
Thirty Years is Long Enough: Getting Beyond C

Eric Brewer Jeremy Condit Bill McCloskey Feng Zhou

Computer Science Division, University of California at Berkeley
{brewer,jcondit,billm,zf }@cs.berkeley.edu

Abstract

Thirty years after its creation, C remains one of the most
widely used systems programming languages. Unfortu-
nately, the power of C has become a liability for large
systems projects, which are now focusing on security and
reliability. Modern languages and static analyses provide
an opportunity to improve the quality of systems soft-
ware, and yet adoption of these tools has been slow.

To address this problem, we propose a new language
called Ivy that has an evolutionary path from C. The
mechanism for this evolutionary path is a system ofex-
tensionsand refactorings: extensions augment the lan-
guage with new features, and refactorings assist the pro-
grammer in updating their code to use these new fea-
tures. Extensions and refactorings have a wide variety of
applications, from enforcing memory safety to detecting
user/kernel pointer errors. We also demonstrate Macro-
scope, a tool we have built to enable refactoring of exist-
ing C code.

1 Introduction

Since the time of their creation, the relationship between
Unix and C has been symbiotic: C matured because
of its link to Unix, and Unix flourished because C was
a quantum leap beyond its predecessor, assembly lan-
guage. Thirty years after its creation, C is now deeply
entrenched in the operating system community—but it is
showing its age. We believe that good languages lead to
good systems; thus, it is time for new language technol-
ogy to drive new systems research. Unfortunately, rescu-
ing existing systems from the perils of C is non trivial.

One possible approach to improving language technol-
ogy for systems is to focus on an entirely new language.
Modern languages such as Java and ML provide stronger
static guarantees, such as type and memory safety, at a
slight cost in expressiveness. This trade-off may be desir-
able for some systems, which emphasize reliability, se-
curity, and availability over raw performance. However,
these languages lack a number of useful features of C,
such as manual memory management and bit-level data

layout. Also, it is impractical to rewrite existing systems
in an entirely new language—with millions of lines of C
code running critical infrastructure, we cannot afford to
simply start over.

A second possible approach to this problem is to use
static analysis to root out software problems. The benefit
of analysis is that it finds bugs without requiring code to
be rewritten in a new language or a new model. However,
static analysis tools are difficult to write and often diffi-
cult to use. Since C imposes no restrictions on where and
when programs can write to memory, tools must make
very conservative assumptions about program behavior,
or else pay a huge cost in the complexity of the analysis.
And because all analyses are conservative in some way,
they usually yield large numbers of false positives, which
make real bugs more difficult to detect. These false pos-
itives, combined with long analysis times, make it dif-
ficult to integrate static analysis directly into the build
process of a program, which in turn hinders the ability
of these tools to have a lasting impact on source code
quality.

We propose a third approach that offers anevolution-
ary pathfrom C to a new language called Ivy. This ap-
proach incorporates the advantages of both of the previ-
ous ones. First, Ivy is a programming language as op-
posed to an analysis tool; it will provide sound guar-
antees to programmers using a checker that will be in-
tegrated into the compiler. Second, Ivy will provide a
transition path from existing code by means ofexten-
sions and refactorings. Extensions will add new lan-
guage features such as sophisticated data layout, concur-
rency control, and memory management, each of which
can be enabled or disabled individually. Extensions may
add language features, but they may also disable them.
For example, the memory safety extension will forbid
some uses of casting and pointer arithmetic while adding
mechanisms such as regions and built-in reference count-
ing. Refactorings1 will assist programmers in the transi-

1The traditional definition of “refactoring” implies a structural im-
provement that preserves semantic meaning; we use the term more
broadly in that we allow small changes in semantics, such as the ad-
dition of type safety.



tion by analyzing existing code to find patterns that could
be better expressed with a specific language extension.
Working in tandem, extensions and refactorings will en-
able a transition to modern language features; indeed,
they will also allow future evolution as new language
technology emerges.

This paper presents our vision for the future of sys-
tems programming. First, we discuss the problems of
C, and we describe a number of features that we would
like to see in a new systems programming language (Sec-
tion 2). Then, we discuss in more detail our evolutionary
path toward this new language (Section 3) as well as a
few examples of extensions and refactorings (Section 4).
Finally, we present our initial results, which demonstrate
that it is possible to migrate code to a more solid foun-
dation and to apply useful refactorings (Section 5) with
modest programmer effort.

