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Abstract—Cyber-physical systems (CPS) consist of physical
entities that obey dynamical laws and interact with software
components. A typical CPS implementation includes a discrete
controller, where software periodically samples physical state and
produces actuation commands according to a real-time schedule.
Such a hybrid system can be modeled formally as a hybrid
automaton. However, reachability tools to verify specifications
for hybrid automata do not perform well on such periodically-
scheduled models. This is due to a combination of the large
number of discrete jumps and the nondeterminism of the
exact controller start time. In this paper, we demonstrate this
problem and propose a solution, which is a validated abstraction
mechanism where every behavior of the original sampled system
is contained in the behaviors of a purely continuous system with
an additive nondeterministic input. Reachability tools for hybrid
automata can better handle such systems. We further improve
the analysis by considering local analysis domains. We automate
the proposed technique in the Hyst model transformation tool,
and demonstrate its effectiveness in a case study analyzing the
design of a yaw-damper for a jet aircraft.

I. INTRODUCTION

Periodic real-time scheduling is a widespread method used
to control a physical plant as part of a cyber-physical system
(CPS). Typical schedulers, such as rate-monotonic (RM) or
earliest deadline first (EDF) [1], give a guarantee of peri-
odic execution. In each period, sensors are read, the control
algorithm is run, and actuator outputs are set. The physical
world, on the other hand, evolves continuously. Models of the
physical world may be given using differential equations that
are obeyed at all times.

In this work, we analyze the periodically-scheduled con-
troller subsystems of CPS using hybrid automata [2] and
associated analysis tools. A hybrid automaton can directly
model both the continuous behaviors and discrete aspects
that arise when real-time scheduling and sampled control is
combined with a continuously-evolving physical plant. The
set of reachable states of a hybrid automaton, if it can be
computed or overapproximated, can be used to formally prove
control-theoretic properties about the system’s transient and
steady-state behavior. The controller subsystem models, after
being proven correct, could then be integrated with hybrid
automaton models of other parts of the system using modeling
methods like hybrid input/output automata (HIOA) [3]. Rea-
soning about properties of the combined system could then be
performed using assume-guarantee reasoning [4]. With such
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hybrid systems analysis, properties can be formally proven
about sets of initial states as well as behaviors under bounded
sensor error, actuator error, and other uncertainties. This has
the potential to detect errors not found during simulation
and testing, which deal with single initial states and specific
execution traces.

Directly analyzing the controller subsystems of CPS using
hybrid automaton reachability tools, unfortunately, does not
usually work. One issue is that a large number of controller
updates need to be considered in the analysis. The control code
may need to be run tens or hundreds of times a second, and
the physical system may need to evolve for tens of seconds
to show the properties of interest. The number of discrete
transitions that occur thus becomes extremely large. Real-time
schedulers may also have variability in the exact scheduling
time of the controller. Hybrid automaton reachability analysis
tools perform poorly in such cases, with error bounds growing
unacceptably large in the presence of many discrete transitions
and timing uncertainty [5], [6].

In order to overcome these challenges, we apply a variant of
the continuization technique [7], where a fast-switching hybrid
system is abstracted by a continuous system with an additive
nondeterministic input. We provide theoretical methods to
compute bounds on the nondeterminism input needed for the
continuization of periodically-scheduled controllers, which is
essential for abstraction soundness. The developed approach is
then automated using the Hyst [8] model transformation tool.
In this way, we provide both a theoretical method that enables
controller analysis with hybrid automaton reachability tools,
and a practical way to use it.

The main contributions of this paper are:
• the modeling of periodically-controlled CPS using hybrid

automata, with several models proposed based on possi-
ble implementation variations,

• the validated use of continuization to enable the analysis
of these models, and a theoretical method to compute the
bound on the nondeterminism globally as well as within
local analysis domains,

• the implementation of the proposed technique in the Hyst
model transformation tool, which allows rapid application
to new hybrid automaton models, and

• a demonstration of the effectiveness of the proposed
analysis approach on the design of a yaw damper system
for a 747 jet aircraft.



In the next section, we present a brief background on mod-
eling hybrid systems, give direct approaches for modeling real-
time-scheduled controllers with hybrid automata, and provide
reachability results showing scalability issues with these direct
models. Next, Sec. III describes continuization and methods
for computing the nondeterministic bounds it uses, which are
essential for method accuracy. Then Sec. IV briefly describes
the Hyst model transformation tool and the illustrates the
continuization pass that implements the technique developed in
this paper. Sec. V provides a case study showing the advantage
of the analysis on a yaw damper control system for a 747
aircraft. A brief discussion of related techniques, especially a
comparison versus classical control theoretic methods is given
in Sec. VI, followed by a conclusion.

II. HYBRID SYSTEMS MODELING

The controller subsystem of a cyber-physical system (CPS)
consists of a physical system interacting with a software
controller, running periodically on a system using a real-time
scheduler. A specific implementation can be formalized using
a hybrid automaton model, and then its behavior, as well as
the behavior of a composition of these subsystem models,
can be analyzed using hybrid automata reachability tools. In
this section, we elaborate on modeling controller subsystems
using the hybrid automaton formalism. We first review hybrid
automata (Sec. II-A), then propose three models that capture
different possible implementations of a controller subsystem
of a CPS (Sec. II-B). Finally, we attempt to directly perform
reachability analysis of these systems using reachability anal-
ysis tools (Sec. II-C), which is shown to be challenging.

A. Preliminaries

A hybrid automaton is a formal model that captures both
discrete behaviors as well as continuous dynamics present in
a hybrid system. Roughly, it is a finite state machine with
ordinary differential equations defined in each mode for a set
of real-valued continuous variables.

