
TRANSACTIONS ON DATA PRIVACY 9 (2016) 215–241

Network Structure Release under
Differential Privacy

Hiep H. Nguyen∗, Abdessamad Imine∗, Michaël Rusinowitch∗

∗LORIA/INRIA Nancy-Grand Est, France

E-mail: {huu-hiep.nguyen,michael.rusinowitch}@inria.fr,abdessamad.imine@loria.fr

Received 5 April 2016; received in revised form 2 September 2016; accepted 20 November 2016

Abstract. The problem of private publication of graph data has attracted a lot of attention recently.
The prevalence of differential privacy makes the problem more promising. However, the problem
is very challenging because of the huge output space of noisy graphs, up to 2n(n−1)/2. In addition,
a large body of existing schemes on differentially private release of graphs are not consistent with
increasing privacy budgets as well as do not clarify the upper bounds of privacy budgets. In this
paper, we categorize the state-of-the-art in two main groups: direct publication schemes and model-
based publication schemes. On the one hand, we explain why model-based publication schemes are
not consistent and are suitable only in scarce regimes of privacy budget. On the other hand, we prove
that with a privacy budget of O(lnn), there exist direct publication schemes capable of releasing
noisy output graphs with edge edit distance of O(1) against the true graph. We introduce the new
linear scheme Top-m-Filter (TmF) and improve the existing technique EdgeFlip. Both of them exhibit
consistent behaviour with increasing privacy budgets while the model-based publication schemes do
not. As for better scalability, we also introduce HRG-FixedTree, a fast permutation sampling, to learn
the Hierarchical Random Graph (HRG) model. Thorough comparative evaluation on a wide range of
graphs provides a panorama of the state-of-the-art’s performance as well as validates our proposed
schemes.

Keywords. Network structure realease, Differential privacy, Upper bounds for privacy budget, Top-
m-Filter

1 Introduction

As one of the most general forms of data representation, graph supports all aspects of the
relational data mining process. With the emergence of increasingly complex networks [24],
the research community requires large and reliable graph data to conduct in-depth studies.
However, this requirement usually conflicts with privacy policies of data contributing enti-
ties. Naive approaches like removing user ids from a social graph are not effective, leaving
users open to privacy risks, especially re-identification attacks [1, 14]. Therefore, many
graph anonymization schemes have been proposed [35, 17, 36, 7, 31]. The main techniques
used in those works are based on random edge manipulation or deterministic transforma-
tions to satisfy k-anonymity [30]. Another popular class of schemes relies on uncertainty
semantics [4, 25].

215

216 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

In this paper, we address the problem of graph anonymization from the perspective of
differential privacy. This privacy model offers a formal definition of privacy with a lot
of interesting properties: no computational/informational assumptions about attackers,
data type-agnosticity, composability and so on [21]. By differential privacy, we want to
ensure the existence of connections between users to be hidden in the released graph while
retaining important structural information for graph analysis [29, 32, 33, 6, 34].

Differentially private algorithms relate the amount of noise to the sensitivity of computa-
tion. Lower sensitivity implies smaller added noise. Because edges in simple undirected
graphs are usually assumed independent, standard Laplace mechanism is applicable (e.g.
adding Laplace noise to each cell of the adjacency matrix). However, this approach may
severely deteriorate the graph structure. Recent methods of graph release under differ-
ential privacy try to reduce the graph sensitivity in many ways. Schemes in [29, 32] use
dK-series [19] to summarize the graph into a distribution of degree correlations. The global
sensitivity of 1K-series (resp. 2K-series) is 4 (resp. O(n)). Lower sensitivity of O(

√
n) is

proposed in [33] by graph spectral analysis. The most recent works [6, 34] even reduce the
sensitivity of graph to O(lnn)1. While Density Explore Reconstruct (DER)[6] employs a data-
dependent quadtree to summarize the adjacency matrix into a counting tree, Xiao et al. [34]
propose to use Hierarchical Random Graph (HRG) [8] to encode graph structural information
in terms of edge probabilities. A common disadvantage of the state-of-the-art DER [6] and
HRG-MCMC [34] is the scalability issue. Both of them incur quadratic complexity O(n2),
limiting themselves to medium-sized graphs only.

A characteristic shared by the methods 1K-series, 2K-series [29, 32], Kronecker graph
model [22], spectrum-based [33], DER [6] and HRG-MCMC [34] is that they use a cer-
tain summarization structure (model) to encode the key information of the true graph and
then perturb this structure to satisfy ǫ-DP before regenerating noisy sample graphs for out-
put. We observe that these model-based approaches are not consistent in the sense of pri-
vacy/utility trade-off. At the extreme of ǫ = 0 (best privacy), the summarization structures
are random and the utility is lowest. However, at the extreme ǫ = ∞ (no privacy), we
cannot get the true graph (best utility). This phenomenon may be explained by the loss
of information in the summarization structures. Note that the term consistency in the cur-
rent work is slightly different from [2, 15] where consistency means the noisy output must
satisfy certain constraints, e.g. non-negative integrality [2] or ordered sequence [15].

To remedy the scalability and consistency problems, we propose Top-m Filter (TmF) algo-
rithm, which runs in O(m), linear in the number of edges and attains highest utility for
large enough ǫ. By considering the adjacency matrix as a sparse dataset, TmF leverages
the high-pass filtering idea in [9] to avoid the whole matrix manipulation. More impor-
tantly, via TmF, we provide a theoretical result stating that O(lnn) is an upper bound of
privacy budget for graph release under differential privacy, i.e. at ǫ = O(lnn) we get a
noisy graph very close to the true graph (highest utility). This naturally rules out high-
sensitivity schemes in [29, 32, 33] and makes 1K-series, DER and HRG-MCMC meaningful
only in regimes of scarce privacy budgets (i.e. not exceeding O(lnn)). After the publication
of TmF [26], we found the scheme EdgeFlip by Mülle et al. [23] which uses edge flipping
technique. By a deeper analysis, we prove that EdgeFlip also provides an upper bound
O(lnn) for privacy budget and it makes the edit distance converge faster than TmF. How-
ever, EdgeFlip costs O(n2) and we will show that it could be slightly redesigned to run in

linear time for ǫ ≥ ln(n(n−1)
2m − 1).

1In this paper, lnn is the natural logarithm used to bound the privacy budget ǫ and logn is the base-2 logarithm
for complexity analysis.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 217

For a better comparison on large graphs, we introduce HRG-FixedTree, a fast permutation
sampling, to learn the Hierarchical Random Graph (HRG) model. HRG-FixedTree runs in
O(m logn) and may be of independent interest for the community detection problem [12].
In brief, our contributions are as follows

• We analyze the two key challenges of graph release under differential privacy: huge
output space and consistency. We also justify the relaxation of ǫ to lnn using the
concept of ρ-differential identifiability [16].

• We prove an upper bound of privacy budget ǫ that any differentially private scheme
for graph release should not exceed. The upper bound is validated by our proposed
linear scheme TmF and the existing scheme EdgeFlip. By deeper theoretical analysis,
we prove the fast convergence of EdgeFlip and reveal its limitations. Both TmF and
EdgeFlip exhibit consistent behavior for larger privacy budgets.

• We introduce HRG-FixedTree to reduce the runtime of HRG inference by several or-
ders of magnitude, making it feasible to perform the inference over large graphs.

• We conduct a thorough evaluation on real graphs from small to medium and large
sizes to see which method performs best for different regimes of ǫ.

Compared with the published conference paper [26], this extended version presents new
materials about the categorization of schemes, the analysis of challenges, improved ver-
sions of EdgeFlip and HRG-based schemes. The evaluation includes a new graph dblp.
The rest of this paper is organized as follows. We discuss the related work in Section 2

with an emphasis on the categorization of ǫ-DP graph release and different regimes of ǫ.
Section 3 reviews key concepts and mechanisms of differential privacy. It also analyzes key
challenges of graph release under differential privacy. TmF scheme is described in Section
4. In Section 5, we present the deeper analysis and a partially linear algorithm for EdgeFlip.
We review HRG model, the limitations of full space exploration and then propose a faster
technique HRG-FixedTree in section 6. The comparison of schemes is presented in section
7. In Section 8, the competitors are thoroughly evaluated on a variety of graphs. Finally,
Section 9 concludes our work.