2 Requirements for a Replacement

C succeeded for many years because systems written in
C were safer, more portable, and more maintainable than
those written in assembly. Equally important, C pro-
grams performed nearly as well as their assembly coun-
terparts. But as time has passed, new languages have
picked up the standards of safety and reliability, while C
has not progressed. The most obvious gap has been in
memory safety, where languages like Java and ML pro-
vide much stronger guarantees than C. Less obviously,
but just as important, C fails to provide the programmer
with tools for concurrency control, safe data layout, and
other system-specific tasks.

In this section, we discuss some of the key features that
we would like to see in a successor to C. We believe that
these changes will have a positive impact on the safety
and security of systems programs.

Type and memory safety. Memory safety is a cru-
cial property for safe and secure systems. The Cyclone
language [10] permits programs to use a number of safe,
flexible memory management policies, such as region-
based memory management, reference counting, and
garbage collection, all within the context of a C-like lan-
guage. Also, the CCured tool [3] analyzes pointer usage
to introduce efficient run-time memory safety checks.
These tools demonstrate that memory safety is a reason-
able goal in a C-like language.

Besides catching bugs, type safety makes other analy-
ses easier to write. In a type safe language, two memory
locations cannot be aliased if their types differ. C lacks
this property, making it more difficult to develop tools.
Memory management disciplines like regions also make
analysis easier, since they refine the type system further,
reducing possible aliasing relationships. In general, we

believe that increased memory safety will have the addi-
tional benefit of making programs easier to analyze.

Concurrency. A modern systems programming lan-
guage must have native support for concurrency for a
number of reasons. First of all, integrating threads and
atomic sections [6] into the language makes it easier
for programmers to write safe and portable code. In-
deed, Boehm has shown that implementing threads with-
out some compiler support is unsafe [2]. Secondly,
built-in support for concurrency makes it easier for the
compiler to check properties of concurrent programs.
Most tools have difficulty processing concurrent soft-
ware, since they fail to take into account all possible
thread interleavings; however, code written using atomic
sections should be easier to analyze, since the interac-
tions between threads are spelled out explicitly. The
Calvin-R checker makes use of atomicity in this way [8].

API adherence.Systems software often must comply
with complex interfaces. Tools such as the metacompila-
tion (MC) system [9], SLAM [1], and ESP [4] ensure that
code adheres to a given interface. Unfortunately, these
tools have difficulty with pointers and aliasing. We be-
lieve that some of these problems can be eliminated with
the introduction of stronger type systems and memory
management disciplines in the language, as mentioned
above.

Data layout. Modern languages that strictly enforce
type safety, such as Java and ML, almost always require
data to be formatted according to conventions specified
by the language or the compiler. C allowsa priori data
layout, where the programmer can control data format-
ting down to the bit level, which is important for sys-
tems applications that must be compatible with existing
libraries, file formats, or network protocols. Unfortu-
nately, data layout in C is not safe, so we intend to supply
a mechanism to allow type-safea priori data layout using
a dependent type system [14]. Dependent type systems
have been studied in the context of functional languages,
but new research is necessary to make them work in an
imperative language like C.

3 The Ivy Platform

In general, new technologies often fail for two very im-
portant reasons. The primary cause is the lack of an evo-
lutionary path to the new platform. Although it is tempt-
ing to make a clean break with the past, users will rarely
choose to adopt a technology that makes their old soft-
ware obsolete. A secondary cause of failure is a lack
of extensibility, which allows a platform to be updated to
meet changing requirements. Therefore, the Ivy platform
that we propose is both extensible and evolutionary.

New Ivy features will be implemented via language



extensions, which will plug into the compiler and pro-
vide new syntax, type checking rules, and code gen-
eration options. Language extensions will implement
system-specific checking, similar to the checks provided
by MC [9] or SLAM [1]. These extensions will also
give the programmer flexibility in choosing what rules
the compiler should check, since extensions may be en-
abled or disabled selectively. For example, programmers
will not need to enable the memory safety extension un-
til their code conforms to the specific rules about regions
and reference counting required by that extension.

The Ivy platform will also include refactoring tools so
that programmers can evolve legacy code. The first step
in refactoring a program is to convert it to Ivy without
any extensions enabled. We describe this step in detail
in Section 5; in brief, the goal is to eliminate use of the
C preprocessor, which is not present in Ivy. Once a C
program has been converted to Ivy, refactoring tools will
enable the use of new language extensions for code that
was not originally written with those extensions in mind.
For example, a tool might use a region inference algo-
rithm to make region-based memory management ex-
plicit, thereby allowing the memory safety extension to
certify the code as memory safe. Unlike language ex-
tensions, which are run each time the compiler is used,
refactorings are applied only once in the lifetime of the
code. We expect that each language extension will be
bundled with a refactoring to enable that extension on
legacy code. Refactorings may require a small amount
of user guidance, but they will be mostly automatic.