Definition 1 (Hybrid Automaton). A Hybrid Automaton is a
tuple
H = (Loc, Var, Init, Flow, Trans, Inv) that defines:
• a finite set of locations Loc,
• a set of n real-valued continuous variables Var =
{x1, . . . , xn},

• an initial condition Init ⊆ Rn for each ` ∈ Loc,
• for each location `, a relation Flow(`) relating variables

and their derivatives,
• a set of discrete transitions Trans, where each element is

a tuple (`, g, r, `′) with source location `, guard g given
as constraint on Rn, reset r given as a function from
Rnto Rn, and destination location `′,

• an invariant Inv(`) ⊆ Rn for each location `.

A state of a hybrid system is a tuple (`,X), where the
discrete state is ` ∈ Loc and the continuous state X is a
valuation—a mapping from a variable name to a point in the
reals—of the continuous variables in Var.

Definition 2 (Trajectory). A trajectory of a hybrid system is
an alternating sequence of continuous evolutions and discrete
transitions, starting from a state in Init. Trajectories are
subject to the following restrictions:
• the first state of the trajectory is an element of Init,
• during each continuous evolution, the continuous state

evolves over an interval of real-valued time in accordance
with the differential equations defined by Flow,

• during each continuous evolution, the continuous states
always satisfy the location’s invariant1, and

• during each discrete transition, the prestate is contained
in transition’s guard, and the change in state corresponds
to applying the reset function to the continuous prestate
and updating the location to `′.

Definition 3 (Reachable Set). The set of all states that exist in
any trajectory is called the reachable set. For a given hybrid
automaton H, we use REACH(H) to denote the reachable set
of H. Given a subset of the variables Y ⊆ Var of hybrid
automaton H, the reach set projected onto those variables is
written as REACH(H) ↓ Y . Typically we will be concerned
with time-bounded reachable sets, where the amount of time
that has elapsed during the continuous evolution portions of
each trajectory is less than or equal to some given bound.

B. CPS Modeling

We now describe three different ways that a CPS con-
troller subsystem can be modeled using the hybrid automaton
formalism, which correspond to different possible system
implementations. First, we introduce the notion of a Sampled
CPS, which has a continuous portion governed by differential
equations, and a controller update function that updates the
discretely-controlled variables.

Definition 4 (Sampled CPS). A Sampled CPS is a system
with n continuous variables divided into two groups. The
first np ≤ n variables are the physical variables, and the
remaining nc = n − np variables are the cyber variables.
The set of variables V ar = {x1, x2, . . . , xn} is partitioned
into physical variables Xp = {p1, p2, . . . , pnp} and cyber
variables Xc = {c1, c2, . . . , cnc}, where each variable xi ∈ R.
Each physical variable has an associated differential equa-
tion, ṗ1 = f1, ṗ2 = f2, . . ., ṗnp = fnp, where each
ṗi = fi is a function Rn → R. To ensure existence and
uniqueness of the solutions, the differential equations are
assumed to be Lipschitz continuous in the domain of interest.
The dynamics for the physical variables are provided, so
Fp = (f1, f2, . . . , fnp) is given. The remaining nc variables
are set periodically in control software, and remain constant
between updates (zero-order hold). Their differential equa-
tions are given as ċ1 = 0, ċ2 = 0, . . ., ċcn = 0. The
control software is defined by a function controller update :
Rn → Rnc, which updates the cyber variables based on the

1If at some point the invariant were to become false, a discrete transition
must be taken immediately. If no transition’s guards are enabled, the model
is said to deadlock as time cannot advance.



Ẋp = Fp(Xp, Xc)

Ẋc = 0
ċ = 1

Inv: c ≤ T

Guard: c = T?
Xc := controller update(Xp, Xc)

c := 0

(a) Model 1

Ẋp = Fp(Xp, Xc)

Ẋs = 0

Ẋc = 0
ċ = 1

Inv: c ≤ T

Guard: c = T?
Xc := controller update(Xs, Xc)

Xs := Xp

c := 0

(b) Model 2

Ẋp = Fp(Xp, Xc)

Ẋc = 0
ċ = 1

Inv: c ≤ T

Ẋp = Fp(Xp, Xc)

Ẋc = 0
ċ = 1

Inv: c ≤ T

Guard: True?
Xc := controller update(Xp, Xc)

Guard: c = T?
c := 0

(c) Model 3

Fig. 1: Various hybrid automaton models formalize different implementations of a periodically-sampled CPS.

system state. The controller update function can be decom-
posed into nc functions where each one updates a single
cyber variable, c1 := controller update1(Xp, Xc), . . . , cnc :=
controller updatenc(Xp, Xc). In this work, we will restrict the
controller update functions to ones that are differentiable and
locally Lipschitz continuous in the input arguments, in the
domain of interest (for example, discrete approximations of
continuous controllers).

Model 1: The simplest model is for a strict periodic
controller, where the control software runs with a given period,
T . This could correspond to a system using a time-division
multiple-access (TDMA) or other time-triggered scheduler,
where the control task is nonpreemptive and the worst-case
execution time (WCET) fairly short. In the model, a single
location exists where time can elapse. An extra clock variable,
c, is added to the hybrid automaton that ticks at rate one
(ċ = 1). When the clock reaches the period, a transition is
forced by an invariant in the single location that c ≤ T ,
which prevents continuous evolutions from continuing. The
transition executes the controller logic when the clock reaches
the period, then resets the clock to 0, and subsequently repeats
periodically. A hybrid automaton visualization of this model
is shown in Fig. 1(a). The strict periodic controller, however,
does not exactly capture the behavior of a system using a
real-time scheduler. A scheduler like rate-monotonic (RM) or
earliest deadline first (EDF), provides a guarantee of execution
at some point within the period.

Model 2: An alternative implementation, which uses a real-
time scheduler such as RM or EDF would sample the system
at the start of the period, and write the actuation values at
the end of the period. This can be modeled using a hybrid
automaton by starting with the strictly periodic system (Model
1) and adding np additional cyber variables, which we call Xs,
with derivatives equal to zero that model the sampled state.
On the actuator assignment (controller update) at the end of
each period, the controller logic will then compute on the state
sampled from the start of the period. After updating the cyber
variables, the physical state would then be sampled again and
stored into Xs for use at the end of the next period. The
hybrid automaton model of this system is given in Fig. 1(b).
The downside of such a controller is there is a one period

delay introduced into the system, which may affect control
performance, as well as np additional variables in the model,
which may affect analysis scalability.

