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Abstract  This project addresses the problem of correctly diagnosing compressors for air conditioning and 

refrigeration systems. The aim is to use readily available instrumentation from the global market to create a low-cost, 

accessible, and easy-to-assemble diagnostic solution for all types of users. In this work, we propose the use of  

an Espressif ESP32 controller, compatible with Arduino language, connected to Microsoft Azure. Additionally,  

we introduce algorithms based on trends that provide both basic and advanced users with real-time knowledge of 

relevant variables and detected failures in the refrigeration process. This enables users to anticipate and prevent 

failures through an enhanced condition-based maintenance scheme. The proposed solution aims to reduce incorrect 

diagnoses, minimize system downtime, and enhance troubleshooting capabilities, spare parts control, and product 

preservation. Furthermore, to expand the reach of this solution, the device can be utilized as an input for system data 

to generate valuable information for a recurrent neural network. This network can diagnose not only compressors but 

also the entire system, considering two significant variables: coefficient of performance and mass flow. 
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1. Introduction 

Refrigeration and air conditioning systems play a 

crucial role in various sectors, including food storage, 

transportation, and industrial processes. These systems  

are energy-intensive and require reliable and efficient 

operation to reduce energy consumption and greenhouse 

gas emissions. However, they are complex and can 

experience various faults and malfunctions that lead to 

decreased efficiency, increased energy consumption, and 

costly downtime. 

To tackle these challenges, there has been a growing 

emphasis on developing sustainable and energy-efficient 

solutions for refrigeration and air conditioning systems. 

International initiatives, such as the Montreal Protocol 

signed in 1987 [1] and the Kigali Amendment that came 

into force in 2019 [2], aim to phase out or reduce the use 

of harmful refrigerants with high global warming potential 

and ozone depletion potential. 

As a result of these initiatives, natural refrigerant 

solutions such as carbon dioxide and hydrocarbons have 

gain popularity. However, the use of natural refrigerants 

presents its own challenges, including safety concerns and 

the need for specialized equipment and training. It is also 

important to identify that not all systems cannot afford 

retrofit practices, therefore, increasing confidence in the 

actual systems that use common refrigerants such as HFC 

(hydrofluorocarbon) and HCFC (hydrochlorofluorocarbon) 

is a crucial aspect. This development also works with a 

specific approach, that incorporates CO2 and vibration 

measurement. 

With specific instrumentation for measuring and 

correlating variables, it is important to review past 

approaches and trends that some companies still employ. 

These approaches tended to have a more reactive approach 

to maintenance (corrective maintenance), where the 

failure of any equipment affected the entire process, 

resulting in higher costs not only for the equipment itself 

but also for the losses and waste generated by equipment 

downtime and process interruption. This approach later 

evolved into scheduled maintenance (preventive 

maintenance), where routines were established that could 

randomly coincide with failures or with events preceding 

them to reduce associated costs. Since not all equipment 

failures were fatal, it was possible (based on schedules) to 

choose the optimal moment for operation. Finally, the 
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trend is shifting towards condition-based maintenance 

(CBM+) [3], which utilizes specific field instrumentation 

to take a series of measurements to predict the behavior of 

the machine and generate trends that help determine the 

best time to intervene based on operational performance. 

This is where expert systems become increasingly 

relevant, as they enable the analysis of a large volume of 

data by other systems or subsystems to determine 

operating parameters in real time. Define operating limits, 

or determine optimal operating conditions based on 

historical data or time series. [4]. However, this is not 

always a reality in underdeveloped countries due to the 

high import costs and the lack of technical knowledge 

among personnel. Consequently, systems must continue to 

function with substances that deplete and damage the 

ozone layer and operate under dangerous and unreliable 

conditions, posing a risk to food safety due to the loss or 

waste of refrigerated items (food or vaccines) and increase 

the cost associated with energy. 

Proper preservation of inputs involves avoiding breaks 

in the cold chain at various points or stages in the 

production process. It is important to note that each input 

requires specific temperature and humidity conditions, and 

incorrect control of these conditions can lead to health 

problems for consumers or potential loss of goods due to 

poor storage [5]. From a social perspective, the loss and 

waste of food due to refrigeration equipment failures are 

closely related to food safety issues. The purpose of the 

cooling process is to prevent or reduce the rate of bacterial 

growth by removing heat, creating unfavorable conditions. 

