers).1 On failure, we log an error and (op-
tionally) leak the object to guarantee soundness. Sec-
ond, CCount rewrites pointer writes such as ‘*a = b’
to ‘RC(b)++, RC(*a)--, *a = b’, where RC ac-
cesses the reference count of a pointer.2 To support con-
current code, we must increment and decrement refer-
ence counts using atomic operations, and we must ensure
that the increment happens before the decrement to avoid

transitory zero reference counts. In contrast, we assume
that all pointer writes are already protected by appropri-
ate locks and so we do not translate the write itself into
an atomic operation. In the future, we plan to check that
this assumption does indeed hold by using an additional
static analysis tool.

CCount requires accurate type information when ob-
jects are freed, copied (memcpy), or cleared (memset).
This information is generally similar to information
needed by Deputy, so we expect to reuse Deputy an-
notations in the future. However, we currently have to
provide some of this information “by hand”. On our
small kernel, we had to describe the layout of 32 types,
use explicit runtime type information in 27 places, and
change 50 uses of memset and memcpy to type-aware
versions. We believe that such modifications are accept-
able as long as they are made directly by the programmer
at the source level, where the programmer can consider
their consequences for performance and correctness, as
opposed to being made automatically by the compiler.

With these changes, CCount will boot and run our
small Linux kernel, but it reports many bad frees. We
fix these bad frees by setting breakpoints at the bad free
report statement and tracking down the cause of the bad
free using our debugging facilities. Fixes to bad frees
involve nulling out some extra pointers, usually around
the time the corresponding object is freed (27 instances
so far3) and adding delayed free scopes (26 so far). A
delayed free scope simply delays all frees (and the asso-
ciated reference count check) that happen inside it until
its end, greatly simplifying the checks for complex or
cyclical data structures. We have spent approximately 6
person-weeks porting CCount and making these changes
to the Linux kernel, and we can now verify the correct-
ness of all of the ∼107k frees that occur from boot time
until the login prompt is available. And after running the
hbench benchmark suite, our modified kernel reports
677 “bad” frees from ∼100M free calls. We are confi-
dent that we can eliminate these remaining bad frees.

The relative performance of the CCount-kernel vs the
original Linux kernel is shown in the mem columns of
Table 2.1. These numbers are measured on a 2.33GHz
Intel R© Xeon R© 5140, running a uniprocessor kernel. The
performance degradation is reasonable (< 30%) except
on the networking and file system tests. Additionally,
we estimated the performance impact of CCount with an
SMP kernel by changing the increment and decrement
operations for reference count updates to use “locked”
instructions. This leads to significant degradations in
performance: bw tcp decreases to 0.50, lat tcp in-
creases to 3.60, lat ctx increases to 1.81, etc. Clearly
these results need improving, which we hope to achieve
through a combination of manual tuning, compiler opti-
mization and a better runtime system.

2.3 Call Graph Analysis: BlockStop

There are many other invariants beyond type and mem-
ory safety that must be enforced in the kernel. One tool
that is useful for several of these invariants is a call graph.
Once we know which functions can be called where, we
can begin to analyze important control-flow properties.

BlockStop is a whole-program analysis to enforce the
requirement that the kernel does not call any functions
that may block while interrupts are disabled, such as
while holding a spinlock or handling an interrupt. Once
we’ve run this analysis, we can emit an annotation for
each function (and function pointer) that might eventu-
ally call a blocking function. Not only is this informa-
tion useful for humans trying to understand the code, but
the annotations can be checked incrementally whenever
a file is changed, which preserves separate compilation.

A call graph is a directed graph where each node corre-
sponds to a function and each outgoing edge represents
the functions that it might call. The major challenge is
to account for calls through function pointers. We use
a whole-program points-to analysis to determine which
functions a given pointer could refer to. Thanks to the
type safety provided by Deputy and CCount, this points-
to analysis is sound, except that we do not currently de-
tect function calls made within inline assembly.

To find which functions might block, we annotate cer-
tain functions with a new blocking attribute, such
as copy to/from user, wait for completion,
etc. Allocators such as kmalloc have a special anno-
tation to denote the fact that they may block if they are
called with the GFP WAIT flag. We then propagate this
information backwards through the call graph to get a
sound approximation of the set of functions that might
block.