Model 3: An alternative implementation may consider
directly sampling and actuating at some point during each
period, where the sampling point is nondeterministic. This
would be a reasonable model if the control task’s execution
is short and the task is non-preemptive. This model is similar
to the strictly periodic Model 1 (Fig. 1(a)), except that: (1)
a second mode is added to indicate if the controller has
run yet during the period, (2) the first transition (the call
to controller update) happens nondeterministically up to the
period T owing to the invariant c ≤ T , and (3) the second
transition (the end of the control period) happens when the
clock reaches T time. The modified automaton is shown
in Fig. 1(c). This model uses nondeterminism in discrete
transitions to capture the type of guarantee provided by a real-
time scheduler: that the control logic will execute and finish
at some point within each period.

More complicated models could also be considered. For ex-
ample, if the execution time was non-negligible or the task was
preemptive, the state could be sampled nondeterministically
at some point during the period minus the WCET, and then
actuation could be performed nondeterministically up to the
end of the period.

C. Preliminary Reachability Analysis

Although hybrid automata can model real-time scheduled
controllers and plants as shown above, an important factor
is tractability of analysis. Since analysis of even moderately-
complicated hybrid automata is undecidable [9], tools often
compute an overapproximation of the reachable states, which
is sufficient for safety analysis (making sure unsafe states are
not reachable). If the set of reachable states may be computed
for unbounded time (if the reachability algorithm reaches a
fixed-point) and the resulting set of states is bounded, then
conclusions can also be drawn about system stability. In the
presence of a large number of discrete switches, reachability
analysis tools may significantly overapproximate the reachable
set of states, due to the need to perform intersections of
reachable sets with surfaces representing guard conditions [6].
These intersections are typically done geometrically, and result



(a) Simulations from x ∈ {0, 0.1} (b) SpaceEx Reachability (c) Flow* Reachability

Fig. 2: The response for the periodically-controlled double-integrator system from Example 1 converges in
simulation, but appears to diverge during reachability analysis.

in an overapproximation of the actual intersection, introducing
some error at every discrete transition. Due to this concern, we
empirically evaluate the performance of two modern reacha-
bility tools, SpaceEx [5] and Flow* [10], [11], on a simple
control system using the approach from Model 1 (Fig. 1(a)).

Example 1 (Double-Integrator System). A double-integrator
system, such as point moving along a 1-d line controlled
through its acceleration, has two physical variables: x, its
position, v, its velocity, and a single cyber variables a, its
acceleration. The dynamics are ẋ = v, v̇ = a, and the
acceleration a is set periodically by the control logic. There is
a fixed setpoint the system tries to move towards at x = 1. The
acceleration is set using a PD controller with gains P = 10
and D = 3. The controller update function periodically
assigns a := P ∗ (1− x) +D ∗ −v. The period of the control
task is T = 0.005 seconds (200 Hz). The initial states are
x ∈ [0, 0.1] and v = 0.

Using the system in Example 1, we construct the corre-
sponding hybrid automaton (shown in the Appendix in Fig. 8)
and examine the controller’s response. A control Lyapunov
function may be derived to show stabilization of the purely
continuous system to the setpoint of x = 1 and v = 0. In
Matlab simulations of the periodically-sampled system from
the boundary of the initial states (from both x = 0 and
x = 0.1), the system easily converges to the setpoint. When
performing reachability, however, both SpaceEx and Flow*
produce divergent reachable sets, due to overapproximation
error introduced at each of the discrete transitions. The simu-
lations and reachability visualization are shown in Fig. 2.

Although effort was taken to optimize various tool parame-
ters, they could likely be further adjusted to get a slightly better
response. For this particular system, if the tools had built-in
support for time-triggered transitions and could infer that the
clock acts as a time-trigger for the discrete transition, the error
in the computation could likely be reduced (although we could
not find time-triggered support in either tool’s documentation).
However, this would not work for the nondeterministic switch
in Model 3 (Fig. 1(c)), since that discrete transition (invocation
of controller update) can occur at any time within the period,
based on the guarantees provided by schedulers like RM and

EDF. The problem of accumulated error in reachability from
many discrete transitions, in general, cannot be eliminated.

III. CONTINUIZATION FOR IMPROVED ANALYSIS

The occurrence of many discrete transitions leads to accu-
mulated error during reachability analysis because of a need
to repeatedly take intersections of sets of states with the
transition guards. One idea to get better accuracy, therefore,
is to eliminate the discrete transitions altogether. Intuitively,
this process relies on the observation that the behavior of the
periodically-sampled system is contained in the behavior of the
continuously-controlled system with some additional bounded
nondeterministic input.

This process of validated abstraction of the sampled hybrid
automaton by a continuous one is called continuization [12],
and is briefly reviewed in the next subsection (Sec. III-A).
Here, we apply the continuization idea in order to analyze
periodic control systems, which has not been done before. This
process relies on having a bound on the speed of changes of the
cyber variables, and computing this bound is then described
(Sec. III-B).

A. Continuization

Continuization is the process of abstracting a system with
many discrete switches by a continuous one with an extra
nondeterministic input. Previously, it was used to analyze
rapidly-switching electric circuits [12], specifically locking
time and stability properties for charge-pump phase-locked
loops. The key challenge when performing continuization
is determining the amount of nondeterministic input that is
necessary in order to guarantee that all behaviors of the
sampled system are captured by the continuous one, but not
too much that analysis accuracy suffers.

In the earlier circuit work, this was done by solving for
the change of state in one cycle with a known switching time.
Since there was no closed-form solution for the switching time,
interval analysis was performed using the ranges of possible
switching times, and then this was used to derive conservative
bounds on the change in state.