This approach has several advantages over designing
a new language or creating more bug-finding tools:

• There is no need for manual translation of pro-
grams. Languages like Java and ML provide attrac-
tive features like memory safety, but they require
that existing C code be rewritten. Even Cyclone,
which is similar to C, requires extensive manual in-
tervention. Ivy’s refactoring tools will make use of
program analyses, like the one found in CCured [3],
to make these changes automatically. User guid-
ance will be necessary but relatively rare. Although
refactorings may be somewhat heavy-weight, they
will be only applied once. Our goal is to shift much
of the burden of static analysis out of a compiler
or checker, which is run frequently, to a single-use
refactoring. Since they are only run once, refactor-
ings will have a somewhat larger “budget” of run-
ning time and user interaction that traditional bug-
finding tools.

• Language extensions will build on each other. We
expect that the guarantees provided by one exten-
sion will be used by other extensions. For exam-
ple, many program analyses for C assume memory

safety in order to operate correctly. Ivy extensions
can make this requirement explicit by depending
on the Ivy memory safety extension. As a more
concrete example, an extension for checking proto-
col adherence (like MC, SLAM, or ESP) would be
much easier to write if it could assume that all mem-
ory accesses respect types, that data is segregated
into explicit regions, and that concurrent memory
accesses occur only inside atomic sections. These
guarantees would be provided by underlying Ivy ex-
tensions for memory safety and concurrency.

• Programmers can choose which extensions they
need. Refactorings might be difficult to apply, since
they make substantial changes to source code. In
some cases, it may not be possible to apply all ex-
tensions to an extremely old and baroque code base,
even with the aid of refactorings. But since Ivy ex-
tensions will be enabled selectively, programmers
may use only those that are practical.

• Researchers can develop custom extensions and
refactorings. Since systems software is constantly
changing, it may be necessary in the future to create
new Ivy extensions, as well as the refactorings that
enable them. Ivy will be built to make this process
as simple as possible.

4 Extension Examples

In this section, we present two examples that show how
our new programming platform will help developers to
write better systems software. In particular, these ex-
amples demonstrate the power of automated refactorings
and language extensions. These examples are only the-
oretical, but we believe that they represent realistic uses
of our proposed language.

CCured. The CCured project [3, 11] analyzes pointer
usage in large software systems in order to add low-cost
memory safety checks. CCured infers a pointer “kind”
for each pointer in the program, and this pointer kind is
the basis for the static checks and run-time instrumen-
tation performed by CCured. Unfortunately, a signifi-
cant amount of manual intervention is required in order
to “cure” real programs, since CCured sometimes fails
to understand why a particular piece of code is memory-
safe. Worse, this manual intervention must be repeated
with each subsequent release of the software package
that is being cured. With our framework, CCured will be
implemented as an extension and a refactoring: the refac-
toring will infer pointer kinds to the best of its ability, and
the extension component will do the corresponding type-
checking and instrumentation every time the software



is compiled. Because the refactoring produces human-
readable code, the programmer will have a chance to im-
prove the results of CCured’s analysis. Also, because this
annotated code becomes the master copy in the reposi-
tory, the programmer need not repeat this procedure after
every update to the project.

Linux’s Sparse. Linux creator Linus Torvalds wrote
a static analysis tool called Sparse [12], which is specif-
ically tailored for checking the Linux kernel. It uses ex-
tra annotations added by programmers in order to ver-
ify certain kernel-specific properties. For example, pro-
grammers can annotate pointers that should contain user-
space addresses, and Sparse will verify that none of these
pointers are dereferenced directly by the kernel. With our
framework, a refactoring will discover pointers that con-
tain user-space addresses (much like the existing CQual
project [7]), and an extension will be responsible for
checking, at each compilation, that these pointers are
never dereferenced. This approach makes annotations
explicit in the code and thus integrates this check into
the development process.

5 Macroscope: A First Step

Although “vanilla” Ivy code, without any extensions, is
similar to C, there are some differences. The most impor-
tant one is the lack of the C preprocessor (CPP) in Ivy.
CPP poses a great challenge for refactoring tools: be-
cause the preprocessor is token-based rather than syntax-
tree-based, refactoring tools cannot parse CPP code di-
rectly. Since refactorings are so critical to the Ivy plat-
form, the first step in the translation to Ivy is the elimi-
nation of CPP. In its place, Ivy includes a flexible macro
system that is based on syntax trees rather than tokens.
Thus, refactoring tools can operate on Ivy macros di-
rectly, without first expanding them. This feature is crit-
ical to the success of refactoring tools, since they must
preserve the readability and human understanding of the
code in order to be useful. To solve this problem, we
have developed a tool called Macroscope, which trans-
forms a C program into an Ivy program while preserving
the vast majority of the program’s macros.