As a significant statistic (see Figure 1), 1.3 billion tons of 

food are lost or wasted worldwide every year [6]. This not 

only involves resources associated with the cold chain but 

also non-renewable resources such as farmland (1400 

million hectares) and has a direct impact on water usage 

(250 km
3
) [6] [7]. 

2. Methodology 

Afterconducting research about maintenance  

techniques in air conditioning and refrigeration systems,  

it was possible to determine critical variables that affects 

optimal performance in key components, specifically the 

compressor, have been identified. 

The following are the critical variables and parameters 

that need to be monitored: 

  Electrical values: The compression system is coupled 

to an electric motor that is often cooled by the 

refrigerant substance. The following parameters 

should be monitored: 

-  Power supply parameters, such as voltage. 

-  Consumption parameters, such as current.  

-  Efficiency measurement, including Power and 

power factor. 

  Thermodynamical values: The compressor increases 

the pressure of the refrigerant gas by reducing its 

volume and transport it through the pipeline. The 

following variables are crucial: 

-  Measurement of superheat to ensure a 

pressure/temperature drop across the thermostatic 

or electronic expansion valve (TXV/EXV). 

-  Prevention of liquid returns or migrations to the 

compressor. 

-  Efficiency of the compressor based on the 

COP/EER (Coefficient of Performance/Energy 

Efficiency Ratio). 

  Vibration and CO2 levels: Monitoring excessive 

vibration and CO2 levels can help detect potential 

refrigerant leakage in the compressor or surrounding 

systems. 

 

Figure 1. Food loss and spoilage [8] 
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To facilitate further understanding, flow diagrams, 

codes, and thermodynamic assumptions are available in 

the GitHub repository [9]. 

Based on these considerations, the following modules 

have been developed for monitoring and taking actions to 

protect the system (refer to Figure 3): 

A. Operational Module Development 

Each module defined below addresses a specific 

problem and provides a solution. Each module is further 

divided into sub-modules with specific inputs, outputs, 

and routines. These sub-modules are supported by 

declared functions and procedures, ensuring higher 

readability and clarity. 

Sensor input modules offer user-predefined 

configurations, such as unit preferences for temperature 

and pressure. The compressor technology allows for a 

specific set of failures based on nominal horsepower, 

electrical parameters, and temperature application, which 

adjust the linear regression parameters for electrical 

monitoring and protection. 

All the code implemented in this project has been 

developed in the Arduino IDE and for the Espressif ESP32 

microcontroller device. Therefore, the development work 

and future works are “Arduino Compatible.” 

1. Superheat Module: The superheat (SH) is a critical 

variable in vapor compression refrigeration systems as the 

system requires that the input state be in gas form to 

prevent liquid refrigerant from entering the compressor.\\ 

The mathematical relationship is given by: 

 SH mea satT T   (1) 

This equation relates the measured temperature meaT  at 

the compressor inlet with the saturated temperature satT , 

obtained from the pressure. Since the superheat value 

varies as a normal effect of the refrigeration system  

(due to loads, inputs, expansion mechanism adjustment, 

etc.), implementing an ON/OFF controller with hysteresis 

would be inadequate. Instead, this module utilizes 

interconnected blocks that determine the outputs based on 

the known input variables. The modules and their 

relationships are shown in Figure 4. 

 

Figure 2. Device flow diagram 

 

 

Figure 3. User inputs 
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Figure 4. Superheat Module 

 

Figure 5. Electrical Module 

The refrigerant is selected through a menu, and each 

selected refrigerant will load a specific set of coefficients 

stored in the device's EEPROM. The calculated superheat 

is stored and delayed in time to observe trends and 

behavior for more accurate protection. The DLT SH 

enabler module estimates the compression isentropic 

discharge temperature per compressor (DLT) based on the 

absolute compression ratio and suction temperature, and 

compares it to the real DLT. 

Each compressor manufacturer [10] determines a 

minimum level of superheat for their RAC compressors. 

This value is used as the lower limit for an ON/OFF 

hysteresis controller, which includes an output time delay 

implemented through code. 

After confirming all the necessary actions mentioned 

above, the global module activates the relay outputs and 

the error counter. 

2. Electrical Protection Module: The data acquisitions 

performed by the Electrical Module (see Figure 5) are 

directly related to voltages and currents. However, since 

the electrical motor is coupled to a vapor compression 

system, its nominal values differ from those of a standard 

electrical motor. This section provides a description to 

determine if the equipment is operating at nominal 

conditions or if its behavior is contributing significantly to 

an increased rate of wear. 

