
The Taming of Two Alley CATs

D. Recoskie∗ J. Sawada†

January 27, 2012

Abstract

Round robin tournaments are used in a wide variety of competition settings and especially in recre-
ational sports leagues. The outcomes of such tournaments can be modelled by an orientation of the edges
of a complete graph, where each vertex corresponds to a unique competitor. A score sequence is an non-
decreasing sequence of the out-degrees of such a graph. In this paper we analyze two previously known
algorithms that exhaustively generate all feasible score sequences for a given number of competitors n. In
both cases, we prove that the algorithms run in Constant Amortized Time: they are CAT.

Keywords: Score sequence, round robin tournament, constant amortized time, generation algorithms

1 Introduction

Round robin tournaments, where every player involved is matched against every other player exactly once, are
used in many competition settings. The outcome of such a tournament can be represented by a sequence of in-
tegers corresponding to the number of matches each player won. For example, the winter olympic ice hockey
tournament makes use of a round robin preliminary round. In the Vancouver 2010 winter olympics, teams
were separated into groups of four for the round robin portion. The results involving the Canadian men’s team
were as follows: the US - 3 wins (beat Canada, Norway, and Switzerland), Canada - 2 wins (beat Norway and
Switzerland, Switzerland - 1 win (beat Norway), Norway - 0 wins. The increasing sequence corresponding
to this outcome is 0123 (Norway, Switzerland, Canada, US). The women’s group had an identical sequence
of 0123 (Slovakia, Switzerland, Sweden, Canada). These increasing sequences of integers representing the
outcome of a round robin tournament are called score sequences.

A tournament graph is a complete graph in which each edge is given an orientation. Such a graph can be used
to model the outcome of a round robin tournament, where each vertex corresponds to a unique competitor,
and the direction of the edge between two vertices indicates the outcome. Using this graphical model, a score
sequence corresponds to the non-decreasing sequence of the vertex out-degrees. See Figure 1 for an example
of a tournament graph with 5 vertices and its corresponding score sequence.

Score sequences have been studied previously in [11, 3, 1, 9, 7]. Enumeration sequences were given by [12];
they correspond to sequence A000571 in The On-Line Encycolopedia of Integer Sequences [16]. Research
has gone into areas such as: generating score sequences for transitive tournaments [4] and general oriented
∗School of Computer Science, University of Guelph, Canada. Research supported by NSERC. E-mail:

drecoski@uoguelph.ca
†School of Computer Science, University of Guelph, Canada. Research supported by NSERC. E-mail:

jsawada@uoguelph.ca

1

Figure 1: A tournament graph with five vertices. The score sequence corresponding to this graph is 01234.

graphs [2], finding subgraphs in tournaments with specified score sequences [5], bounding the number of
score sequences of a given length [17], and generating all score sequences of a given length [6, 13, 15, 14].
The generation algorithms in [15, 14] are conjectured to run in constant amortized time (CAT), i.e., the
computation time of the algorithm is proportional to the number of score sequences generated. Experimental
evidence supports this conjecture, but the authors were unable to provide a formal analysis. As a result, these
algorithms are said to be alley-CATs.

The main result of this paper is to provide a theoretical analysis proving that the two algorithms to generate
score sequences presented in [15] are CAT. Section 2 revisits the first algorithm, which is based on a charac-
terization of Landau [10], and then gives a formal analysis. Section 3 applies an optimization to the second
algorithm, which is based on a partition approach, and then gives a formal analysis. Section 4 outlines some
avenues for future research.

It is worth mentioning that sporting events are not the only application of round robin tournaments. Many
other scenarios can be viewed as a tournament. For example, various types of animals develop a ‘pecking
order’ in which for every pair of animal, one is dominant. Another example is consumer preference among
different brands. It is usual for an individual to have a favourite for every pair of brands that they regularly
purchase [8]. It is evident that the study of round robin tournaments extends beyond that of simple athletic or
game tournaments.

2 Algorithm based on Landau’s characterization

The first algorithm for generating score sequences in [15] is based on the following characterization:

THEOREM 1 [10] A non-decreasing sequence s1, s2, ..., sn of integers is a score sequence of a tournament if
and only if

k∑
i=1

si ≥
(
k

2

)
for k = 1, 2, . . . , n with equality for k = n.

This theorem leads to a method to extend prefixes of score sequences one character at a time. An n-prescore
sequence is any prefix of a score sequence of length n.