2 Related Work

In principle, after releasing a graph satisfying ǫ-DP, we can do any mining operations on
it, e.g. graph metrics querying, community detection. The research community, there-
fore, expresses a strong interest in the problem of graph release via differential privacy.
Differentially private algorithms relate the amount of noise to the sensitivity of computa-
tion. Lower sensitivity implies smaller added noise. Because edges in simple undirected
graphs are usually assumed independent, standard Laplace mechanism [10] is applicable
(e.g. adding Laplace noise to each cell of the adjacency matrix). However, this approach
may severely deteriorate graph structure.
Generally speaking, the problem of graph publication under differential privacy com-

prises two main techniques: direct publication and model-based publication. Direct publication
means that the output graph is constructed by directly adding noise to each edge, followed
by a post-processing step. TmF [26] and EdgeFlip [23] belong to this category. The other
technique, model-based publication, relies on an intermediary structure to extract some
crucial statistics. The noise is added to the statistics in a differentially private manner.
Finally, sample output graphs are regenerated from these noisy statistics. This category

TRANSACTIONS ON DATA PRIVACY 9 (2016)

218 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

includes 1K-series, 2K-series [29, 32], Kronecker graph model [22], graph spectral analysis
[33], DER [6], HRG-MCMC [34] and ERGM (Exponential Random Graph Model) [18].
EdgeFlip [23] applies Randomized Response Technique (RRT) [11, Section 3.2] to all edges.

Given a parameter s ∈ (0, 1], each edge is flipped (1-to-0 or vice versa) with probability
s/2. EdgeFlip was originally proposed the problem of community detection and the ex-
pected number of edges in the output graphs is 2m. This is equivalent to the choice of

ǫ = ln(n(n−1)
2m − 3) ≈ lnn. In addition, EdgeFlip incurs a quadratic runtime. We give a

deeper analysis of EdgeFlip in Section 5.
1K-series and 2K-series [29, 32] use dK-series [19] to summarize the graph into a distribu-

tion of degree correlations. 2K-series was expected to give better noisy output graphs but
the utility results [29, 32] are not good enough, not to say the huge values of ǫ used (up
to thousands). The similar problem happened to graph spectral analysis [33]. Kronecker
graph model [22] privately estimates the initiator matrix Θ using smooth sensitivity [27]
and only satisfies (ǫ, δ)-DP. The state-of-the-art DER and HRG-MCMC have the scalability
issue. Both of them incur quadratic complexity O(n2), limiting themselves to medium-
sized graphs. We improve HRG-MCMC by proposing the near-linear time HRG-FixedTree
in Section 6. ǫ-DP graph release is also mentioned in ERGM [18, Section 4.1] but not in
detail because its main goal is to support parameter estimation of exponential random
graphs. The high complexity of Bayesian estimation in ERGM also confines itself to graphs
of hundreds of nodes. Further comparison between schemes is presented in Section 7.

3 Preliminaries

In this section, we review key concepts and mechanisms of differential privacy.

3.1 Differential Privacy

Essentially, ǫ-differential privacy (ǫ-DP) [10] is proposed to quantify the notion of indistin-
guishability of neighboring databases. In the context of graph release, two graphs G1 =
(V1, E1) and G2 = (V2, E2) are neighbors if V1 = V2, E1 ⊂ E2 and |E2| = |E1| + 1. Formal
definition of ǫ-DP for graph data is as follows.

Definition 1. A randomized algorithmA is ǫ-differentially private if for any two neighbor-
ing graphs G1 and G2, and for any output O ∈ Range(A),

Pr[A(G1) ∈ O] ≤ eǫPr[A(G2) ∈ O]

Laplace mechanism [10] and Exponential mechanism [21] are two standard techniques
in differential privacy. The latter is a generalization of the former. Laplace mechanism
is based on the concept of global sensitivity of a function f which is defined as ∆f =
maxG1,G2

||f(G1) − f(G2)||1 where the maximum is taken over all pairs of neighboring
G1, G2. Given a function f and a privacy budget ǫ, the noise is drawn from a Laplace
distribution p(x|λ) = 1

2λe
−|x|/λ where λ = ∆f/ǫ.

Theorem 2. (Laplace mechanism [10]) For any function f : G→ R
d, the mechanism A

A(G) = f(G) + 〈Lap1(
∆f

ǫ
), ..., Lapd(

∆f

ǫ
)〉 (1)

satisfies ǫ-differential privacy, where Lapi(
∆f
ǫ) are i.i.d Laplace variables with scale parameter ∆f

ǫ .

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 219

Geometric mechanism [13] is a discrete variant of Laplace mechanism with integral output
range Z and random noise ∆ generated from a two-sided geometric distribution Geom(α) :
Pr[∆ = δ|α] = 1−α

1+αα
|δ|. To satisfy ǫ-DP, we set α = exp(−ǫ). We use geometric mechanism

in our LouvainDP scheme.
For non-numeric data, the exponential mechanism is a better choice. Its main idea is

based on sampling an output O from the output space O using a score function u. This
function assigns exponentially greater probabilities to outputs of higher scores. Let the
global sensitivity of u be ∆u = maxO,G1,G2

|u(G1, O)− u(G2, O)|.

Theorem 3. (Exponential mechanism [20]) Given a score function u : (G×O)→ R for a graph G,

the mechanismA that samples an output O with probability proportional to exp(ǫ.u(G,O)
2∆u) satisfies

ǫ-differential privacy.

Composability is a nice property of differential privacy which is not satisfied by other
privacy models such as k-anonymity. Specifically, parallel composition is a key ingredient
in our algorithm TmF (Section 4).

Theorem 4. (Sequential and parallel compositions [21]) Let each Ai provide ǫi-differential privacy.
A sequence of Ai(D) over the dataset D provides Σn

i=1ǫi-differential privacy.
Let each Ai provide ǫi-differential privacy. Let Di be arbitrary disjoint subsets of the dataset D.

The sequence of Ai(Di) provides maxni=1 ǫi-differential privacy.

3.2 Challenges of Graph Release under Differential Privacy

In this section, we discuss two key challenges of the problem addressed in this paper: huge
output space and consistency.
The first challenge is about the size of the output space. While the output is a scalar value

for simple counting problems [10], the dimension of the output space becomes much larger
(i.e. O(n2)) for graph release because we publish a noisy graph, not a scalar metric. The
definition of ǫ-DP requires that for any two neighboring graphs G1, G2 and any output

graph G̃, the randomized algorithm Amust satisfy Pr[A(G1)=G̃]

Pr[A(G2)=G̃]
∈ [e−ǫ, eǫ].

Note that Pr[A(G1) = G̃] = 0 iff Pr[A(G2) = G̃] = 0, i.e. the distributions of A(G1)
and A(G2) have the same support over the output space. Intuitively, the smaller the output

space, the higher the probability of each G̃ in the space, so the higher the utility because G̃
is more concentrated around G1. However, the output space is usually super-exponential.

If we set no constraints, the output space of G̃ is of size 2n(n−1)/2 because any edge can

appear independently. If we require the (expected) number of edges in G̃ is m as in Top-

m-Filter and EdgeFlip (Sections 4 and 5), the output space of G̃ reduces to
(

n(n−1)/2
m

)

. If
we go further with the constraint of unchanged (expected) degree sequence as in 1K-series

[32], the size of the output space of G̃ is approximated by the number of ways to rewire the
node stubs [24], i.e. (2m)!. If we try to keep the expected 2K-series unchanged [28, 32], the

output space of G̃ gets smaller than (2m)! but at the price of much higher sensitivity O(n).
Over the huge output space, the mechanismA is useful only if it gives higher probabilities

to those G̃ “close” to G1 in the sense of utility metrics. So it is very challenging to find
the ǫ-DP mechanism A that can reduce the output space and at the same time produce a

highly concentrated distribution of G̃ around G1 (as in the case of Laplace noises added

to scalar counting values [10]). The huge output space of G̃ therefore relaxes the stringent
requirement of ǫ (usually set to 1.0 in the literature). That is why we consider ǫ = O(lnn) in

TRANSACTIONS ON DATA PRIVACY 9 (2016)

220 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

the experiments. Note that this limit of ǫ is much lower than the value 100 in [28], 200-2,000
in [32] or 4,474 in [33].
Another important justification of ǫ = lnn is the edge re-identification risk quantified by ρ-

differential identifiability (ρ-DI) [16]. In differential privacy, ǫ limits how much one individual
can affect the function f , not how much information is revealed about an individual. Using
the semantics of possible worlds, Lee and Clifton show that any ǫ-DP mechanism satisfies

1
1+(M−1)e−ǫ -DI where M is the number of possible worlds. In our case, a powerful attacker

who knows all edges EG1
\{e} tries to infer the existence of e in G1. The number of possible

worlds is M = n(n−1)
2 −m, so we have ρ = 1

1+(n(n−1)/2−m−1)e−ǫ . Substituting ǫ = lnn into

it, we get ρ ≈ 2
n given the fact that m = O(n) for sparse graphs. We believe that the factor

ρ = O(1/n) at ǫ = lnn is acceptable for edge privacy, especially on million-scale graphs.
For the second challenge, consistency means that if we constantly increase the privacy

budget ǫ, G̃ must get closer to G1. Ideally, G̃ = G1 at a certain value of ǫ (a.k.a upper
bounds). As we will see in the evaluation (Fig.12), only Top-m-Filter and EdgeFlip are
consistent with ǫ. The consistency property allows data owners to have a wider range of
choices for ǫ. For example, they can allow ǫ up to lnn or 1.5 lnn for better utility when the
privacy is not too stringent.