Working currents are estimated based on the nominal 

power of the compressor's electrical motor. This estimation 

utilizes a linear regression model developed using data 

published by different manufacturers under various 

nominal working conditions [10]. The baseline established 

through this model provides the microcontroller with a 

solid foundation for performing calculations to identify 

the average or expected current drawn by the electric 

motor based on the technology, application, and nominal 

horsepower. 

3. Envelope/Temperature Module: The operating 

envelope of the compressor allows maintenance personnel 

to identify failures in system components that may be 

affecting equipment performance during operation or 

causing production losses associated with the cold room. 

The Envelope Module (see Figure 6) enables the 

identification of four main conditions, and the interaction 

between these conditions can provide further information 

to maintenance personnel. 

 

Figure 6. Envelope Protection Module 

The code determines the vector to be loaded based on 

the application temperature and refrigerant. Then, it 

compares the operating point to a boundary (set point and 

hysteresis) for both evaporation and condensation. The 

code assigns a value of +1 if the operating point is higher 

than the boundary, -1 if it is lower, and 0 if it is within the 

boundary. 

The optimal conditions (boundaries) were determined 

by conducting extensive searches in public manufacturing 

databases and cross-referencing that information to 

establish an average protection zone. 
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4. Vibration and Leakage Module: Vibration analysis is 

widely recognized for accurately diagnosing rotating parts 

and provides acceptance values based on operational 

guidelines. The primary purpose of these alarms is to 

make timely decisions about the machine. By analyzing 

historical data, machine downtime can be reduced, 

minimizing the impact on the overall process. The 

referential values for vibration analysis are based on data 

provided by the ISO 20816-8 standard, which specifically 

pertains to reciprocating machines. 

While Fourier analysis (FFT) is commonly used in 

vibration analysis, its implementation complexity and the 

number of operations required by the microcontroller 

when acquiring other variables and activating outputs 

make it less suitable for this application. Instead, 

histogram analysis is utilized [11]. This analysis estimates 

the probability distribution of acceleration magnitude 

based on the physical location where the module is 

installed [12]. 

5. Navigation Module: To enhance user-friendly 

navigation, parameter input, and parameter display in the 

field, a physical input interface has been implemented. 

To facilitate data entry, four main parameter inputs 

have been arranged as follows: 

  Mechanical menu [A]: This menu allows for 

setting compressor powers as integer values to 

predict the current consumption. It also enables the 

selection of compression technology to account for 

model-specific faults. 

  Electrical menu [B]: This menu allows for 

entering the nominal electrical parameters. Since 

the calculations are based on 460V/3Ph/60Hz, it is 

necessary to make the appropriate correction for 

accurate predictions. 

  Refrigerant menu [C]: This menu enables the 

selection of the refrigerant. Upon selection, the 

system automatically configures the probes and 

adjusts the application to the protection limits of the 

compressor's operating framework. 

  Protections menu [D]: This menu allows for 

enabling the compressor relay outputs based on 

voltage, current, and temperatures (three inputs). 

3. IIoT Module 

The following procedure is a modification of the one 

published by Microsoft Corporation in Azure SDK 

Development for Arduino [13]. 

The IIoT (Industrial Internet of Things) module is based 

on the MQTT (Message Queuing Telemetry Transport) 

protocol, which is a lightweight, publish-subscribe-based 

messaging protocol. The ESP32 device sends JSON-

formatted (JavaScript Object Notation) data, including 

voltages, currents, pressures, temperatures, superheat, 

vibration, CO2 levels, and failure counters, to Microsoft 

Azure. 

To enhance communication with the user through social 

media, a real-time feedback bot has been developed on the 

device using Twilio and ThingESP [14]. 

 

A. Data Validation 

After defining and characterizing the data acquisition 

methods, monitoring, and protection modules, it is crucial 

to evaluate the device's relevance in the field. 

As systems become more complex and involve a 

greater level of electronics for control, monitoring, and 

measurement of key parameters, it is essential for the 

workforce to be aware of the new set of skills required to 

leverage intelligent systems in efficiently diagnosing 

systems and subsystems. It is also important to understand 

the high dependence on various variables in the 

refrigeration cycle [15]. 