2

procedure GenScore(k, sum)

if k = n then
sn :=

(
n
2

)
− sum

PrintIt()
else

for i := Min(sk−1,
(
k
2

)
− sum) to b (

n
2)−sum

n−k+1 c do
sk := i
GenScore(k + 1, sum+ i)

end.

Figure 2: Algorithm to generate all score sequences of length n from [15].

THEOREM 2 [15] If s1, s2, . . . , sk−1 is an n-prescore sequence then s1, s2, . . . , sk−1, sk is an n-prescore
sequence if and only if

max(sk−1,

(
k

2

)
− pk) ≤ sk ≤ b

(
n
2

)
− pk

n− k + 1
c,

where pk = s1 + s2 + · · ·+ sk−1, and s0 = 0.

This theorem leads directly to the algorithm GenScore(k, sum) given in Figure 2, where the parameter sum
maintains the value pk and the function PrintIt() outputs the score sequence s1, s2, . . . , sn. The initial call is
GenScore(1, 0) with s0 initialized to 0. A sample computation tree for this algorithm is given in Figure 3 for
n = 5.

0 1 2

1 2

2 3

3

4

3

3

2

2 3

4 3

1 2 2

2

2

2

1 2

3

4

2 3

4 3

2

2

3

Figure 3: Computation tree for GenScore when n = 5. Each path from the root to a leaf corresponds to a score
sequence.

3

2.1 Analysis

In [15], the discussion around analyzing the algorithm for GenScore revolves around finding tight bounds for
both the number of score sequences and for the overall size of the computation tree. Each of these problems
individually appear to be very difficult. Thus, we take a different approach of directly comparing the number
of internal nodes in the computation tree to the number of leaves which correspond to the score sequences.
Since each recursive call is the result of a constant amount of work, by showing that the number of internal
nodes is proportional to the number of leaves we prove the algorithm is CAT.

For our discussion, an internal node of a computation tree with a single child is said to be a 1-node; if it has
2 or more children it is called a 2+ node. Observe that the number of 2+ nodes is bounded by the number of
leaves since each 2+ node can be uniquely mapped to a leaf. Such a mapping can be obtained by first visiting
the rightmost child of a 2+ node, and then successively following the left child until a leaf is reached. Thus,
it remains to show that the number of 1-nodes is proportional to the number of leaves. First, we present some
technical results.

LEMMA 1 If s1, s2, . . . , sk is a length k score sequence and k < n−1, then s1, s2, ..., sk+1 is an n-prescore
sequence.

PROOF: Let σ = s1, s2, . . . , sk−1. If σ, sk is a length k-score sequence, then sk < k. The number of
remaining edges to assign to the n-score sequence is k + (k + 1) + · · ·+ (n− 1). One possible assignment
of those edges are: σ, sk, k, k+ 1, . . . , n− 1. Now since k < n− 1 and sk < k, another possible assignment
is σ, sk + 1, k, k + 1, . . . , n− 2, n− 2. Therefore, σ, sk + 1 is a valid n-prescore sequence. 2

LEMMA 2 If σ = s1, s2, . . . , sk−1 corresponds to a 1-node in the computation tree for GenScore, where

k < n− 1, then sk−1 >
(
k
2

)
−

k−1∑
i=1

si.

PROOF: (By Contradiction) Let σ be a 1-node, pk =
k−1∑
i=1

si, and x =
(
k
2

)
− pk. Suppose sk−1 ≤ x. Then σ, x

will be a child of σ by Theorem 2. Observe that σ, x is a length k score sequence since pk+1 =
(
k
2

)
. Thus by

Lemma 1, σ, x + 1 must also be a child of σ. This is a contradiction because σ was assumed to be a 1-node.

Therefore sk−1 >
(
k
2

)
−

k−1∑
i=1

si. 2

LEMMA 3 If σ = s1, s2, ..., sk−1 corresponds to a 1-node in the computation tree for GenScore, where
k < n− 1, then it will be its parent’s right most child.

PROOF: (By Contradiction) Let σ be a 1-node and pk =
k−1∑
i=1

si. Suppose σ has a sibling immediately to its

right. Note that this sibling will have the form σ, sk + 1. Clearly, max(sk−1,
(
k
2

)
− pk) < max(sk−1 +

1,
(
k
2

)
− pk − 1) since sk−1 >

(
k
2

)
− pk by Lemma 2. Since σ is a 1-node, by Theorem 2

max(sk−1,

(
k

2

)
− pk) = b

(
n
2

)
− pk

n− k + 1
c ≥ b

(
n
2

)
− pk − 1

n− k + 1
c ≥ max(sk−1 + 1,

(
k

2

)
− pk − 1).