4 Top-m Filter

We introduce our linear time algorithm Top-m Filter (TmF) in this section. Its basic idea is
to consider the adjacency matrix as a sparse dataset. Most of the real-world graphs expose
sparsity, i.e. the average degree is of O(log n) where n is the number of nodes [24, Table 2].
TmF then uses an idea similar to High-pass Filter in [9] to avoid the materialization of the
noisy adjacency matrix. Our algorithm processes at most 2m cells of the adjacency matrix,
so it is linear in the number of edges. By devising TmF, we also reach an upper bound on
privacy budget for graph publication in ǫ-DP setting.

4.1 Overview

In [9], Cormode et al. propose several summarization techniques for sparse data under
differential privacy. Let M be a contingency table having the domain size m0 and m1 non-
zero entries (m1 ≪ m0 for sparse data). The conventional publication of a noisy table
M ′ from M that satisfies ǫ-DP requires the addition of Laplace/geometric noise to all m0

entries because the “differential” item can appear in any counting entry. The entries in M ′

could be filtered (e.g. removing negative ones) and/or sampled to get a noisy summary
M ′′. This direct approach would be infeasible for huge domain sizes m0. Techniques in
[9] avoid materializing the vast noisy data by computing the summary M ′′ directly from
M using filtering and sampling techniques. Because the counting values are integral, the
Geometric mechanism 3.1 is preferred.
Compared to the High-pass filtering technique applied to contingency tables [9], our TmF

method is different in two points. First, TmF aims at publication of sparse unweighted
graphs with only 0-or-1 entries, not for any non-negative entries as in contingency tables.
Second, the integral threshold used with the geometric mechanism in [9] makes the ex-
pected sum of noisy entries not equal to the sum of original entries. To keep the expected
number of edges in published graphs unchanged, we use real-value thresholds, which lead
to the application of the Laplace mechanism.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 221

Figure 1: TmF algorithm

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

θ

0−cell
1−cell

Figure 2: 0 < θ < 1

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

θ

0−cell
1−cell

Figure 3: 1 ≤ θ

Given the input graph G (represented by an adjacency matrix A) and a privacy budget ǫ,
by the assumption of edge independence, the naive approach (Naive) adds Laplace noise

to all cells in the upper-triangle of A, i.e. Ãij = Aij + Lap(1/ǫ) for all j > i ≥ 1. Ãij is then

post-processed by rounding Âij = argminx=0,1 |Ãij − x|.
Instead of processing each cell independently as in Naive approach, our idea is to keep

top-m noisy values Ãij and reconstruct them to 1-cells. However, the number of edges
m needs to be first obfuscated (note that in edge privacy model, only n is public [34]).
We can achieve this by Laborious filtering, i.e. first computing the noisy number of edge

m̃ = m + Lap(1/ǫ2), then adding Laplace noise Lap(1/ǫ1) to all n(n−1)
2 cells and selecting

top-m̃ noisy cells. This approach costs O(n2) in space and O(n2 logn) in time because of the
materialization of all cells. TmF avoids such problem by computing the threshold θ so that
there are exactly m̃ noisy cells larger than θ. We call those cells passing cells. Fig. 1 depicts
the processes of Naive, Laborious filtering and TmF.

The distributions for noisy values of 1-cells and 0-cells are shown in Figures 2 and 3. By
setting a threshold θ, the probability of a 0-cell (resp. 1-cell) passing the filter is represented
by the area under the blue curve (resp. the green curve) on the right of the vertical line
at x = θ. Clearly, the area for the 1-cells is always larger than the area for the 0-cells, i.e.
the 1-cells have higher probability to pass the filter. By adjusting the threshold, we can
control the number of 0-cells and 1-cells in the output graphs for given constraints. Such a
constraint is the total number of passing cells.

We have two cases: 0 < θ < 1 and 1 ≤ θ. The case θ ≤ 0 results in the number of passing

cells is at least n(n−1)
4 ≫ m̃, and therefore omitted.

Case 1: 0 < θ < 1: the number of passing 1-cells is

n1 = m

+∞
∫

θ

ǫ1
2
exp(−ǫ1|x− 1|)dx =

m

2
(2− e−ǫ1(1−θ)) (2)

TRANSACTIONS ON DATA PRIVACY 9 (2016)

222 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

The number of passing 0-cells is

n0 = (
n(n− 1)

2
−m)

+∞
∫

θ

ǫ1
2
exp(−ǫ1|x|)dx

= (
n(n− 1)

2
−m)

1

2
e−ǫ1θ

By equating the sum of n1 and n0 to m̃, we can compute the value of θ. Because m̃ =
m + Lap(1/ǫ2), we have E[m̃] = m. So to simplify the calculations, we set n1 + n0 = m.
This leads to

θ =
1

2ǫ1
ln(

n(n− 1)

2m
− 1) +

1

2
(3)

Case 2: 1 ≤ θ: Similarly, the number of passing 1-cells is

n1 =
m

2
e−ǫ1(θ−1) (4)

The number of passing 0-cells is

n0 = (
n(n− 1)

2
−m)

1

2
e−ǫ1θ (5)

The value of θ is

θ =
1

ǫ1
ln(

n(n− 1)

4m
+

1

2
(eǫ1 − 1)) (6)

To decide whether θ ≥ 1 or 0 ≤ θ ≤ 1, we compute the threshold ǫt of ǫ1 at θ = 1. For both
cases,

θ = 1↔ ǫt = ln(
n(n− 1)

2m
− 1) (7)

4.2 TmF Algorithm

Algorithm 1 shows steps of Top-m-Filter in which we replace all m by m̃. Line 3 com-
putes the noisy number of edges m̃ using a budget ǫ2 (set to 0.1 in our experiments). The
threshold θ is decided in Lines 4-8. Lines 10-15 process 1-cells using the threshold θ. The
remaining passing cells are sampled from 0-cells (Lines 17-22).

Theorem 5. The complexity of TmF is O(m)

Proof. Processing 1-cells (Lines 10-18) runs in O(m). The maximum value of n0 (Line 20)
is m̃ (= m in expectation). For each 0-cell to be processed, the rejection sampling (Lines
22-25) succeeds with probability at least 1− 2m

n(n−1) = 1−O(1/n). So in summary, the total

complexity of TmF is O(m).

Theorem 5 makes sense if we consider the complexity O(n2) of the state-of-the-art DER
[6] and HRG-MCMC [34].

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 223

Algorithm 1 Top-m Filter

Require: input graph G = (V,E), privacy parameters ǫ1, ǫ2
Ensure: sanitized graph G̃

1: G̃← ∅

2: // compute m̃ and θ
3: m̃ = m+ Lap(1/ǫ2)

4: ǫt = ln(n(n−1)
2m̃ − 1)

5: if ǫ1 < ǫt then
6: θ = 1

2ǫ1
ln(n(n−1)

2m̃ − 1)
7: else
8: θ = 1

ǫ1
ln(n(n−1)

4m̃ + 1
2 (e

ǫ1 − 1))
9: end if

10: // process 1-cells
11: n1 = 0
12: for Aij = 1 do

13: compute Ãij = Aij + Lap(1/ǫ1)

14: if Ãij > θ then

15: add edge (i, j) to G̃
16: n1 ++
17: end if
18: end for
19: // process 0-cells
20: n0 = m̃− n1

21: while n0 > 0 do
22: pick an edge (i, j) /∈ E uniformly at random

23: if G̃ does not contain (i, j) then
24: add edge (i, j) to G̃
25: n0- -
26: end if
27: end while
28: return G̃

4.3 Privacy Analysis

In this section, we show that TmF satisfies ǫ-DP where ǫ = ǫ1 + ǫ2. Our TmF consists of
two steps. It is easy to verify that the sensitivity of m is 1. The first step of computing m̃
satisfies ǫ2-DP. The second step of processing 1-cells and 0-cells is equivalent to indepen-
dently adding noise Lap(1/ǫ1) to each cell and letting them go through a high-pass filter
with threshold θ. The sensitivity of each cell is also 1. By the assumption of edge inde-
pendence, parallel composition (Theorem 4) is applicable at cell level. So the second step
satisfies ǫ1-DP. By sequential composition (Theorem 4), TmF satisfies (ǫ1 + ǫ2)-DP as stated
in the following theorem.