 

B. Prototype assembly and testing 

While the render provides a reasonably accurate 

representation of the final design, it is important to note 

that the manufacturing stage does not account for some 

natural movements of the operator when making device 

connections. 

During the prototype design stage, an estimated 

investment of 260 man-hours is anticipated. This includes 

programming work, PCB design, assembly, and testing. 

For an end-user, it is estimated to take approximately 4 to 

5 hours to assemble and calibrate the device. 

 

Figure 7. Device Assembly 

4. Results 

After implementing the measurement logic and error 

codes in the device, it is now possible to provide 

recommendations based on the measurements obtained 

from the device. 

 

A. Measurement and Protections 

Protection flow diagrams are valuable tools for 

ensuring the correct operation and safety of refrigeration 

compressor diagnostic systems. These systems, in turn, 

serve as input for a Recurrent Neural Network (RNN) in 

the diagnosis of refrigeration compressor systems. 

1) Electrical Values: This protection mechanism allows 

for internal device-level protection and the transmission 

and storage of data with a percentage error ( ). The analysis 

is based on NEMA (National Electrical Manufacturers 

Association) criteria [16]. 

Unbalances in electrical values can have various side 

effects, including [17]: 

1) Reduced motor performance 

2) Uneven stress on motor winding 
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3) Increased energy consumption 

4) Overheating and thermal stress 

5) Reduced power factor 

These values will be documented as references for 

using the device. Additionally, they will serve as inputs 

for a separate RNN that focuses on providing the user with 

a more comprehensive understanding of the system's 

internal workings. 

 

B. Device Data as Input for a RNN 

To propose an automatic system and obtain a more 

comprehensive set of characteristics from the acquired 

variables, a Recurrent Neural Network (RNN) is 

recommended. RNNs possess specific characteristics that 

make them suitable for this problem [18]: 

1)  Time Series: Refrigeration systems are dynamic 

processes, and their variables, such as temperature 

and pressure, change over time. RNNs are 

specifically designed to handle temporal sequences 

and capture relationships over time. 

2)  Short- and Long-Term Memory: RNN variants, 

such as LSTM (Long Short-Term Memory) and 

GRU (Gated Recurrent Unit), have the ability to 

remember information from past events and utilize 

it to improve predictions of future events. This 

capability is particularly useful for analyzing 

complex systems like refrigeration systems. 

3)  Flexibility in Input Structure: RNNs can handle 

sequences of variable length, making them well-

suited for working with data from refrigeration 

systems, which can vary in duration and frequency. 

4)  Generalization: RNNs can generalize better from 

limited data and are often more robust to noise and 

changes in the operating environment compared to 

other types of neural networks, such as Artificial 

Neural Networks (ANNs). 

By utilizing an RNN, it becomes possible to analyze 

and interpret the acquired data in a more sophisticated 

manner, allowing for improved diagnosis and prediction 

of system behavior. 

1) COP Values and Mass Flow: As previously 

mentioned, the device is capable of autonomously 

generating measurements. However, in order to provide 

data to an intelligent system that can analyze variables 

beyond the physical limitations of the microcontroller 

(such as memory and activation of outputs), two 

additional outputs are proposed. These outputs can be 

computed by external computer systems using historical 

data analysis. 

  COP (Coefficient of Performance): This is a crucial 

metric used to assess the efficiency of a 

refrigeration system. It represents the ratio of the 

useful cooling effect achieved by the system to the 

amount of energy consumed (typically electrical 

energy) to operate the system. Essentially, the COP 

indicates how much cooling is achieved per unit of 

energy input. 

  Mass flow: This refers to the quantity of refrigerant 

passing through the system per unit of time. Mass 

flow is an important parameter that directly affects 

the performance and efficiency of a refrigeration 

system.  

By incorporating COP values and mass flow into the 

intelligent system, it becomes possible to gain further 

insights and make more informed decisions regarding 

system performance and optimization. 

Coefficient of Performance: To determine the Coefficient 

of Performance (COP) with improved accuracy, it is 

recommended to generate a percentage error between 

“ideal” conditions and real conditions. This approach 

allows the intelligent system to infer better results by 

considering the energy invested and the outputs in terms 

of compressor capacity and net refrigerant effect 

(evaporator capacity) [19]. 

To calculate the COP accurately, it is beneficial to 

compute the enthalpy values at four specific points in the 

refrigeration cycle. These points include: 

1)  Enthalpy value at the liquid line temperature before 

entering the thermostatic expansion valve (TXV), at 

the discharge pressure. 