But max(sk−1,
(
k
2

)
− pk) < max(sk−1 + 1,

(
k
2

)
− pk − 1), which leads to a contradiction. Therefore, σ is it

parent’s right most child. 2

4

An immediate consequence of the previous lemma is that any 1-node at a depth less than n − 2 is the only
1-node of its siblings. It is obvious that the number of 1-nodes which have at least one sibling are proportional
to the number of 2+ nodes (i.e. they can be mapped uniquely to their parent). Therefore, it remains to consider
1-nodes which have no siblings, i.e., their parent is also a 1-node. We will refer to these nodes as 1,1-nodes.

LEMMA 4 Any 1,1-node must be of the form s1, s2, . . . , sc, a
b, where b > 1.

PROOF: Let s1, s2, . . . , sk be a 1,1-node and pk =
k−1∑
i=1

si. Since s1, s2, . . . , sk−1 is a 1-node, by Lemma

2, sk−1 >
(
k
2

)
− pk. Furthermore, by Theorem 2, sk = max(sk−1,

(
k
2

)
− pk). Therefore sk−1 = sk, and

s1, s2, . . . , sk is of the form s1, s2, . . . , sc, a
b, where b > 1. 2

LEMMA 5 The number of 1,1-nodes in the computation tree for GenScore at a depth less than n − 2 are
proportional to the number of 2+ nodes.

PROOF: We can represent any 1,1-node at level k, k < n−2, by σ, ag, where a < n, and σ=s1, s2, ..., sk−g is
a n-prescore sequence with no element larger than a− 1. Observe that g > 1 by Lemma 4. We will partition
all the 1,1-nodes into distinct equivalence classes based on their form. Let σ, ab be a 1,1-node at a depth less
than n− 2, where b > 1, every element of σ is less than a, and there does not exists a 1,1-node at a depth less
than n − 2 of the form σ, ae, e > b. Any other 1,1-node of the form σ, (a − 1)cad, d > 1, c + d ≤ b, will
belong to the equivalence class of σ, ab. These equivalence classes are mutually exclusive and exhaustive. We
will ignore the case where 1 < b < 4, since any 1,1-nodes in those equivalence classes can be mapped to the
2+ node σ. See Figure 4 for an example equivalence class.

An upper bound on the number of 1,1 nodes in the equivalence class of σ, ab is
b∑

i=1
i = b(b+1)

2 = 1
2b

2 + 1
2b.

We will now show that the lower bound of non-1,1-nodes in this equivalence class is proportional to 1
2b

2+ 1
2b.

Now, σ, (a−1)cab−c, 2 < c < b, will not be a 1,1-node, since both σ, (a−1)cab−c+1 and σ, (a − 1)cab−c(a+
1) will be valid prescore sequences. Furthermore, any node of the form σ, (a − 1)cad, c > b b2c, c + d <
b, d > 0, must not be a 1,1-node because, similarly, σ, (a − 1)cad+1 and σk−b, (a − 1)cad(a + 1) exist.
It follows that the number of nodes guaranteed not to be 1,1-nodes from this equivalence class is at least

b−3+
b b
2
c−2∑

i=1
i = b−3+

(b b
2
c−2)(b b

2
c−1)

2 ≥ b−3+
(b−1

2
−2)(b−1

2
−1)

2 = 1
8b

2− 9
8 . Thus the number of 1,1-nodes

in the equivalence class is proportional to the number of non-1,1-nodes that can be found in this equivalence
class. Since 1-nodes are proportional to 2+ nodes, the number of 1,1-nodes is proportional to the number of
2+ nodes. The non-1,1-nodes in this equivalence class are unique from those in any other equivalence class,
so the total number of 1,1-nodes in the computation tree must be proportional to the total number of 2+ nodes.
2

This result now immediately gives us the following theorem.

THEOREM 3 The algorithm GenScore to list all score sequences of length n runs in constant amortized
time. 2

3 Algorithm based on a partition approach

The second algorithm for score sequences outlined in [15] uses an approach similar to a classical approach
for integer partitions: consider those partitions that contain some maximal part p and those that do not. For

5

0 1 2 3 4

3 4

3 4

5

5

5

5

5

5

56

5

5

5

5

5

4

67

65

5

5

5

4

4

4

4

6

9 6

6

6

5

7

5

6

8

5

5 6

6

7

7

8

5 6 7

9 8 7

Figure 4: An equivalence class for n = 10. Here, σ, ab is 3345555 with σ = 334 and b = 4. The 1,1-nodes in the
triangle belong to the equivalence class. The node in the box is the 2+ node found from this equivalence class.