We ran this analysis on our test kernel and found one
bug. We also encountered false positives, mostly due
to the overly-conservative points-to analysis of function
pointers. Replacing our simple points-to analysis with
one that is field- and context- sensitive would improve
the results, but to resolve these false positives quickly,
we turned to run-time checks. We defined a special func-
tion that panics if interrupts are disabled, and we man-
ually inserted calls to this function in 15 places in the
kernel. For example, read chan is a blocking func-
tion that BlockStop’s points-to analysis incorrectly be-
lieves can be called by flush to ldisk while inter-
rupts are disabled. Adding this run-time check to the
start of read chan reflects our assertion that this func-
tion will not actually be called by flush to ldisk.
By ruling out these infeasible control-flow paths via run-
time checks, we allow BlockStop to verify the desired
property for our experimental kernel without any warn-
ings or false positives.

3 Looking Forward

We believe that the three previous analyses represent
only the tip of the iceberg in terms of sound analyses that
can be used effectively on systems such as Linux. Here
we discuss proposals for future analyses as well as ideas
for making the results of these analyses widely available.

3.1 Future Analyses
There are many other opportunities to create sound anal-
yses with the properties we discussed.

First, we are in the early stages of designing a hybrid
checking tool for verifying lock safety in Linux. In ad-
dition to checking that deadlocks are impossible by ver-
ifying that the code uses a consistent locking order, this
analysis will check Linux-specific invariants such as the
requirement that the same spinlock is not acquired in in-
terrupts and in process context with interrupts turned on.
Light annotations will be used to name the locks, and
run-time checks will be used when static checking does
not suffice. We rely upon type and memory safety guar-
antees provided by Deputy and CCount.

Second, the call graph built for BlockStop can be used
to prevent stack overflow. Given a sound call graph and
information about the size of each stack frame, as in the
Capriccio thread package [BCZ+03], we can ensure that
every possible chain of function calls stays within its
allotted 4 or 8 kB of stack space. Stack space annota-
tions on each function will enable incremental verifica-
tion. For recursive calls, run-time checks will be needed.

As a third example, it is possible to create a sim-
ple analysis for ensuring that error codes are properly
checked at call sites. Programmers can annotate each
functions with the set of codes that the function could
return, or the programmer could simply indicate to the
compiler that negative constant return values are error
codes. Then a flow-sensitive analysis at call sites could
verify that each of the error codes are accounted for, ei-
ther together or separately. Calls through function point-
ers could use a merged list of codes from the functions
that the pointer may alias.

Further examples include user/kernel pointers, tainted
data flow, and concurrency issues such as identifying
shared and thread-local data. All of these properties can
be checked by analyses that follow the framework out-
lined here: lightweight annotations with run-time checks
and trusted code where necessary.

3.2 Collaboration
A consequence of applying our tools to the Linux kernel
is that we have generated a large amount of information
about functions and types in the Linux kernel in a form

that is usable by the compiler. Some of this informa-
tion was generated manually by reading comments and
code, while other properties were inferred by our tools.
In order to make this information available to other re-
searchers and programmers, we propose the creation of
a collaborative database of source code information that
would allow different researchers and tools to share and
reuse information about publicly available source code
such as the Linux kernel.

For example, this database could provide pointer alias
information and bounds information for function argu-
ments and global variables within Linux. This informa-
tion is required by both Deputy and CCount, and it will
almost certainly be of use to future analyses. We can also
store information about blocking functions, error codes,
and so on. In addition to aiding researchers, this infor-
mation would also provide a useful reference for pro-
grammers who wish to see additional invariants that are
not specified directly in the code or comments. Indeed,
with the wide variety of possible analyses that we pro-
pose, it may be useful for the programmer to store this
information on the side instead of cluttering up the code
directly. In addition, the ability to incorporate this infor-
mation from an external source may be useful when try-
ing to maintain this information across multiple versions
of the kernel.

We have seeded this repository of annotations at
our web page: http://ivy.cs.berkeley.edu/.
Our Linux annotations are available here, and we encour-
age other researchers to help us in expanding the scope
of these annotations.

4 Related Work

We previously described the Deputy type sys-
tem [CHA+07], and the application of Deputy to
Linux device drivers in SafeDrive [ZCA+06]. Some
of us worked on on CCured [NCH+05], a predecessor
to Deputy. Here, we present our experience applying
Deputy to a complete, bootable Linux kernel, and
discuss the basic principles of both Deputy and our
other tools that allow us to scale these analyses to large
programs.

CSSV [DRS03], Saber-C [KLP88], and a number of
other projects [ABS94, SV98] are capable of verifying
some soundness properties for C programs. However, we
are not aware of any previous attempt to apply such tools
to a program as large and complex as the Linux kernel.

In addition, there exist several safe C variants, such
as CCured [NCH+05] and Cyclone [JMG+02], which
attempt to impose a stricter typing discipline on C pro-
grams. However, these systems require changes to data
structures that make an incremental transition to these C
variants difficult.