Theorem 6. TmF satisfies ǫ-DP where ǫ = ǫ1 + ǫ2.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

224 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

ε
1
/lnn

n 1/m

polbooks
polblogs
as20graph
wiki−Vote
ca−HepPh
ca−AstroPh
amazon
dblp
youtube

Figure 4: n1/m as a function of ǫ1/ lnn

4.4 An Upper Bound for Privacy Budget

Now we proceed to the more important result: TmF could reduce the edit distance between

G̃ and G to O(1) at ǫ1 = O(lnn). The edit distance between two graphs having the same
node set is defined as

D(G, G̃) =
1

2
(|EG \ EG̃|+ |EG̃ \ EG|) (8)

By the analysis in Section 4.1, the expected number of passing 1-cells is n1, so the expected

edit distance D(G, G̃) = m − n1. At θ = 1, we have n1 = m
2 = D(G, G̃) and ǫ1 = ǫt =

ln(n(n−1)
2m̃ − 1). The cases of small edit distance therefore correspond to the case 0 < θ < 1.

Setting D(G, G̃) = γm , γ ∈ [1m , 1], we need to find the value of ǫ1.

D(G, G̃) = γm

↔ m− m

2
(2− e−ǫ1(1−θ)) = γm

↔ e−ǫ1(1−θ) = 2γ

↔ θ = 1 +
1

ǫ1
ln(2γ)

↔ 1

2ǫ1
ln(

n(n− 1)

2m
− 1) +

1

2
= 1 +

1

ǫ1
ln(2γ) (from (3))

↔ ǫ1 = ln(
n(n−1)

2m − 1

4γ2
)

Because real-world graphs are usually sparse, m = O(n), we reach ǫ1 = O(lnn). Specif-
ically, ǫ1 ≈ 3 lnn, ǫ1 ≈ 2 lnn, ǫ1 ≈ lnn at γ = 1

m , γ = 1√
m

and γ = 0.5

O(
√
d̄)

respectively

(d̄ = 2m
n is the average degree). We come up with the following theorem.

Theorem 7. TmF can make the edit distance D(G, G̃) = O(1) at ǫ1 ≈ 3 lnn.

Fig. 4 shows the normalized number of passing 1-cells n1/m as a function of ǫ1/ lnn over
nine graphs (cf. Table 2). As we can see, at ǫ1 = lnn (the solid vertical line), 65-90% of

edges in G are kept in G̃.
This result naturally points out the waste of privacy budget in [29, 32] and [33] where ǫ =
O(
√
n) or ǫ = O(n). Interestingly, in HRG-MCMC scheme [34], the sensitivity ∆u ≈ 2 lnn

which means that the non-private HRG-MCMC with ǫ = 2∆u ≈ 4 lnn costs a budget even
higher than ǫ ≈ 3 lnn in our non-private TmF. We further analyze HRG-MCMC in Section
6.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 225

5 EdgeFlip: Differential Privacy via Edge Flipping

We present a deeper analysis of EdgeFlip scheme in this section and a partially linear im-
plementation of EdgeFlip using an idea similar to TmF.

5.1 A Tighter Upper Bound for Privacy Budget

EdgeFlip scheme [23] is also a direct publication scheme as TmF. Its basic idea is also based
on the nature of edge differential privacy, i.e. all edges are independent. Given the privacy
parameter s ∈ (0, 1], any edge is flipped (from one to zero or vice-versa) with probability
s/2 and preserves its value with probability 1 − s/2. The probability ratio that two neigh-

boring graphs are perturbed to the same graph can be expressed as 1−s/2
s/2 = 2/s − 1. To

satisfied ǫ-DP, we must have 2/s − 1 ≤ eǫ or equivalently ǫ ≥ ln(2/s − 1) as stated in the
following theorem.

Theorem 8. (EdgeFlip privacy [23]) EdgeFlip guarantees 1-edge differential privacy for ǫ ≥ ln(2/s−
1).

The expected number of edges in G̃ is as follows

Theorem 9. (Expected number of edges [23]) E[|V ′|] = (1− s)m+ n(n−1)
4 s

By considering all edges in G (there are n(n−1)
2 such edges), EdgeFlip incurs a quadratic

complexity and needs to be redesigned for large graphs. First, we compute the edit distance

D(G, G̃) = 1
2 (|EG \ EG̃|+ |EG̃ \ EG|) where

|EG \ EG̃| = |m− (1− s

2
)m| = sm

2
(9)

|EG̃ \ EG| =
(

n(n− 1)

2
−m

)

s

2
(10)

So, we get D(G, G̃) = n(n−1)s
8 . From Theorem 8, s = 2

eǫ+1 . Therefore, the relation between
the edit distance and the privacy budget in EdgeFlip is as follows

D(G, G̃) =
n(n− 1)

4(eǫ + 1)
(11)

By solving similar equations as in TmF, we come up with the following theorem

Theorem 10. (EdgeFlip edit distance) EdgeFlip can reduce the edit distance to 1 at ǫ = ln
(

n(n−1)
4 − 1

)

≈

2 lnn,
√
m at ǫ = ln

(

n(n−1)
4
√
m
− 1

)

≈ 1.5 lnn and m/2 at ǫ = ln(n(n−1)
2m − 1)

The edit distance in EdgeFlip decreases faster than that of TmF for ǫ ∈
[

ln(n(n−1)
2m − 1),+∞

)

.

Interestingly, D(G, G̃) is equal to m/2 at ǫ = ln(n(n−1)
2m −1) in both of them. However, when

ǫ gets smaller, e.g. at ǫ ≈ 0.5 lnn, D(G, G̃) will be of O(n1.5). This means EdgeFlip costs a

super linear space to store the edges of G̃, not feasible on million-scale graphs. In contrast,

TmF always outputs a noisy G̃ having the expected number of edges of m.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

226 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

Algorithm 2 Partially linear-time EdgeFlip(G, s, ǫ2)

Require: undirected graph G = (V,E), privacy parameter s

Ensure: anonymized graph G̃

1: G̃← ∅, ǫ2 = 0.1
2: m̃ = m+ Lap(1/ǫ2)

3: ǫt = ln(n(n−1)
2m̃ − 1)

4: ǫ = ln(2s − 1)− ǫ2
5: s̃ = 2

eǫ+1
6: if ǫ + ǫ2 ≤ ǫt then return EdgeFlip(G, s̃) [23]
7: end if
8: // process 1-cells
9: for Aij = 1 do

10: add edge (i, j) to G̃ with prob. 1− s̃/2
11: end for
12: // process 0-cells

13: n0 = (n(n−1)
2 − m̃) s̃2

14: while n0 > 0 do
15: pick an edge (i, j) /∈ EG uniformly at random

16: if G̃ does not contain (i, j) then
17: add edge (i, j) to G̃
18: n0- -
19: end if
20: end while
21: return G̃′

5.2 A Partially Linear Implementation

To make EdgeFlip runnable on large graphs, we propose a partially linear-time version as
in Algorithm 2 where we process 1-cells and 0-cells separately. Note that Algorithm 2 is

linear-time only if s ≤ 4m
n(n−1) (see Lines 3-6) when the expected number of edges of G̃ is

E[|V ′|] = (1− s)m+
n(n− 1)

4
s = m+ (

n(n− 1)

4
−m)s

≤ m+ (
n(n− 1)

4
−m)

4m

n(n− 1)
= 2m− 4m2

n(n− 1)
< 2m

We check this condition privately (Line 6) using a small ǫ2 (set to 0.1 in the experiments)
after computing m̃ and ǫt. The parameter s is replaced by s̃. For 1-cells, Lines 9 and 10
cost O(m). Because E[|V ′|] ≤ 2m for s ≤ 4m

n(n−1) , the number of 0-cells that are flipped to

1-cells n0 < E[|V ′|], so EdgeFlip runs in linear time when s ≤ 4m
n(n−1) and in quadratic time

otherwise. This is an improvement over the original EdgeFlip [23].
The interested readers may think about the application of filtering technique of TmF to

EdgeFlip for s ≥ 4m
n(n−1) . This idea, however, turns out to be infeasible. In TmF (a short-

cut method of Laborious Filtering), all cells of the adjacency matrix are added a continuous
Laplace noise, so the top-m noisy cells are easily computed. EdgeFlip, on the contrary, by
using the flipping technique, outputs discret values 0 or 1. For s ≥ 4m

n(n−1) , the number of

1-cells is at least 2m, so we cannot filter the top-m 1-cells. Figures 5 and 6 visualize the dif-

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 227

Figure 5: TmF vs. EdgeFlip

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

ε / ln(n)

no
rm

al
iz

ed
 n

um
be

r
of

 e
dg

es

n
1
 (EF)

total−edges (EF)
n

1
 (TmF)

total−edges (TmF)

Figure 6: The number of passing 1-cells and the total of edges in EdgeFlip and TmF (on
amazon graph)

ference between TmF and EdgeFlip. In TmF, the expected number of edges in G̃ is always
m while in EdgeFlip, this number increases with s (i.e. when ǫ decreases), making the algo-
rithm infeasible for small values of ǫ. This is the EdgeFlip’s trade-off between the smaller
upper bounds than TmF (Theorem 10) and the infeasibility at s ≥ 4m

n(n−1) (corresponding to

ǫ ≤ ln(n(n−1)
2m − 1)).