We want to apply continuization in order to analyze
periodically-controlled CPS. We formalize this process by
using sampling deviation functions.



Definition 5 (Sampling Deviation). A sampling deviation ωi
is a function R → R × R, which, given a time, produces an
upper and lower bound on the difference of a cyber variable
ci ∈ Xc, between its value in a sampled CPS and the update
function controller update(Xp, Xc).

Given a sampling deviation function ωi for each cyber vari-
able, we can construct an overapproximation of the sampled
CPS. First, we construct a continuous approximation of the
sampled CPS.

Definition 6 (Continuous Approximation). A continuous ap-
proximation of a sampled CPS is a hybrid automaton where
the controller logic is run continuously. That is, the discrete
update for each cyber variables in ci ∈ Xc is removed from
the system, and each cyber variable’s differential equation is
set to ċi = d

dtcontroller updatei(Xp, Xc). The variable ci’s
initial value is set to the value when the controller is run at
the original initial state, controller updatei(Xp(0), Xc(0)).

The continuous approximation differs from the original
sampled CPS. A continuized abstraction accounts for this
difference by adding nondeterminism to every occurrence of
each cyber variable within the continuous approximation.

Definition 7 (Continuized Abstraction, Continuization). A
continuized abstraction Hc of a sampled CPS H is constructed
starting from H’s continuous approximation. Each occurrence
of a cyber-variable ci in the continuous approximation gets an
extra term added equal to the sampling deviation ωi. If any
of the ωi change over time, an additional time variable t is
added to the system that starts at 0 and ticks at rate 1 forever.

The model constructed using the above continuization ap-
proach will have trajectories of the physical variables that
contain all the behaviors in the original sampled CPS.

Theorem 1 (Soundness of Continuization). Given a sampled
CPSH as well as its continuized abstractionHc, REACH(H) ↓
Xp ⊆ REACH(Hc) ↓ Xp.

Proof. Consider any cyber variable ci ∈ Xc. Let Valsampled(ci)
be the value of the variable in the sampled CPS, and
Valabstract(ci) be the value of the variable in the continuized
abstraction. At any time t in a trajectory, we first show that
Valsampled(ci) ∈ Valabstract(ci) + ωi(t).

By the definition of the sampling deviation function, the dif-
ference between Valsampled(ci) and controller updatei(Xp, Xc)
at time t must be contained in the interval ωi(t). Therefore,
Valsampled(ci) is contained in controller updatei(Xp, Xc) +
ωi(t). The continuous approximation at time t is equal to
controller updatei(Xp, Xc), and by the construction of the
continuized abstraction from the continuous approximation,
the inclusion Valsampled(ci) ∈ Valabstract(ci) + ωi(t) holds.

In the construction of the continuous abstraction, each
cyber variable ci in the continuous approximation was re-
placed by ci + ωi(t). Since, as shown above, Valsampled(ci) ∈
Valabstract(ci) + ωi(t), the derivatives for every variable in

the sampled CPS will be contained in the derivatives of
continuized abstraction. In particular, the physical variable
values in the continuized abstraction also contain the sampled
CPS physical variable values. The discrete transitions between
the two systems are identical, except for the removal of the
periodic cyber-variable updates in the continuized abstraction.
Thus, any discrete transition (other than controller updates,
which only update cyber variables and for which we already
showed containment) taken by the sampled CPS can also
be taken by the continuized version. Since a trajectory is
an alternating sequence of continuous evolutions and discrete
transitions, and the initial states are the same, by induction on
the length of a trajectory, the values of the physical variables
in the sampled CPS are always contained in the values of the
physical variables in the continuized abstraction. Therefore,
REACH(H) ↓ Xp ⊆ REACH(Hc) ↓ Xp.

B. Producing Sampling Deviation Functions
The key to continuization is to construct sampling deviation

functions that provide an upper and lower bound on the
difference of each cyber variable between the sampled CPS
and the controller update function. One way to compute such
a function is by looking at the maximum rate of change
(bounded by a Lipschitz constant) of the derivative of each
cyber variable in the continuous approximation. This process
makes use of standard interval arithmetic multiplication, [a, b]∗
[c, d] = [min(a∗c, a∗d, b∗c, b∗d),max(a∗c, a∗d, b∗c, b∗d)].

Lemma 1 (Sampling Deviation using Lipschitz Constant).
Given interval bounds, K = [Kmin,Kmax], on the rate of
change of the derivative of ci in the continuous approximation,
and the period of the associated strictly-periodic (Model 1
from Fig. 1) controller, T , a sampling deviation function is
ωi = [−T, 0] ∗K.

Proof. The sampling deviation function needs to bound the
difference of the value of the variable ci in a sampled
CPS and controller updatei(X). The difference between
controller updatei at the last sample time (which is the
current value of the cyber variable in the sampled CPS), and
controller updatei at the current time (which is its value in
the continuous approximation) is at most a product of the
maximum rate of change K, and the time since the last sample.
The difference between the last controller update and the
current time must be in the interval [−T, 0], since it is a strictly
periodic controller with period T . Assuming the first sample
occurs at time 0, by induction on the number of samples, this
property will hold for every sampling period and therefore
over all time.

In this case, we had considered a strictly periodic controller,
such as the one given by Model 1 in Sec. II-B. To compute
the function for a nondeterministic controller such as Model
3, all that would need to be adjusted is the time of the last
controller update. In the worst case, a sample will occur at the
start of one period, and at the end of the next period. In that
case, the maximum time between updates is 2 ∗ T , so using
an interval of [−2 ∗ T, 0] in Lemma 1 would be adequate.



Fig. 3: The main idea behind the proposed continuization
approach is that a nondeterministic continuous system contains
the behaviors of a periodically sampled system.

To provide some intuition on the construction of sampling
deviation functions, we provide an simple illustrative example.