6

procedure GenScore2(m, k, p: integer)

if k = 2 then
for i := Min(m, p) down to dm2 e do

a2 := i
a1 := m− i
PrintIt()

else if m− p <
(
k−1
2

)
then GenScore2(m, k, p− 1)

else if p− 1 < dm/ke then
ak := p
GenScore2(m− p, k − 1, p)

else
ak := p
GenScore2(m− p, k − 1, p)
GenScore2(m, k, p− 1)

end.

Figure 5: An partition-based approach to generate all score sequences of length n that contains an optimization from
the version in [15].

score sequences, we want to partition the sum of the degrees m =
(
n
2

)
into k = n parts where the largest part

is p = n− 1. In addition, we must satisfy the constraints laid out in Theorem 1. This set, denoted P(m, k, p),
can be defined recursively as follows [15]:

P(m, k, p) =

m if k = 1

P(m, k, p− 1) if k > 1 and m− p <
(
k−1
2

)
P(m− p, k − 1, p) ◦ p if k > 1 and p− 1 < dm/ke
P(m− p, k − 1, p) ◦ p ∪ P(m, k, p− 1) otherwise,

where the notation S ◦ x denotes the appending of the character x to each sequence in the set S. The set
of score sequences of length n is precisely the set P(

(
n
2

)
, n, n − 1). A simple pseudocode derived from this

recurrence is illustrated in Figure 5. This pseudocode contains one additional optimization not apparent from
the recurrence. Instead of the base case being k = 1, we set the base case to k = 2 and use a simple for loop
to handle all possibilities for the first two elements in the score sequence. Specifically, for a given P(m, 2, p),
the first two elements of a score sequence must be of the form a2 = i and a1 = m − i where i ranges from
the minimum of m and p down to dm2 e. Observe that this simple optimization may save a chain of recursive
calls that do not actually extend the score sequence in the cases where p > m.

A sample computation tree for GenScore2 when n = 5 is illustrated in Figure 6. The nodes marked with a
* are the recursive calls that do not prepend an element to the prescore sequence. In this figure, each score
sequence is obtained by following a path from a leaf back to the root, where the * nodes are ignored.

3.1 Analysis

By reversing a score sequence σ = s1s2, . . . , sn for a tournament graph G and replacing each si with n− si,
we obtain an increasing sequence of the in-degrees for the vertices of G. If the direction of the arcs in G
are reversed, then note that this resulting sequence will also be a score sequence for a tournament graph.
If we apply this operation to the algorithm GenScore2, then observe that the sequences generated will be
in the exact same lexicographic order as the algorithm GenScore. Moreover, if we apply this operation

7

2

*

*

4

*

3

*

2

1

1

2 2 2 2

2

2

2

*

*

32

2

*

*

1

0 1 20

2

2

3

3

1

0

0

1

1

1

1

1

*

Figure 6: Computation tree for GenScore2 when n = 5. Each path from a leaf to the root corresponds to a score
sequence.

to the computation tree of GenScore2 and then successively contract each edge between a * node (except
for the root) and its parent, then the resulting tree will be identical to the computation tree for GenScore.
This operation effectively removes all the * nodes except for the root. By performing these actions on the
computation tree in Figure 6, the outcome will be the tree in Figure 3. Thus, to prove that the algorithm
GenScore2 is CAT, we need only show that the number of * nodes in its computation tree is proportional in
number to the non * nodes.

Let CompTree(n) denote the set of all nodes in the computation tree for GenScore2 and a given n.
Each node u can be uniquely represented by a sequence a1, a2, . . . , ai, ∗j , where a1, a2, . . . ai represents
the sequence of non * labels on the path from the root to u and the number of * nodes on the path from the
node with label ai to u is equal to j. Using this representation, the nodes of CompTree(n) can be partitioned
into the following 3 sets:

. T = the set of all nodes of the form a1, a2, . . . , ai,

. U = the set of all u = a1, a2, . . . , ai, ∗j where j > 0 and u has a child in T,

. V = the set of all u = a1, a2, . . . , ai, ∗j where j > 0 and u has no child in T.