Macroscope translates macros, conditional compila-
tion, and include files into equivalent Ivy constructs. The
latter two cases are straightforward, since Ivy supports
compile-time conditionals and modules. Macros, how-
ever, are quite difficult to handle, since they often consist
of arbitrary sequences of tokens. In such cases, Macro-
scope translates the tokens to complete syntactic units us-
ing a variety of heuristics. It understands the entire CPP
language, including token pasting, stringization, recur-
sive macros, and varargs macros. In some cases, it may
make a construct less general (in order to convert it to

Program Lines Imperfect
macro
translations

Imperfect
#ifdef
translations

gzip 7,324 7 (0.5%) 18 (2.0%)
rcs 17,178 10 (0.6%) 59 (5.8%)
OpenSSH 55,153 10 (0.1%) 41 (1.9%)
Linux 2.6.10 163,154 88 (0.6%) 62 (2.7%)

Table 1: Benchmarks demonstrating the feasibility of
translating CPP code to Ivy. In the case of Linux, only
a minimally configured kernel was translated. An im-
perfect translation is any construct that is not a nearly
token-for-token translation of the C preprocessor code.
Imperfect translations nevertheless produce correct code.

a complete syntactic unit); these cases are called imper-
fect translations. For example, if a macro expands to an
identifier that is used sometimes as a variable name and
sometimes as a type name, then Macroscope will gen-
erate two different Ivy macros for the one CPP macro.
However, it will always produce Ivy code that is equiv-
alent to the original CPP code. Additionally, Macro-
scope’s output is readable by humans and extremely sim-
ilar to the original input.

Macroscope’s execution is divided into two phases:
expansion and extraction. In the expansion phase,
macros, conditionals, and include files are rewritten to
C code as they would be by CPP. Macroscope keeps a
record of each expansion. Next, the code is parsed into
a syntax tree using a standard C parser. Afterwards, the
extraction phase backs out each expansion in reverse or-
der using the expansion records. To extract a given con-
struct, Macroscope identifies the lowest syntax tree node
that encompasses all of the tokens from the expansion
record. This node is replaced with an Ivy construct that
closely resembles the original CPP construct that was ex-
panded, using several heuristics that allow us to gener-
ate good Ivy constructs. Every Ivy macro that Macro-
scope generates is built from an entire node in the syntax
tree, which ensures that Ivy macros are complete syn-
tactic units. This feature is crucial, since it allows Ivy
macros to be parsed and analyzed as is.

We have tested Macroscope on a set of open source
programs that we believe is representative of the systems
programs that users will need to translate. Our largest
test case is a minimally configured Linux 2.6.10 ker-
nel. We also applied Macroscope togzip , rcs , and
OpenSSH. Table 1 shows the results for these bench-
marks. Imperfect translations may be the result of
Macroscope generating an Ivy construct that is less gen-
eral than a given CPP construct, which is undesirable
but sometimes necessary. Imperfect translations never-
theless result in correct Ivy code. Based on these results,



we believe that eliminating the preprocessor with Macro-
scope is completely feasible.

To demonstrate that Ivy code is not difficult to refactor,
we have developed a proof-of-concept refactoring tool
that operates on the code produced by Macroscope. We
have applied the tool to the Ivy version ofgzip 1.2.4,
which contains a well-known buffer overflow vulnerabil-
ity involving thestrcpy function. The tool is designed
to fix strcpy -based buffer overflows. It replaces each
call to strcpy with a safer version that will not over-
flow its destination buffer. This safer function requires
that the size of the destination buffer be passed as an ar-
gument. The refactoring tool attempts to infer the size of
the buffer statically. If it fails, the user must supply the
size argument manually. When we refactoredgzip , the
tool automatically inferred the buffer size about 70% of
the time. The static analysis that the tool uses is currently
extremely simple, but in the future we hope to scale it up
for use on much more sophisticated properties.

6 Related Work

A number of projects have attempted to craft a successor
to C. For example, Cyclone [10] is a C-like language that
is type-safe and that provides advanced language fea-
tures in a systems programming environment. In addi-
tion, BitC [13] is a language that attempts to combine
C’s expressiveness with the rigor of a modern functional
language; it includes extensive support for formal veri-
fication. Unfortunately, neither of these languages pro-
vides a reasonable evolutionary transition path for exist-
ing software, without which it is difficult to make a real-
world impact. BitC and Ivy could co-exist as they both
follow the existing C binary interface. Rewriting some
parts that need formal verfication in BitC, while using
Ivy for the rest, is a plausible combination. In addition,
our extensions and refactorings will allow programmers
to customize Ivy for specific projects and to incorporate
future language features, neither of which is supported
by these alternatives.