Example 2 (Sine Wave). Consider a system with a single
cyber variable c1 where the controller update function is given
by sin(t), and t is a clock (physical variable with ṫ = 1) ticking
from 0 to π. The period of the cyber-variable is T = 0.2.

The rate of change of controller update (the derivative) is
equal to cos(t), and the bound on cos in [0, π] is K = [−1, 1].
Given this bound and the period of T = 0.2, each occurrence
of ci in the continuous approximation is replaced by ci +
[−0.2, 0.2] in the continuized abstraction. A visual depiction
of this is given in Fig. 3.

One nice property of the sampling deviation function con-
structed by Lemma 1 is that no matter how large the bounds
are on the rate of change of the controller update function, the
sampling deviation function can be made arbitrarily small by
choosing a small enough controller period T . This is because
of the multiplication in the sampling deviation function by
the interval [−T, 0]. Intuitively, this makes sense, since the
continuous system is more closely approximated as we sample
and actuate at a higher frequency. This is in contrast, however,
to reachability analysis done directly on the sampled CPS
models, where smaller periods lead to more discrete transi-
tions, which lead to more error.

The width of the interval given by deviation function does
affect the amount of overapproximation in the constructed
model, and therefore it is desirable to have this function be as
tight as possible. One way to improve the bound on the rate of
change of the cyber variable is by considering smaller domains
(time intervals). For example, we could take advantage of the
time dependence of each sampling deviation function ωi, and
define corresponding sampling deviation functions within local
analysis domains.

Lemma 2 (Sampling Deviation in Local Analysis Domains).
For a cyber variable ci with period T , given a sequence of
interval bounds on the rate of change of the controller update
function, K1, K2, . . ., Km, and an associated sequence of

overlap
of time 
T=0.2

Fig. 4: The continuization approach as applied to four local
analysis domains has an overlap of one period length between
domains.

increasing and pointwise-intersecting time intervals (which we
call local analysis domains) where the bounds are valid, [t0 =
0, t1], [t1, t2], . . . , [tm−1, tm], a sampling deviation function up
to time tm can be computed as:

ωi(t) = [−T, 0] ∗ [min({Kmin
j | t ∈ [tj−1, tj + T ]}),

max({Kmax
j | t ∈ [tj−1, tj + T ]})].

Proof. Notice the time intervals have the controller period
T added to the upper time bound. This is because when a
new time interval is entered in a trajectory, the sampled CPS
could have taken the most-recent sample in either the current
time interval, or in the previous one. The sampling deviation
function, therefore, must account for both possibilities until T
time has elapsed in the new interval. Other than this caveat,
the proof follows that of Lemma 1, except that the analysis is
done at each time interval.

In the sine wave system from Example 2, we can ap-
ply this approach in four analysis domains (time inter-
vals), [0, π4 ], [

π
4 ,

π
2 ], [

π
2 ,

3π
4 ], [ 3π4 , 1]. Solving for the cos(t) (the

derivative of sin(t)) in these domains, we can come up with
the associated interval bounds on ċ1 in the continuous approx-
imation, K1 = [

√
2
2 , 1],K2 = [0,

√
2
2 ],K3 = [−

√
2
2 , 0],K4 =

[−1,−
√
2
2 ]. Using the period T = 0.2, we then obtain the

piecewise continuization of the system, shown in Fig. 4.
In Fig. 4, when the derivative bounds are positive, the

difference between the sampled CPS and the continuous
approximation is negative, which is why an interval of [−T, 0]
was used to bound the difference. Also, without the presence
of the overlap between time domains, the continuized abstrac-
tion would be wrong immediately after time π

2 . In this case,
the new domain has a strictly negative derivative, but because
the sample occurred before π

2 , the bound from the previous
domain must be used.

There are two considerations when applying continuization
with local analysis domains. First, the result is only valid until
the maximum time of the last analysis domain. If this time
is finite, this means only bounded-time reachability can be
computed. Second, there is a trade off between the accuracy



of the computation and the number of domains considered.
Continuization was originally used to eliminate large numbers
of discrete transitions in a sampled CPS. Using local analysis
domains, however, brings back discrete transitions, although
now the number of transitions can be controlled by adjusting
the number of domains. Using too many domains may lead to
similar problems with tool performance as when we directly
considered a sampled CPS model for reachability analysis.
We could solve this problem by having sampling deviation
functions that vary as continuous functions of time, although
the way to create these is less clear, and left as possible future
work.

IV. AUTOMATION IN HYST

Hyst [8] is a model transformation and translation tool
for hybrid automaton models. Hyst performs both model
translation, which converts between formats of different reach-
ability tools, as well as model transformations, which serve to
improve reachability computation results. The continuization
approach described in the previous section has been imple-
mented as a model transformation pass in Hyst, which permits
easy application of the developed technique.

A. Transformation Pass

The implemented model transformation pass performs con-
tinuization starting given a continuous approximation of the
system. The user provides (1) a target model file describing
the hybrid automaton, (2) the controller period, T , (3) the
name of the cyber variable of interest, ci, (4) a sequence of
m increasing times used to construct local analysis domains,
(5) a corresponding sequence of m bloating terms, which will
be described shortly, and (6) the name of the time variable
(optional; only used if multiple local analysis domains are
used to create transitions between them).

Given these inputs, the pass first simulates the continuous
abstraction from the center of the initial states, in order to
approximate the interval bounds on the rate of change of
the derivative of ci. For each time interval, the bound during
that time is then expanded by the corresponding user-provided
bloating term. We call the new intervals candidate Lipschitz
bounds for the cyber variable’s derivative. The candidate
Lipschitz bounds are used as described in Lemma 2, along
with the time domains, in order to produce the sampling
deviation function ωi(t).

The sampling deviation function consists of piecewise con-
stant intervals. For each piece, a mode is created in the output
hybrid automaton, with dynamics equal to the continuous
approximation, except with every occurrence of ci replaced
by ci + ωi(t). Transitions are then added between the modes
when the appropriate amount of time has elapsed.