6 HRG-based Schemes for Large Graphs

In this section, we present limitations of HRG-MCMC [34] (Section 6.1) and propose HRG-
FixedTree (Section 6.2) for large graphs. HRG-FixedTree satisfies ǫ-DP and reduces the com-
plexity to O(m logn). A fast sampling technique from dendrograms is also introduced
(Section 6.3).

Figure 7: (left) graph G (right) a dendrogram T

TRANSACTIONS ON DATA PRIVACY 9 (2016)

228 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

6.1 Limitations of HRG-MCMC

Hierarchical Random Graph (HRG) [8] is a graph summary structure of size O(n). It is
a binary tree with leaves being graph nodes and n − 1 internal nodes. Fig. 7 shows an
example of a graph G and a possible dendrogram T . Each internal node r is equipped with
a connection probability pr = er

nLr.nRr
, where nLr, nRr are the number of leaf nodes in the

left and right subtrees Lr, Rr of r. Note that er is the number of edges connecting leaf nodes
in Lr, Rr. Given a graph G, the number of possible dendrograms is super-exponential. In
reality, we are concerned with the highly likely dendrograms, where the likelihood of T is
measured as

L(T, {pr}) =
∏

r∈T

perr (1− pr)
nLrnRr−er (12)

The log-likelihood of T is

logL(T, {pr}) = −
∑

r∈T

nLrnRrh(pr) (13)

where h(pr) = −pr log pr− (1−pr) log(1−pr) is the Gibbs-Shannon entropy function. Intu-
itively,−nLrnRrh(pr) is maximized when pr is close to 0 or 1, which means high-likelihood
dendrograms are those that partition the nodes into groups between which connections
are either very common or very rare. This happens, for example, in community-like or
multi-partite graphs.
Xiao et at. [34] employ HRG model to address the problem of graph release under differ-

ential privacy. Their scheme HRG-MCMC first privately samples the dendrogram T by a
privacy budget ǫ1 and then adds noise Lap(1/ǫ2) to er of the sampled dendrogram. MCMC
method fits well to Exponential mechanism (Definition 3), i.e. to sample a huge space of
states where direct computation of the normalization constant is infeasible, MCMC can be
used to explore the space. To satisfy ǫ-DP, the acceptance probability in [34] is

min(1,
exp(ǫ1

2∆u logL(T ′))

exp(ǫ1
2∆u logL(T))) (14)

where ∆u is the global sensitivity of a dendrogram’s log-likelihood, and ∆u ≈ ln(n
2

4) ≈
2 lnn. HRG-Fit in [8] performs MCMC with the acceptance probability similar to Formula
14 without ǫ1

2∆u in either the nominator or the denominator. Clearly, HRG-Fit is 2∆u-DP in
nature. However, even at ǫ = 2∆u ≈ 4 lnn, i.e. when HRG-MCMC becomes HRG-Fit, the
sample graphs reconstructed are not good enough as we will see in Section 8.
HRG-MCMC induces a huge state space of (2n − 3)!! ≈

√
2(2n)n−1e−n possible den-

drograms. Empirical evaluation by Clauset et al. shows that MCMC on HRG converge
relatively quickly, with the likelihood reaching the plateau after roughly O(n2) steps. In
ǫ-DP setting, Xiao et al. use 1000n steps for MCMC, along with a reconstruction time
of O(n2 logn). In the subsequent section 6.2, we present HRG-FixedTree with complexity
of O(m logn), runnable on large graphs. We also present a fast sampling technique of
O(n logn) on dendrograms in section 6.3.

6.2 HRG-FixedTree: Sampling over Node Permutations

In this section, we present our scheme, HRG-FixedTree for structural inference on large
graphs. HRG-FixedTree reduces the sampling space to n! by fixing a binary tree D and
sampling good permutations of nodes for the leaves of D.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 229

Figure 8: HRG-FixedTree

Fig. 8 illustrates one step of HRG-Fixed. We fix the dendrogram structure with the leaf
nodes {a, b, c, d, e, f}. Then to perform a MCMC step, we randomly choose two nodes,
say a and d, and swap them to get a permutation proposal. The affected internal nodes
(dotted squares) are updated accordingly. The likelihoods of two permutations are shown
under each permutation. Algorithm 3 is essentially similar to HRG-MCMC. The difference
is that HRG-MCMC has costly MCMC steps while HRG-FixedTree ensures the logarithmic
complexity for each MCMC run as we will see below.

Algorithm 3 HRG-FixedTree

Require: input graph G = (V,E), fixed dendrogram structure D, privacy budget ǫ1
Ensure: sampled permutation Ssampled

1: initialize the permutation S0

2: for each step i in the Markov chain do
3: pick a neighboring permutation S′ of Si−1 by randomly swapping two nodes in

Si−1.

4: accept the transition and set Si = S′ with probability min(1,
exp(

ǫ1
2∆u

logL(S′))

exp(
ǫ1

2∆u
logL(Si−1))

)

5: end for
6: // until equilibrium is reached
7: return a sampled partition Ssampled = Si

The state space of HRG-FixedTree is the set of all permutations over n nodes, so it is
connected. It is straightforward to verify that the transitions performed in line 3 of HRG-
FixedTree are reversible and ergodic (i.e. any pair of nodeset partitions can be connected by a
sequence of such transitions). Hence, HRG-FixedTree has a unique stationary distribution
in equilibrium. By empirical evaluation, we observe that HRG-FixedTree converges after
K|S| steps for K = 1000.
Fast MCMC step for HRG-FixedTree. Algorithm 4 is called in the line 3 of Algorithm 3.

Whenever two leaf nodes u and v are swapped, we have to recompute the pr for each inter-
nal node r along the two paths from u and v to their lowest common ancestor (see Fig. 8 for
an example). FastSwap ensures the logarithmic time for this computation by precomputing
the signature of each leaf node and storing in leafPath. Numbering the internal nodes of D
from 1 to n, we compute the signature of each node in the form of an array of size logn.
The minus means that the node is in the leaf subtree of that internal node. For example,
node a is in the left subtrees of internal nodes 4,2 and 1, so its signature is {-4,-2,-1}. We
sort all the signatures in ascending order.
FastSwap works as follows. First, it finds affected internal nodes and store them to listP .

TRANSACTIONS ON DATA PRIVACY 9 (2016)

230 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

Algorithm 4 FastSwap

Require: input graph G = (V,E), fixed dendrogram structure D, permutation S, L(S),
two nodes u, v

Ensure: log-likelihood L(S′) where S′ is S with u, v swapped
1: find affected internal nodes listP
2: for each node r ∈ listP do
3: L(S) = L(S) + nLrnRrh(pr)
4: end for
5: remove u and v from S
6: swap u, v in leafPath
7: add u and v back to S
8: for each node r ∈ listP do
9: update er and pr

10: L(S) = L(S)− nLrnRrh(pr)
11: end for
12: update pointers of u and v

This step costs logn. Then the log-likelihood L(S) is subtracted by −nLrnRrh(pr) of all
nodes in listP (see formula 13). To remove u from S, we consider all w ∈ N(u) and match
the signatures of w and u to find the infected internal node r. The matching operation here
is understood as to find two elements from the two signatures that their sum is zero. For
example, to remove node a with N(a) = {b, c}, we match signatures of a and b to find the
infected internal node is 4. Similarly, the infected node of the pair (a, c) is 2. The matching
operation for each pair costs logn because all the signatures are already sorted. Let d̄ be the
average degree of G, the removal of u and v from S (line 5 of FastSwap) runs in 2d̄ logn.
The replacement of u and v (after swappping) back to S (line 7 of FastSwap) runs in the
same manner. Then all nodes r ∈ listP are updated with new values of er and pr and the
log-likelihood L(S) is added by −nLrnRrh(pr). Finally, u and v update their pointers to
parent/child nodes to keep the tree consistent.
Because each call to FastSwap costs 2d̄ logn and we run k.n MCMC steps, the complexity

of HRG-FixedTree is O(k.nd̄ logn) = O(k.m. log n) as stated in the following theorem.