The set T corresponds to the nodes in the computation tree with a non * label, and when i = n, the sequences
correspond to the reversals of n-score sequences. The sets U and V partition the nodes with a * label. By
mapping each node u ∈ U to its child in T it is easy to observe that |U| ≤ |T|. Thus, we need only show
that |V| is proportional to |T|. We do this by partitioning the nodes further by a common length and prefix
α = a1, . . . , ai. Let:

. T(α) = the set of all α, ai+1, ai+2 ∈ T,

. V(α) = the set of all α, ai+1, ∗j ∈ V.

8

Since the base case for GenScore2 occurs when k = 2, when we are partitioning V by α = a1, . . . , ai, we
can assume that i < n− 2. Figure 7 illustrates a partial computation tree highlighting the nodes belonging to
V(α) and T(α) for a given α.

LEMMA 6 If α = a1, . . . , ai ∈ T, then |V(α)| ≤ 8|T(α)|.

PROOF: We divide this proof into two steps. First we find an upper bound for |V(α)|, and then we find a
lower bound for |T(α)|.
Upper bound for |V(α)|. Let x denote the largest value such that α, x ∈ T. Furthermore, let m be the
largest integer such that α, (x−m) ∈ T. Observe that in general if α, x and α, (x− j) are both in T for any
j > 1, then so is α, (x − j′) for 0 < j′ < j. Thus, for each 0 ≤ j ≤ m we determine exactly how many
nodes the prefix α, (x− j) contributes to V(α).

First consider j = 0. Let y denote the largest value such that α, x, y ∈ T which implies that α, x, (y+1) /∈ T.
This means there are t = x−y−1 nodes in V(α) with prefix α, x. For any 0 < j < dt/2e, observe that:

. α, (x− j) ∈ T,

. α, (x− j), (y + j) ∈ T,

. α, (x− j), (y + j + 1) /∈ T.

The latter 2 sequences are easy to verify since the sum of their elements is the same as the corresponding
sequences when j = 0 (i.e., the parameters m and k will be the same for their respective recursive call, but p
is larger). The statement that α, (x − j) ∈ T is slightly less obvious, but the conditions in the algorithm can
be verified using the fact that α, x, y ∈ T. Thus, for 0 ≤ j < dt/2e, there are t − 2j nodes in V(α) with
prefix α, (x− j). For any dt/2e ≤ j ≤ m, it follows directly from the algorithm and the fact that α, x, y ∈ T
that α, (x − j), (x − j) ∈ T and hence any such prefix α, (x − j) will not contribute to the set V(α). From
this analysis we have:

|V(α)| =
dt/2e−1∑
j=0

(t− 2j) ≤ t2/2.

As an illustration of this analysis, see Figure 7, where x = 9, y = 2 and t = 6. For the α in this example there
are 6 + 4 + 2 = 12 nodes in V(α).

Lower bound for |T(α)|. We have already demonstrated that α, x, y ∈ T. Let b, β denote the lexico-
graphically largest sequence such that α, x, y, b, β is the reversal of an n-score sequence. Note that b ≤ y. For
0 ≤ j < dt/2e, we have also demonstrated that α, (x−j), (y+j) ∈ T. Since the sum of the elements of each
of these sequences is the same as α, x, y, then it will also be the case that the reversal of α, (x−j), (y+j), b, β
is also an n-score sequence. If j ≥ 2, then α, (x−j), (y+j−1), b+1, β will also be a valid n-score sequence
since b+ 1 ≤ y + j − 1. Similarly if j ≥ 4, then α, (x− j), (y + j − 2), b+ 2, β will also be a valid n-score
sequence. Following this pattern, observe that the number of nodes in T(α) with the prefix α, (x−j) is at
least d(j + 1)/2e for 0 ≤ j < dt/2e. Thus,

|T(α)| ≥
dt/2e−1∑
j=0

d(j + 1)/2e ≥ t2/16.

Thus |V(α)| ≤ 8|T(α)|. 2

This previous result now immediately gives us the following theorem.

THEOREM 4 The algorithm GenScore2 to list all score sequences of length n runs in constant amortized
time. 2

9

y

*

3

*

*

*

4

*

*

*

*

7

*

*

*

8

*

*

9

*

*

*

*

*

*

6

5

*

*

*

*

*

*

*

*

*

*

*

*

*

2

1

3

2

4

3

2

5

4

3

2

5

4

3

4

3 3

*

α

x

Figure 7: Partial computation tree that arises from a recursive call to GenScore2(12,4,10) for some prefix α. The ∗
nodes in bold are the precisely those that belong to V(α). The leaves are precisely the nodes in T(α).