The bound given by ωi is only valid, however, if the candi-
date Lipschitz bounds are actually upper and lower bounds on
the derivative of the cyber variable. This can happen because
the bounds are constructed from a single simulation using the
continuous approximation, whereas the reachable set of states
considers all initial points as well as the expanded set of values

for the cyber-variable in the dynamics, ci + ωi(t) instead of
just ci. To check if the bounds are respected, invariants and
guards are added to the output hybrid automaton to check if
the derivative exceeds the candidate Lipschitz bounds. If a
violation occurs, a transition to an error state is taken, which
is added as a forbidden location in the model. In this way,
performing reachability computation will not only give the set
of states reachable by the continuized abstraction, but will also
check that the candidate Lipschitz bounds are actual bounds
on the derivative of the cyber variable. If they are not, the
transition to the error state will be detected when performing
a reachability computation, and the transformation pass can
be re-run with larger bloating terms, which will increase the
size of the candidate Lipschitz bounds.

B. Example

We apply the continuization approach in Hyst to the double-
integrator system given in Example 1. The controller update
function in this case is P ∗ (1 − x) +D ∗ −v, with P = 10
and D = 3. The time derivative is −10 ∗ ẋ − 3 ∗ v̇. After
substituting in the derivatives (ẋ = v, v̇ = a), the derivative
of a in the continuous abstraction is: −10 ∗ v − 3 ∗ a. The
initial value of a is the value assigned when controller update
is evaluated at the initial states, a := 10∗(1−x)+3∗−v. The
hybrid automaton of the continuous approximation shown in
the appendix, in Fig. 9.

The pass implemented in Hyst performs a simulation of the
system starting from the center of the initial set of states, in
this case, at x = 0.05, v = 0, a = 9.5. The value of ȧ in
the simulation is observed to be in the interval [−28.64, 5.27].
This interval is then bloated by the provided bloating term,
for which we consider +−1, +−2 and +−4.

When running reachability with a bloating term of 1, Flow*
immediately (at time 0) detects that the constructed error
states are reachable, which means that the candidate Lipschitz
bounds do not contain all the encountered values of ȧ. Com-
putationally, we can show this to be the case. Initially, x =
[0, 0.1], which means the initial value of a is [9, 10]. The initial
value of ȧ is −10∗v−3∗a = [−30,−27]. The interval values
of ȧ in the simulation were [−28.64, 5.27], which bloated by 1
give candidate Lipschitz bounds of [−29.64, 6.27]. The lower
bound of the derivative of the cyber variable (−30) is initially
outside of the candidate bounds, which was detected by the
transition to the error state.

Using a bloating term of 2, the candidate Lipschitz bounds
are [−30.64, 7.27], which contain the above-computed initial
values of ȧ. When performing reachability, however, at time
0.04 an error state is reached again. At this time, the reachable
set contains a state where a = 8.79 and v = 0.382. In this
case, the derivative ȧ = −10 ∗ v− 3 ∗ a+ωi = −10 ∗ 0.382−
3 ∗ 8.79 + [−0.45, 0.11] has a lower value of −30.66, which
is below the candidate Lipschitz bound of −30.64.

When the larger bloating term of 4 is used, the candidate
Lipschitz bound is respected by the reachable set, and Flow*
does not reach the out-of-bounds error states. Thus, the reach



(a) Continuized System (b) Two Analysis Domains

Fig. 5: The response for the continuized periodically-
controlled double-integrator system from Example 1 is sig-
nificantly tighter than direct analysis (Fig. 2).

set of the continuized abstraction is a validated overapproxi-
mation of the reach set of the sampled CPS.

Recall, however, that directly computing the reach set of
the sampled CPS, as shown in Fig. 2, resulted in a large
exponential blow up in the size of the reachable set due to
accumulation of overapproximation error. Even with a single
analysis domain, the reachable set is significantly smaller,
as shown in Fig. 5(a). Using multiple analysis domains, the
reachable set can be further reduced. The hybrid automaton of
the continuized system with two local analysis domains [0, 1.5]
and [1.5, 5] is shown in the appendix in Fig. 10. The reach set
of the response for this system is shown in Fig. 5(b). Thus, the
continuization method developed in this paper enables a more
precise formal analysis of this system using hybrid automaton
reachability tools.

In terms of overhead, the runtime of the pass itself is small,
taking about 100 ms. The reachability computation takes 0.9
seconds for the single-domain case, and about 1.3 seconds for
the two-domain system, which is significantly faster than the
12 minutes needed for SpaceEx to produce Fig. 2(b).

V. CASE STUDY

In this section, we apply the technique developed from
Sec. III in order to perform reachability analysis of a hybrid
system model of a yaw-damper for a 747 aircraft.

A. System and Controller Model

The model and controller we analyze in this case study
are taken from the Control Systems Toolbox case studies in
Matlab [13]. In brief, the system is a multiple-input multiple-
output (MIMO) system that uses the aileron and rudder in
order to reduce oscillations in the yaw and roll angle.

The analysis of the yaw damper is done on the sys-
tem’s aileron-to-bank angle impulse response. Three different
systems are considered: (1) the original, undamped system,
which experiences oscillations upon an impulse input, (2)
the system with proportional compensator, which eliminates
the oscillations but also over-stabilizes the spiral mode (a
desired characteristic for the control), and (3) the system with
a washout filter, which eliminates the oscillations but keeps
the spiral mode.

We use this case study to evaluate the developed con-
tinuization technique so as to evaluate properties about the
response of the final (washout filter) system. There are four

Fig. 6: The impulse response for the washout filter design of
a yaw damper demonstrates the spiral mode in simulation.

physical variables in this system, sideslip angle (x1), yaw rate
(x2), roll rate (x3), and bank angle (x4), represented by the
column vector x. The two inputs u, are the rudder (u1) and
aileron (u2). The outputs are the yaw rate and bank angle.
The dynamics for the physical system are the standard linear
time-invariant dynamics, ẋ = Ax+Bu (the A and B matrices
are provided in the in Sec. B of the appendix).