Theorem 11. HRG-FixedTree runs in O(k.m logn), where k = 1000.

6.3 Fast Sampling From Dendrogram

Apart from costly MCMC of 1000n steps, another bottle-neck in HRG-MCMC [34] is its
Algorithm 3 (Generate Sanitized Graph), which runs in O(n2 logn) to generate a sanitized

graph G̃ from a noisy T̃ . In this section, we point out that from any dendrogram T , we can

sample a graph G̃ in O(n log n).
In Algorithm 3 of HRG-MCMC, for each pair of nodes (i, j), the lowest common ancestor

r of i and j is computed. Then the edge (i, j) is placed in G̃ with probability pr. We call
their approach node-pair based reconstruction. Now we propose edge based reconstruction.
First, at each internal node r, we build the nodesets of its left and right children. For

example the root node on the right of Fig. 7 has left nodeset of {a, b, c} and right nodeset
of {d, e, f}. This step costs time and space of O(n log n) by bottom-up construction. Then
we consider each internal node r (there are n− 1 such nodes) and sample er edges between

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 231

r’s left and right nodesets. This step costs O(m) because
∑

r∈T er = m. In reality, m =
O(n logn) so the total complexity of edge based reconstruction is O(n logn).

Theorem 12. From any dendrogram generated by HRG-MCMC or HRG-FixedTree, a sample
graph can be generated in O(n logn).

7 Comparison of Schemes

We compare the aforementioned schemes by their model complexity, runtime/space com-
plexity and the graph sizes that they can run on. TmF and EdgeFlip output directly the
noisy graphs while the two HRG-based schemes as well as DER and 1K-series employ an
intermediary structure to model the true graph.
DER [6] uses a quadtree to partition the adjacency matrix to quadrants in h levels. All

nodes (except the root node) store the noisy count of 1-cells in their rectangular subregion.
So the model complexity of DER is O(2h). 1K-series has the model complexity of O(n) by
using the degree sequence. HRG-MCMC and HRG-FixedTree privately fit the true graph
into a binary tree (dendrogram), so their model complexity is also O(n).
DER costs O(n2) for storing the count summary matrix as shown in [6]. All the other

schemes incur O(m) for storing the graph G. Table 1 shows the comparison of the schemes
investigated in this paper.

Table 1: Comparison of schemes

Model Runtime Space Graph size

Direct publication
TmF n/a O(m) O(m) 106

EdgeFlip* [23] n/a O(m) O(m) 106

Model-based publication

HRG-MCMC [34] O(n) O(n2) O(m) 104

HRG-FixedTree O(n) O(k.m log n) O(m) 106

DER [6] O(2h) O(n2) O(n2) 104

1K-series [32] O(n) O(m) O(m) 106

(* Recall that EdgeFlip is linear only for ǫ ≥ ln(n(n−1)
2m

− 1))

8 Experiments

Our evaluation aims to compare the efficiency (in runtime) and the effectiveness (in terms
of utility metrics) among the competitors. We pick six small and medium-sized graphs and
three large ones 2. In Table 2, logLKLouvain, logLKHRG-MCMC, logLKHRG-Fixed and logLKInit are
the log-likelihoods of the non-private dendrograms created by Louvain algorithm [3], HRG-
MCMC, HRG-FixedTree and bottom-up binary initialization (i.e. nodes 1 and 2 are paired,
nodes 3 and 4 are paired and so on) respectively. By Louvain method, we recursively
partition the graph into nested communities until their sizes are smaller than a threshold
(e.g. 50 or 100 nodes). Then we build a dendrogram from those communities.
All algorithms are implemented in Java and run on a desktop PC with Intelr Core i7-

4770@ 3.4Ghz, 16GB memory.
The typical utility metrics are listed in Section 8.1. We assess the effectiveness of TmF in

Section 8.2. Then the non-private versions of HRG-based schemes and 1K-series are evalu-
ated in Section 8.3. Finally, Section 8.4 compares the overall performance of all competitors
and clarifies the contribution of each utility metric.

2available at http://www-personal.umich.edu/˜mejn/netdata/ and http://snap.stanford.edu/data/index.html

TRANSACTIONS ON DATA PRIVACY 9 (2016)

232 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

8.1 Utility Metrics

We use the following statistics for utility measurement, according to [4, 6], in which there
are five degree-based metrics, five path-based metrics and two other metrics.
Degree-based metrics

- Average degree: SAD = 1
n

∑

v∈V dv
- Maximal degree: SMD = maxv∈V dv
- Degree variance: SDV = 1

n

∑

v∈V (dv − SAD)2

- Power-law exponent of degree sequence: SPL is the estimate of γ assuming the degree
sequence follows a power-law ∆(d) ∼ d−γ

- Degree distribution: SDD is the normalized degree histogram.
Path-based metrics
- Average distance: SAPD is the average distance among all pairs of vertices that are path-

connected.
- Effective diameter: SEDiam is the 90-th percentile distance among all path-connected

pairs of vertices.
- Connectivity length: SCL is defined as the harmonic mean of all pairwise distances in

the graph.
- Diameter : SDiam is the maximum distance among all path-connected pairs of vertices.
- Distance distribution: SPDD is the normalized node-pair shortest-path histogram.
Other metrics
- Clustering coefficient: SCC = 3N∆

N3
where N∆ is the number of triangles and N3 is the

number of connected triples.
- Cut queries: Scut(X,Y) is the number of edges between two disjoint node sets X and Y .
All of the above statistics are taken average over 20 sample graphs. SAPD, SCL, SEDiam,
SDiam are computed exactly in six small graphs. In amazon, dblp and youtube, we estimate
SAPD, SCL, SEDiam and SDiam using HyperANF [5]. The relative error (rel.err) for each

metric S is computed as
|S(G)−Savg(G̃)|

S(G) except SDD and SPDD whose errors are computed

as |S(G) − Savg(G̃)|1/2 (total variation distance). The number of cut queries is 1,000 and
the size of node set does not exceed 500.

Table 2: Graph dataset statistics (k:thousand, m:million)

Dataset #Nodes #Edges logLKLouvain logLKHRG-MCMC logLKHRG-Fixed logLKInit

polbooks 105 441 -957 -781 -896 -1248
polblogs 1,222 16,714 -65.6k -59.3k -50.7k -74k

as20graph 6,474 12,572 -71k -73.8k -87.6k -100k

wiki-Vote 7,066 100,736 -576k -556k -432k -618k
ca-HepPh 11,204 117,619 -328k -746k -377k -854k

ca-AstroPh 17,903 196,972 -903k -1426k -1,006k -1,515k

amazon 334k 925k -3.6m n/a -8.6m -11.1m

dblp 317k 1,050k -5.0m n/a -9.3m -11.1m

youtube 1,134k 2,987k -24.7m n/a -31.5m -35.8m

The schemes are abbreviated as EdgeFlip (EF), Top-m-Filter (TmF), 1K-series (1K), DER,
HRG-MCMC and HRG-FixedTree (HRG-Fixed). We test all schemes for ǫ in {2.0, 0.25lnn,
0.5lnn, 0.75lnn, lnn, 1.25lnn, 1.5lnn}. The rationale behind this choice of ǫ is presented in
Section 3.2. By ρ-differential identifiability [16], the identification risk is ρ = O(1/n) (resp.
O(1/

√
n)) for ǫ = lnn (resp. ǫ = 1.5 lnn). At ǫ = 2 lnn, ρ = O(1), i.e. blatantly non-private.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 233

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

true graph
ε

1
=2.0

ε
1
=0.5ln n

ε
1
=ln n

ε
1
=1.5ln n

(a) as20graph

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

true graph
ε

1
=2.0

ε
1
=0.5ln n

ε
1
=ln n

ε
1
=1.5ln n

(b) ca-AstroPh

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

true graph
ε

1
=2.0

ε
1
=0.5ln n

ε
1
=ln n

ε
1
=1.5ln n

(c) amazon

Figure 9: Effectiveness of TmF: degree distributions (log-log scale)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

true graph
ε

1
=2.0

ε
1
=0.5ln n

ε
1
=ln n

ε
1
=1.5ln n

(a) as20graph

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

true graph
ε

1
=2.0

ε
1
=0.5ln n

ε
1
=ln n

ε
1
=1.5ln n

(b) ca-AstroPh

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

true graph
ε

1
=2.0

ε
1
=0.5ln n

ε
1
=ln n

ε
1
=1.5ln n

(c) amazon

Figure 10: Effectiveness of TmF: distance distributions

Therefore, the values of ǫ ≥ 2 lnn are not valid. Recall that EF is only linear with ǫ in {lnn,
1.25lnn, 1.5lnn} while DER and HRG-MCMC only runs on six small graphs. We also test
EF at ǫ = 0.75 lnn on six small graphs when the number of edges in output graphs starts to
become super-linear.