10

0	

10	

20	

30	

40	

50	

60	

3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	

Li
ke
lih

oo
d	
of
	 +
e	
(%

)	

Number	 of	 Par+cipants	

Any	 .e	

2-‐way	 .e	

3-‐way	 .e	

4-‐way	 .e	

Figure 8: Likelihood a score sequence contains a first place tie in round robin tournaments. Also the likelihood that the
first place tie is between precisely 2, 3, or 4 competitors.

4 Summary and future work

We have shown that the two score sequence generation algorithms presented in [15] run in constant amortized
time. Some interesting avenues of future research include:

1. providing an analysis for the remaining alley-cat from [15] for degree sequences,

2. developing a model and sequence for double round-robin tournaments (as used in the English Premier
League football system),

3. developing a model and sequence to allow ties within a competition,

4. proving the asymptotic behaviour of the likelihood of first place ties.

For the latter question we look at small values of n to determine the likelihood of a first place tie. A tournament
will end with a first place tie if the last two elements in its corresponding score sequence are the same. For
example, the score sequence 0222 represents a three-way first place tie in a four player tournament. See
Figure 8 for a summary of first place tie outcomes for various sized tournaments. The data suggests that as
the number of participants increases, the percentage of score sequences with first place ties approaches 30%.
Ties can be broken down by the number of players involved in the tie. Figure 8 shows the likelihood of 2, 3,
and 4-way ties. Judging from the data, as the number of players increase the likelihood of a specific type of
tie approaches a constant.

11

References

[1] Peter Avery. Condition for a tournament score sequence to be simple. Journal of Graph Theory, 4(2):157–164,
1980.

[2] Peter Avery. Score sequences of oriented graphs. Journal of Graph Theory, 15(3):251–257, 1991.

[3] Richard A. Brualdi and Jian Shen. Landau’s inequalities for tournament scores and a short proof of a theorem on
transitive sub-tournaments. Journal of Graph Theory, 38(4):244–254, 2001.

[4] Arthur H. Busch, Guantao Chen, and Michael S. Jacobson. Transitive partitions in realizations of tournament score
sequences. Journal of Graph Theory, 64(1):52–62, 2010.

[5] Zhicheng Gao, Brendan D. McKay, and Xiaoji Wang. Asymptotic enumeration of tournaments with a given score
sequence containing a specified digraph. Random Struct. Algorithms, 16(1):47–57, 2000.

[6] S. V. Gervacio. Score sequences: lexicographic enumeration and tournament construction. Discrete Math., 72:151–
155, December 1988.

[7] J. Griggs and K. B. Reid. Landau’s theorem revisited. Australas Journal of Combinatorics, 20:19–24, 1999.

[8] Frank Harary and Leo Moser. The theory of round robin tournaments. The American Mathematical Monthly,
73(3):pp. 231–246, 1966.

[9] Frank Harary and Ed Palmer. On the problem of reconstructing a tournament from subtournaments. Monatshefte
fr Mathematik, 71:14–23, 1967. 10.1007/BF01299955.

[10] H. Landau. On dominance relations and the structure of animal societies: III The condition for a score structure.
Bulletin of Mathematical Biology, 15:143–148, 1953. 10.1007/BF02476378.

[11] J. W. Moon. An extension of Landau’s theorem on tournaments. Pacific Journal of Mathematics, 13(4):1343–1345,
1963.

[12] T. V. Narayana and D. H. Best. Computation of the number of score sequences in round-robin tournaments. Canad.
Math. Bull., 7:133–136, 1964.

[13] T. V. Narayana, R. M. Mathsen, and Sarangi J. An algorithm for generating partitions and its applications. Journal
of Combinatorial Theory, 11:54–61, 1971.

[14] Hemasinha R. An algorithm to generate tournament score sequences. Mathematical and Computer Modelling,
37(3):377–382, 2003.

[15] Frank Ruskey, Robert Cohen, Peter Eades, and Aaron Scott. Alley cats in search of good homes. Congressus
Numerantium, 102:97–110, 1994.

[16] N Sloane. The on-line encyclopedia of integer sequences, sequences a000571/m1189 and a068029.

[17] Kenneth J. Winston and Daniel J. Kleitman. On the asymptotic number of tournament score sequences. J. Comb.
Theory, Ser. A, 35(2):208–230, 1983.

12