This physical system is put into a feedback loop with a
washout filter. The washout filter has a single variable, w,
with dynamics ẇ = x2 − 0.2 ∗ w. The washout filter variable
is combined with the yaw to produce an effect on the rudder
input. That is, the washout filter adds to u1 the value 2.34 ∗
(x2 − 0.2 ∗ w).

A simulation of the aileron-to-bank angle impulse response
from this system, with and without the washout filter, is given
in Fig. 6. In particular, the two control properties of interest
are a lack of oscillations (quick settling time), and the presence
of the spiral mode. The spiral mode is a desirable flight
characteristic demonstrated by the apparent2 steady-state offset
in the rudder-to-bank angle impulse response.

A property to check is that the aileron to bank angle impulse
response remains around the simulated value of 0.08, between
20 and 40 seconds, and thus maintains the spiral mode without
significant oscillation. We consider a controller running at 20
Hz (T = 0.05), using the implementation that samples and
actuates when the real-time scheduled controller runs (Model
3 from Sec. II-B).

B. Reachability Analysis

Neither SpaceEx nor Flow* can effectively compute reach-
ability on the periodically-actuated system model (Fig. 11 in
the appendix). The reachable set of states explodes almost
immediately, and neither tool can compute accurate time-
bounded reachability for the required 40 seconds.

We apply the continuization approach developed in this
paper by using the Hyst transformation pass on the continuous
approximation of the model. First, we apply the technique over
the whole time range. Initially, we try a small bloating term,
and increase it until error states are no longer reachable during
analysis. For the period parameter given to the pass, we use
twice the control period, as this is needed to account for the

2The steady state is actually zero, but the convergence is very slow over
hundreds of seconds.



(a) Reachability in Flow* of
the Continuized Model

(b) Reachability with Local
Domains and Halving Period

Fig. 7: Flow* can successfully compute reachability on the
continuized model. When a smaller period and local analysis
domain is used, the result is tighter.

maximum delay in sampling in Model 3, as discussed earlier
in Sec. II-B. Flow* successfully computes reachability for the
model, and confirms that the final bloating term (0.0007) was
sufficiently large. The output plot is shown in Fig. 7(a).

Although the computation completes, which is an improve-
ment over the direct computation, the set of states appears to
be diverging slowly. The reachability result can be improved
by using local analysis domains, or by reducing the controller
period. To demonstrate this, we halve the controller period, and
use two analysis domains. For time [0, 8] we use a bloating
term of 0.0004, and for time [8, 40] we use 0.0003. Hyst
creates the associated model file for Flow*, which we then use
to compute reachability. Flow*, in about 5 seconds, confirms
that the candidate domains are sufficient, and the resultant
reachability plot is tighter than the previous one, as shown in
Fig. 7(b). Furthermore, the spiral mode can be observed from
the reachable set plot, along with the absence of oscillations
in the time range [20, 40].

VI. RELATED WORK

In this paper, we have focused on controller analysis using
hybrid automata reachability tools, although there are existing
methods in control theory to design and analyze controllers.
The design of a controller for a continuous-time system often
occurs in continuous-time, and the controller is subsequently
discretized3 to be implemented in a software controller that
operates periodically.

Continuous-Time Controller Design: There are many
methods for control design in continuous-time. For example, a
common strategy for linear time-invariant (LTI) systems is to
design a stabilizing linear state-feedback controller of the form
u = Kx for a vector K [16]. Assuming the system is both
controllable and observable, the strategy yields a new closed-
loop system: ẋ = Ax + Bu for u = Kx. After substituting
this gives ẋ = Ax+B(Kx) and then ẋ = (A+BK)x. This
strategy is also known as pole placement [16]. Finding the
vector K such that (A+BK) is exponentially stable can be
formulated in a variety of ways, such as by solving a linear ma-
trix inequality (LMI) [17]. Linear quadratic regulator (LQR)

3In this paper, we only focus on the conversion from continuous-time to
discrete-time, and do not consider full digitization [14], [15], for example,
the conversion from continuous-time and continuous-state to discrete-time and
discrete-state through quantization.

design is another linear system design technique that also
incorporates a cost function to yield an optimal controller [18].
LQR is used within the Linear Quadratic Gaussian (LQG)
problem that robustly tolerates Gaussian additive noise inputs
from disturbances. Other control design methods for linear
systems are performed in the frequency domain, where pole
and zero placement may also be performed to ensure stability
and analyze performance criteria such as gain margins, phase
margins, and use graphical tools like Nyquist diagrams and
Bode plots. Design of controllers for nonlinear systems is
challenging, but many approaches exist, such as linearizing
and using gain-scheduled linear controllers, backstepping,
feedback linearization, and many others [19].

Discretization of Continuous Controllers: Discretization
typically consists of several steps. First, a sampling period
must be selected at which measurements of the physical
system are taken and made available to the software controller.
Second, a control period must be selected to specify the rate
at which control decisions are produced by the software con-
troller and sent to actuators to influence the plant. Typically,
these periods are selected in accordance with the speeds of the
dynamics, and a common rule of thumb is to use the Nyquist
frequency of the physical process to determine the minimum
sampling period. The Nyquist frequency is twice the highest
waveform frequency.

Given these periods, a discrete-time version of the plant
can be constructed (using the sampling period) and a discrete-
time version of the controller can be constructed (using the
control period). Both discretizations are needed, as from
the perspective of the controller, it will only receive state
measurements of the plant at the points in time specified by
the sampling period.