8.2 Effectiveness of TmF

We assess the utility of TmF by varying ǫ1 while fixing ǫ2 = 0.1. Figures 9 and 10 dis-
play SDD and SPDD for three graphs as20graph, ca-AstroPh and amazon. At ǫ = 2.0 and
0.5 lnn, TmF produces highly deformed degree distributions and distance distributions.
Additionally, the SDD and SPDD at ǫ = 2.0 and 0.5 lnn are nearly identical. This could be

explained by the large edit distance D(G, G̃) at those values. At ǫ = lnn, the noisy degree
and distance distributions become asymptotic to the true ones.

8.3 HRG-based Schemes

In this section, we assess the effectiveness of HRG model. We try to answer the question: is
HRG a good model for graph summarization? The columns logLKLouvain, logLKHRG-MCMC and
logLKHRG-Fixed of Table 2 shows the log-likelihood of non-private dendrograms generated by
Louvain method, HRG-MCMC and HRG-Fixed. As one of the best community detection
techniques, Louvain method (non-private) [3] gives us high-likelihood dendrograms, espe-
cially on the three large graphs. HRG-MCMC and HRG-Fixed always return dendrograms
of higher likelihood than the initial D0 (logLKInit). The non-private HRG-MCMC samples
better dendrograms than HRG-Fixed only on polbooks and as20graph.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

234 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

HRG−MCMC
HRG−MCMC w/o PL
HRG−Fixed
HRG−Fixed w/o PL

(a) polbooks (lnn = 4.7)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

HRG−MCMC
HRG−MCMC w/o PL
HRG−Fixed
HRG−Fixed w/o PL

(b) polblogs (lnn = 7.1)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

HRG−MCMC
HRG−MCMC w/o PL
HRG−Fixed
HRG−Fixed w/o PL

(c) as20graph (lnn = 8.8)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

HRG−MCMC
HRG−MCMC w/o PL
HRG−Fixed
HRG−Fixed w/o PL

(d) wiki-Vote (lnn = 8.9)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

HRG−MCMC
HRG−MCMC w/o PL
HRG−Fixed
HRG−Fixed w/o PL

(e) ca-HepPh (lnn = 9.3)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

HRG−MCMC
HRG−MCMC w/o PL
HRG−Fixed
HRG−Fixed w/o PL

(f) ca-AstroPh (lnn = 9.8)

Figure 11: Relative errors of HRG-MCMC and HRG-Fixed (with and without SPL)

As we can see in Table 3, despite the high-likelihood scores, dendrograms generated by
Louvain and non-private HRG based schemes cannot reduce the relative errors signifi-
cantly. This fact implies inherent limitations of HRG models. In other words, ǫ-DP schemes
based on HRG models are not consistent with ǫ. The same conclusion could be draw for
1K-series, i.e. compared with the true graph, the graphs regenerated from the true degree
sequence have a significant gap in utility metrics.

Fig. 11 compares the relative errors of HRG-MCMC and HRG-Fixed on six small/medium
graphs in two cases: with and without SPL. Clearly, the relative error of SPL in HRG-
MCMC is much more stable than in HRG-Fixed. In other words, SPL is the main contribu-
tor to the high relative error of HRG-Fixed in most of the cases. Without SPL, HRG-Fixed
outperforms HRG-MCMC on polblogs, wiki-Vote, ca-HepPh and ca-AstroPh. Details on the
consistency of individual utility metric are investigated in the next section.

Table 3: Relative error of non-private 1K-series and HRG-based schemes

Dataset 1K-series Louvain HRG-MCMC HRG-Fixed

polbooks 0.191 0.390 0.242 0.255
polblogs 0.089 0.405 0.277 0.474

as20graph 0.122 0.712 0.186 0.693
wiki-Vote 0.046 0.486 0.318 0.452

ca-HepPh 0.248 0.357 0.439 0.241

ca-AstroPh 0.220 0.370 0.352 0.309
amazon 0.381 0.372 n/a 0.511

dblp 0.265 0.371 n/a 0.327

youtube 0.200 0.584 n/a 0.523

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 235

8.4 Comparative Evaluation

We report the comparisons between the competitors in Fig. 12. As ǫ increases (lower pri-
vacy guarantee), we gain better utility (lower relative errors) for TmF and EF while the
other methods do not have this trend. TmF performs poorly for ǫ in {2, 0.25 lnn, 0.5 lnn, 0.75 lnn}
because of the number of passing 1-cells is low. As ǫ exceeds the threshold ǫt ≈ lnn, the

edit distance D(G, G̃) decreases quickly (i.e. the number of passing 1-cells increases, Fig.
4), so does the relative error. At ǫ = 0.75 lnn, TmF works slightly better than EF except on
as20graph. We do not run EF at ǫ = 0.75 lnn on the three large graphs because the number
of edges becomes super-linear in this case and the relative errors of the five degree-based
metrics overwhelm the rest.

1K-series provides the best utility for ǫ in {2, 0.25 lnn, 0.5 lnn, 0.75 lnn}. Because the de-
gree sequence has small sensitivity, a small privacy budget is enough to keep the degree
sequence almost identical to that of the true graph while larger values of ǫ are redundant.
Put differently, 1K-series benefits a lot from the five degree-based metrics (details below in
Figures 13, 14 and 15). On the six small graphs, HRG-MCMC performs better than DER
but the gap is small in polbooks, wiki-Vote, ca-HepPh and ca-AstroPh.

Over the six small and medium graphs, HRG-Fixed is comparable to HRG-MCMC on
polbooks and ca-AstroPh. It works better than HRG-MCMC only on ca-HepPh. However, the
near-linear complexity makes HRG-Fixed runnable on large graphs.

Except TmF and EdgeFlip, the remaining schemes (1K, HRG-MCMC, HRG-Fixed and
DER) do not show strong consistency with ǫ. We argue that the consistency of TmF and
EdgeFlip is due to their nature of direct publication while the remaining schemes are
model-based (indirect) and rely too much on regeneration processes. In direct methods,

we quantify exactly the relationship between the edit distance D(G1, G̃) and ǫ. On the
contrary, the similar quantification in model-based methods is not well defined and to our
knowledge, has not been considered in the literature.

To see how much each metric contributes to the average relative error, we plot the relative
errors for all twelve metrics in Figures 13, 14 and 15. We pick the three graphs polbooks,
ca-HepPh and dblp. Because all the subfigures have the same set of curves, we only show
the legend in the first subfigure to save the space for the plots. TmF and EF are consistent
with increasing ǫ on all metrics except SAD which is preserved in expectation, i.e. zero
relative error. The model-based schemes show weak consistency on several metrics, for
example HRG-Fixed on SDD and SDiam. 1K-series, the best scheme for small ǫ, has nearly
zero errors on the five degree-based metrics but it gives poor results on the path-based
metrics as well as SCC . HRG-Fixed outperforms HRG-MCMC on many metrics, especially
on the five path-based metrics and SCC . The good performance of 1K-series and HRG-
based schemes on different subsets of metrics confirms again the information loss in each
model-based scheme. Reversely, it suggests that more complex summarization structures
can combine the best of both models. We leave this for future work.

The runtime is reported in Table 4. As expected, TmF, EF and 1K-series run very fast, linear
in the number of edges. They run in several seconds on youtube, the largest graph consid-
ered in this paper. Although incurring the quadratic time complexity as HRG-MCMC, DER
runs faster because HRG-MCMC has the big constant k = 1000. Both of them is infeasible
on the three large graphs. Recall that HRG-Fixed runs in O(m log n), an improvement over
HRG-MCMC [34].