Eau Claire [Che02], MC [HCXE02], and
MECA [YKXE03] are three examples of bug-finding
tools for systems software. While these tools find many
important bugs, they do not guarantee that no more
bugs exist, and they do not prevent bug reintroduction.
Also, each run of these tools requires a programmer to
sift through false positives every time the tool is used,
whereas our approach yields a modified program that
checks cleanly after the initial programmer effort.

Projects such as Melange [MHD+07],
JavaOS [Mit96], and Inferno [WP97] have attempted
to write systems code in safe languages. However,
when legacy code already exists in C, we believe it
would be easier to apply our soundness tools to this
legacy code than to rewrite the code in a safe language.
Our approach focuses on incremental tools that allow
programmers to preserve their investment in existing
code while improving its reliability.

5 Conclusion

It is estimated that software vulnerabilities cost $13 bil-
lion in 2001, $30 billion in 2002, and $55 billion in
2003 [New04]. While bug-finding tools can be very help-
ful in finding some of these defects, sound static analyses
allow us to guarantee their absence.

In this paper, we have discussed our experience thus
far in applying soundness tools to the Linux kernel. Our
results are encouraging: we were able to rule out many
type errors and buffer overruns in 435,000 lines of kernel
code with only 7 weeks of effort, and we were able to
verify 98% of the deallocations in this code with only 6
weeks of effort. We thus have reason to believe that it
is both practical and wise to focus on making systems
software completely safe against such defects.

Notes
1So far we have only modified kmalloc, kfree, and the slab

allocators, but extending this support to vmalloc, vfree, and
alloc page should be straightforward.

2At the time of writing, the kernel version of CCount does not track
references from local variables; however, we expect to have this feature
implemented soon.

3We also null out the pointer passed to free functions.

References

[ABS94] T. Austin, S. Breach, and G. Sohi. Efficient de-
tection of all pointer and array access errors. In
PLDI, 1994.

[BCZ+03] R. von Behren, J. Condit, F. Zhou, G. Necula, and
E. Brewer. Capriccio: Scalable threads for inter-
net services. In SOSP, 2003.

[BS97] A. Brown and M. Seltzer. Operating system
benchmarking in the wake of Lmbench: A case
study of the performance of NetBSD on the Intel
x86 architecture. In SIGMETRICS, 1997.

[CHA+07] J. Condit, M. Harren, Z. Anderson, D. Gay, and
G. Necula. Dependent types for low lovel pro-
gramming. In European Symposium on Program-
ming, 2007.

[Che02] B. Chess. Improving computer security using ex-
tended static checking. In IEEE Security and Pri-
vacy, 2002.

[DRS03] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards
a realistic tool for statically detecting all buffer
overflows in C. In PLDI, 2003.

[HCXE02] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A
system and language for building system-specific,
static analyses. In PLDI, 2002.

[HLA+05] G. Hunt, J. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fahndrich, C. Hawblitzel, O. Hod-
son, S. Levi, N. Murphy, B. Steensgaard,
D. Tarditi, T. Wobber, and B. Zill. An Overview
of the Singularity Project. Technical Report MSR-
TR-2005-135, Microsoft Research, 2005.

[JMG+02] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect
of C. In USENIX Annual Technical Conference,
2002.

[KLP88] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: an
interpreter-based programming environment for
the C language. In USENIX Summer Conference,
1988.

[MHD+07] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott,
and R. Sohan. Melange: Creating a ”functional”
internet. In EuroSys, 2007.

[Mit96] J. Mitchell. JavaOS: Back to the future (abstract).
In OSDI, 1996.

[NCH+05] G. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of
legacy software. ACM Transactions on Program-
ming Languages and Systems, 27(3), May 2005.

[New04] ZDNet News. PC viruses spawn $55 billion loss
in 2003, Jan 2004.

[SV98] G. Smith and D. Volpano. A sound polymorphic
type system for a dialect of C. Science of Com-
puter Programming, 32(1–3):49–72, 1998.

[WP97] P. Winterbottom and R. Pike. The design of the
Inferno virtual machine. In IEEE Compcon, 1997.

[YKXE03] J. Yang, T. Kremenek, Y. Xie, and D. Engler.
MECA: an extensible, expressive system and lan-
guage for statically checking security properties.
In ACM Computer and Communications Security,
2003.

[ZCA+06] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. En-
nals, M. Harren, G. Necula, and E. Brewer.
SafeDrive: Safe and recoverable extensions using
language-based techniques. In OSDI, 2006.