Discrete Controllers with Continuous Plants: While from
the perspective of the software controller, the changes to the
plant occur discretely, in reality, the plant evolves continuously
according to differential equations. Controller performance
with such constraints has been extensively investigated, and
tools like JitterBug and TrueTime can characterize controller
performance with real-time constraints and delays [20]. More
recent works aid in synthesizing embedded software from
hybrid systems models [21]. Giotto aids in this process of
moving from control models to embedded real-time code [22].

Reachability: The elimination of large numbers of dis-
crete transitions in hybrid automata was previously accom-
plished by continuization [7]. The earlier work was used to an-
alyze properties about fast-switching electronic circuits. This
work, in contrast, applied continuization to enable the analysis
of fast-switching hybrid automata resulting from the periodic
interactions with the real-time scheduler. We also considered
using local analysis domains to construct the nondeterministic
term, which was shown to increase the accuracy of the model.

Periodically Controller Hybrid Automata (PCHA) is one
formalism for periodically-controlled embedded systems [23].
Automated analysis of PCHAs is possible only if the vector
fields are polynomial, whereas, using the developed Hyst
pass, continuization can be automatically applied to a broader



class of systems. Combinations of reachability tools and SMT
solvers have been used to model both physical-world dynamics
and software behavior [24]. A limitation of this approach is
that cyber-variables are represented with intervals, and that
only strictly-periodic systems can be analyzed (Model 1 from
Sec. II-B).

VII. CONCLUSION

Analysis of large CPS using formal hybrid systems anal-
ysis techniques remains difficult. A challenge problem was
recently proposed to the research community by Toyota on
the verification of a powertrain control system [25]. Although
initial progress has been made on simplified versions of the
system [26], the full benchmark model presents four main
challenges for verification tools: (1) controllers that periodi-
cally actuate the plant, (2) lookup tables to describe the system
dynamics, (3) the presence of time delays in the model, and
(4) large system scale.

In this paper, we addressed the first of these issues, by using
continuization in order to soundly abstract the periodically-
controlled dynamics. This permits initial analysis of these
systems using reachability tools for hybrid automata. Without
our approach, existing tools produce exponentially divergent
reach sets on these models, and often fail before reaching the
desired time bound. Since the accuracy of analysis depends on
the tightness of the difference between the discrete system and
continuized abstraction, a possible future improvement would
be to compute these bounds in local domains based on the
system state, in addition to time as proposed in this paper.
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ẋ = v
v̇ = a
ȧ = 0
ċ = 1

Inv: c ≤ 0.05

Guard: c = 0.05?
a := 10 ∗ (1− x) + 3 ∗ (−v)

c := 0

Fig. 8: Hybrid automaton model for sampled CPS of the
double-integrator system in Example 1.

ẋ = v
v̇ = a

ȧ = −10 ∗ v − 3 ∗ a

Fig. 9: Hybrid automaton model for continuous approximation
of the double-integrator system in Example 1.

ẋ = v
v̇ = a+ [−0.046, 0.163]
ȧ = −10 ∗ v − 3 ∗ a+

[−0.490, 0.139]
ṫ = 1

Inv: t ≤ 1.505

ẋ = v
v̇ = a+ [−0.036, 0.025]
ȧ = −10 ∗ v − 3 ∗ a+

[−0.075, 0.109]
ṫ = 1

Guard: t ≥ 1.5

Fig. 10: Hybrid automaton model for continuized abstraction
with two analysis domains (with error modes and transitions
omitted) of the double-integrator system in Example 1.

APPENDIX

A. Double-Integrator Example

The hybrid automata for the double-integrator system (Ex-
ample 1) are shown in Figs. 8, 9, and 10. In the continuous
approximation and the continuized abstraction, the initial value
of a is taken to be the value when controller update is
evaluated at the initial states, a := 10 ∗ (1− x) + 3 ∗ −v.

The continuized abstraction shown in Fig. 10 is constructed
from two time domains, [0, 1.5] and [1.5, 5], using a bloating
term of 4 for each of the domains. The ranges of ȧ in simula-
tion for the two domains are [−28.65, 5.27] and [−0.97, 3.24],
which give interval bounds of K1 = [−32.65, 9.27], and
K2 = [−4.97, 7.24]. With a period of T = 0.005, this gives in-
terval values for ω of [−0.046, 0.163] and [−0.036, 0.025]. The
derivative ȧ uses a value of −3 multiplied by these intervals
due to the substitution of a by a+ω (since a is multiplied by
−3 in the derivative). The derivative could have equivalently
been written as ȧ = −10 ∗ v − 3 ∗ (a+ [−0.036, 0.025]).

(a) SpaceEx (b) Flow*

Fig. 11: Neither SpaceEx (left) nor Flow* (right) can directly
compute reachability accurately on the yaw-damper model.

Fig. 12: The continuous approximation of the yaw-damper
system demonstrates the spiral mode.

In Fig. 10, the error modes and transitions were not drawn.
The guard conditions to enter an error mode in the first domain
are −10∗v−3∗a+0.139 ≥ 9.27 or −10∗v−3∗a+−0.490 ≤
−32.65. In the second domain, the guard conditions are 10 ∗
v−3∗a+0.109 ≥ 7.24 or −10∗v−3∗a+−0.075 ≤ −4.97.

B. Yaw-Damper Example

The dynamics of the yaw-damper system from Sec. V are
standard linear time-invariant dynamics, ẋ = Ax+Bu, with:

A =


−0.0558 −.9968 0.0802 0.0415
0.598 −0.115 −0.0318 0
−3.05 0.388 −0.4650 0

0 0.0805 1 0



B =


0.00729 0
−0.475 0.00775
0.153 0.143
0 0

 .
Neither SpaceEx nor Flow* can compute reachability on the

periodically-actuated system. The reachability plots produced
by the reachability tools on the real-time actuated model
(Model 3) are given in Fig. 11.

The continuous approximation of the system demonstrates
the spiral mode and is close to the reach set for the
periodically-actuated washout filter system. The plot for the
continuous approximation is shown in Fig. 12. This is the
system that is used as input to the Hyst continuization pass.