TRANSACTIONS ON DATA PRIVACY 9 (2016)

236 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(a) polbooks (lnn = 4.7)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(b) polblogs (lnn = 7.1)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(c) as20graph (lnn = 8.8)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(d) wiki-Vote (lnn = 8.9)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(e) ca-HepPh (lnn = 9.3)

0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(f) ca-AstroPh (lnn = 9.8)

0 0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

1K
TmF
EF
HRG−Fixed

(g) amazon (lnn = 12.7)

0 0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

ε/ln n

re
l.e

rr

1K
TmF
EF
HRG−Fixed

(h) dblp (lnn = 12.7)

0 0.25 0.5 0.75 1 1.25 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

ε/ln n

re
l.e

rr

1K
TmF
EF
HRG−Fixed

(i) youtube (lnn = 13.9)

Figure 12: Comparative evaluation: the relative error is averaged on twelve utility metrics

9 Conclusion

We prove an upper bound O(lnn) for the privacy budget ǫ that any differentially private
scheme for graph release should not exceed. Based on a filtering technique, we design the
algorithm TmF that reduces the edit distance between the noisy graph and the true graph
to O(1) at an upper bound of ǫ = O(lnn). By further investigation of EdgeFlip, we show
that it also satisfies the upper bound. Moreover, TmF and EdgeFlip, as representatives of
direct publication schemes, show a strong consistency with the large privacy budgets. We
explain the inherent information loss in model-based methods which prevents them from
achieving the perfect utility for ǫ ≥ 1.5 lnn. On scalability, we show that TmF, EdgeFlip
(partially), HRG-FixedTree and 1K-series have linear complexity while HRG-MCMC and
DER do not. The comprehensive experiments demonstrate the efficiency and effectiveness
of our TmF and explain the inconsistency in the model-based schemes HRG-MCMC, HRG-
Fixed, DER and 1K-series. For future work, we intend to (1) find better consistent schemes
and (2) examine summary structures for graphs other than HRG and 1K-series.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 237

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(a) SAD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(b) SMD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(c) SDV

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(d) SPL

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(e) SDD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr
ε/ln n

(f) SAPD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(g) SCL

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(h) sEDiam

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(i) SDiam

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(j) SPDD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(k) SCC

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(l) Scut

Figure 13: Relative errors of utility metrics on polblogs (lnn = 7.1)

TRANSACTIONS ON DATA PRIVACY 9 (2016)

238 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

ε/ln n

re
l.e

rr

1K
TmF
EF
DER
HRG−MCMC
HRG−Fixed

(a) SAD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(b) SMD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(c) SDV

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(d) SPL

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(e) SDD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr
ε/ln n

(f) SAPD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(g) SCL

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(h) sEDiam

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(i) SDiam

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(j) SPDD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(k) SCC

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(l) Scut

Figure 14: Relative errors of utility metrics on ca-HepPh (lnn = 9.3)

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 239

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

ε/ln n

re
l.e

rr

1K
TmF
EF
HRG−Fixed

(a) SAD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(b) SMD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(c) SDV

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(d) SPL

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(e) SDD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr
ε/ln n

(f) SAPD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(g) SCL

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(h) sEDiam

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(i) SDiam

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(j) SPDD

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(k) SCC

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

re
l.e

rr

ε/ln n

(l) Scut

Figure 15: Relative errors of utility metrics on dblp (lnn = 12.7)

TRANSACTIONS ON DATA PRIVACY 9 (2016)

240 Hiep H. Nguyen, Abdessamad Imine, Michaël Rusinowitch

Table 4: Runtime in milliseconds

Dataset 1K TmF EF DER HRG-MCMC HRG-Fixed

polbooks 6 3 3 13 3922 665
polblogs 39 24 36 1,486 1,576,871 20,878

as20graph 47 30 31 25,140 544,298 31,591

wiki-Vote 232 113 86 45,486 1,185,644 153,488
ca-HepPh 287 135 95 81,989 5,547,744 206,520

ca-AstroPh 469 226 97 182,556 14,734,655 358,263

amazon 2,780 1,565 1,185 n/a n/a 3,743,018
dblp 3,188 1,576 524 n/a n/a 4,091,923

youtube 11,369 5,265 1,853 n/a n/a 13,049,549

References

[1] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganography. In WWW, pages 181–190. ACM, 2007.

[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency table release. In PODS, pages 273–282. ACM,
2007.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in
large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[4] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting uncertainty in graphs for identity obfusca-
tion. Proceedings of the VLDB Endowment, 5(11):1376–1387, 2012.

[5] P. Boldi, M. Rosa, and S. Vigna. Hyperanf: Approximating the neighbourhood function of very
large graphs on a budget. In WWW, pages 625–634. ACM, 2011.

[6] R. Chen, B. C. Fung, P. S. Yu, and B. C. Desai. Correlated network data publication via differen-
tial privacy. VLDB Journal, 23(4):653–676, 2014.

[7] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: privacy preserving network publication
against structural attacks. In SIGMOD, pages 459–470. ACM, 2010.

[8] A. Clauset, C. Moore, and M. E. Newman. Hierarchical structure and the prediction of missing
links in networks. Nature, 453(7191):98–101, 2008.

[9] G. Cormode, C. Procopiuc, D. Srivastava, and T. T. Tran. Differentially private summaries for
sparse data. In ICDT, pages 299–311. ACM, 2012.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography Conference, pages 265–284. Springer, 2006.

[11] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[12] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

[13] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy mech-
anisms. SIAM Journal on Computing, 41(6):1673–1693, 2012.

[14] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting structural re-identification in
anonymized social networks. Proceedings of the VLDB Endowment, 1(1):102–114, 2008.

[15] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private
histograms through consistency. Proceedings of the VLDB Endowment, 3(1-2):1021–1032, 2010.

[16] J. Lee and C. Clifton. Differential identifiability. In KDD, pages 1041–1049. ACM, 2012.

[17] K. Liu and E. Terzi. Towards identity anonymization on graphs. In SIGMOD, pages 93–106.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

Network Structure Release under Differential Privacy 241

ACM, 2008.

[18] W. Lu and G. Miklau. Exponential random graph estimation under differential privacy. In Pro-
ceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 921–930. ACM, 2014.

[19] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topology analysis and genera-
tion using degree correlations. In ACM SIGCOMM Computer Communication Review, volume 36,
pages 135–146. ACM, 2006.

[20] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Foundations of Com-
puter Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages 94–103. IEEE, 2007.

[21] F. D. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In SIGMOD, pages 19–30. ACM, 2009.

[22] D. Mir and R. N. Wright. A differentially private estimator for the stochastic kronecker graph
model. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, pages 167–176. ACM, 2012.

[23] Y. Mülle, C. Clifton, and K. Böhm. Privacy-integrated graph clustering through differential
privacy. In EDBT/ICDT Workshops, pages 247–254, 2015.

[24] M. E. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256,
2003.

[25] H. H. Nguyen, A. Imine, and M. Rusinowitch. Anonymizing social graphs via uncertainty
semantics. In ASIACCS, pages 495–506. ACM, 2015.

[26] H. H. Nguyen, A. Imine, and M. Rusinowitch. Differentially private publication of social graphs
at linear cost. In ASONAM, pages 596–599. ACM, 2015.

[27] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data
analysis. In STOC, pages 75–84. ACM, 2007.

[28] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao. Measurement-calibrated graph
models for social network experiments. In Proceedings of the 19th international conference on World
wide web, pages 861–870. ACM, 2010.

[29] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao. Sharing graphs using differentially pri-
vate graph models. In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference, pages 81–98. ACM, 2011.

[30] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[31] C.-H. Tai, P. S. Yu, D.-N. Yang, and M.-S. Chen. Privacy-preserving social network publication
against friendship attacks. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1262–1270. ACM, 2011.

[32] Y. Wang and X. Wu. Preserving differential privacy in degree-correlation based graph genera-
tion. Transactions on data privacy, 6(2):127, 2013.

[33] Y. Wang, X. Wu, and L. Wu. Differential privacy preserving spectral graph analysis. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pages 329–340. Springer, 2013.

[34] Q. Xiao, R. Chen, and K.-L. Tan. Differentially private network data release via structural infer-
ence. In KDD, pages 911–920. ACM, 2014.

[35] B. Zhou and J. Pei. Preserving privacy in social networks against neighborhood attacks. In
ICDE, pages 506–515. IEEE, 2008.

[36] L. Zou, L. Chen, and M. T. Özsu. K-automorphism: A general framework for privacy preserving
network publication. Proceedings of the VLDB Endowment, 2(1):946–957, 2009.

TRANSACTIONS ON DATA PRIVACY 9 (2016)