Dawson Engler’s research group has produced a num-
ber of program analysis tools, such as the MC system [9]
and RacerX [5], both of which use static analysis to find
bugs in large software systems. These projects have all
been successful in uncovering serious bugs in real code;
however, in order to scale to such large systems, they
must make potentially unsound assumptions about prop-
erties of the code. Thus, these tools generate many false
positives and occasional false negatives, making it im-
practical to incorporate them directly into the build pro-
cess as we would like.

The SLAM project at Microsoft [1] is a program anal-
ysis tool that uses model checking to detect errors in

Windows drivers. This tool provides even stronger guar-
antees about certain safety properties; however, it is cur-
rently used for individual drivers in isolation. A similar
project at Microsoft, ESP [4], also can check that a pro-
gram adheres to a given protocol. It is more scalable,
but uses a weaker form of path sensitivity than SLAM.
Nevertheless, we are encouraged by the results of MC,
SLAM, and ESP, and we may use them as the basis for
extensions and refactorings to check interface compati-
bility.

Finally, projects such as CCured [3] and Linux’s
Sparse [12] analyze existing software to improve mem-
ory safety and find defects. As mentioned earlier, these
systems can be better implemented as part of our frame-
work: the inference portion becomes a refactoring, and
the static checks (as well as any corresponding run-time
checks) become an extension.

7 Conclusion

The C language has a long and venerable history. Even
today, despite its flaws, most systems software is writ-
ten in C. However, in recent years, the flexibility of C
has proven to be a liability as system designers focus
more on reliability and security. We have proposed a new
programming platform, Ivy, that provides the features
of a modern, safe language along with an evolutionary
path that will allow us to bring existing code up to date.
Program transformations, called refactorings, are used
to improve the safety and security of legacy code, and
language extensions perform the necessary compile-time
checks on refactored code. An initial translation step,
which eliminates CPP and is mostly automatic, moves
legacy code onto the platform, where the power of static
analysis, refactoring and extensions can be fully applied.
We hope Ivy will serve as a safe, modern platform for
future systems research.

Acknowledgements: Thanks to George Necula, Rob
von Behren and David Gay (of Intel) for their help on
this project.

References
[1] T. Ball and S. K. Rajamani. Automatically validating temporal

safety properties of interfaces.Lecture Notes in Computer Sci-
ence, 2057:103–122, 2001.

[2] H.-J. Boehm. Threads cannot be implemented as a library. Tech-
nical Report HPL-2004-209, Hewlett Packard, 2004.

[3] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer.
CCured in the real world. InPLDI ’03: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design
and Implementation, 2003.

[4] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program
verification in polynomial time. InPLDI ’02: Proceedings of



the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, 2002.

[5] D. Engler and K. Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. InSOSP ’03: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles,
pages 237–252. ACM Press, 2003.

[6] C. Flanagan and S. Qadeer. A type and effect system for atomic-
ity. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation,
pages 338–349. ACM Press, 2003.

[7] J. S. Foster, M. F̈ahndrich, and A. Aiken. A theory of type qual-
ifiers. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementa-
tion, pages 192–203, Atlanta, Georgia, May 1–4, 1999.

[8] S. N. Freund and S. Qadeer. Checking concise specifications for
multi-threaded software.Journal of Object Technology, 3(6):81–
101, 2004.

[9] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and lan-
guage for building system-specific, static analyses. InPLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, pages 69–82,
2002.

[10] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InUSENIX Annual
Technical Conference, June 2002.

[11] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. InPOPL ’02: Proceedings of Sympo-
sium on Principles of Programming Languages, pages 128–139,
2002.

[12] D. Searls. Linus & the Lunatics, Part
I. Linux Journal, November 2004.
http://www.linuxjournal.com/article/7272 .

[13] J. Shapiro, S. Sridhar, S. Doerrie, M. Miller, and E. Northup. The
BitC language specification.http://www.coyotos.org/
docs/bitc-spec/bitc-spec.html .

[14] H. Xi and F. Pfenning. Dependent types in practical program-
ming. In ACM, editor,POPL ’99: Proceedings of the 26th ACM
SIGPLAN-SIGACT on Principles of Programming Languages,
January 20–22, 1999, San Antonio, TX, ACM SIGPLAN Notices,
pages 214–227, New York, NY, USA, 1999. ACM Press.