2)  Enthalpy value at the evaporator outlet, which is 

determined by measuring the saturated suction 

temperature plus a useful fraction of superheat at 

the suction pressure. 

3)  Enthalpy value at the compressor inlet, obtained by 

measuring the compressor return gas temperature at 

the suction pressure. 

4)  Enthalpy value at the compressor outlet, determined 

by measuring the compressor discharge line 

temperature at the suction pressure. 

The “ideal” conditions can be calculated based on 

known values, such as the isentropic efficiency of the 

compressor and set points for control, as well as 

temperatures from the liquid line and outlet for the 

evaporators. 

By comparing the enthalpy values under real conditions 

to the calculated values under “ideal” conditions, it 

becomes possible to calculate the COP more accurately, 

providing valuable insights into the system's performance 

and efficiency. 

Mass flow: For the mass flow, it becomes handy to use 

the public data for the compressors available in software 

and technical web pages and calculate the mass flow 

according to the AHRI-540 standard [10] and AHRI-571 

[20]. 

This give to the algorithm a point to evaluate a good 

approach to a real condition of mass flow without 

installing any more instrumentation such a flow meter. 

The mass flow m  by the compression group (formed by 

k  compressors) is calculated according to the product of 

the fraction of power ( iP ) and the activation signal 

obtained from the compressor state (ON/ OFF). To 

estimate the actual value in the system, simple modelling 

of the evaporator is used [21]. The mass flow m  required 

by the p  evaporators in the suction group is calculated 

according to the product of the fraction of load ( iQ ), the 

sensible heat ratio (SHR) and the activation signal 

obtained from the solenoid state (ON/ OFF). 

Side effects of the error in the mass flow, system will 

face [22]: 

  Changes in cooling capacity: A high mass flow rate 

generally results in a higher cooling capacity, but 

without a good system to handle liquid floodback in 
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the compressor inlet, it would be increase rate of 

wearing of the compression sets. But, A low mass 

flow rate can result in reduced cooling capacity, as 

less refrigerant circulates through the system, 

limiting heat absorption and transfer.  

  Risk of freezing: In some cases, a low mass flow 

rate can lead to the risk of evaporator coil freezing, 

as the refrigerant may not adequately absorb heat 

from the air or process being cooled. 

 

C. RNN results 

With a dataset consisting of more than 28,000 records 

from a real system and simulated values, the intelligent 

system based on Recurrent Neural Networks (RNNs) 

demonstrates promising results in terms of predictive 

capabilities. These results suggest the potential of 

coupling this solution with the generated device to 

enhance diagnostic accuracy. 

By calculating the relative frequency of failure events 

in a system, it is possible to estimate the likelihood of 

specific events occurring compared to others. This 

information can aid in identifying the most probable 

events and implementing appropriate risk mitigation 

strategies. However, it's important to note that relative 

frequency is based on historical data and may fluctuate 

due to changes in system conditions or external factors. 

The RNN results, as shown in Figure 8, exhibit an error 

histogram, prediction error, median square error across 

epochs, and training and validation loss. The coefficient of 

determination of the RNN model is 0.7039, indicating that 

the model can explain approximately 70.39% of the 

variation in the observed data. While this suggests a good 

performance, it is important to consider that the model 

may still miss or misdiagnose certain problems. Therefore, 

it is crucial to incorporate additional sources of 

information and expert knowledge when making decisions 

based on the model's output [23]. 

5. Conclusions 

The integration of various sensors in the device and the 

utilization of the Microsoft Azure application enable real-

time access to updated data from refrigeration systems. 

This comprehensive monitoring capability facilitates 

accurate and timely decision-making, enabling predictive 

actions and preventing system downtime that could impact 

production and food safety. 

 

 

Figure 8. RNN results. (a) Error-Histogram (b) Prediction Error (c) Median Suquare Error across epochs (d) Training and Validation Loss 
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The described device proves to be a cost-effective and 

versatile tool for monitoring refrigeration systems. Priced 

at around 200 USD, it outperforms expensive alternatives 

available in the market. Unlike brand-specific devices, it 

can be deployed in a wide range of refrigeration systems 

regardless of size or compressor brand. In addition to 

measuring variables such as voltage, amperage, 

temperature, and pressure, it also monitors vibration, CO2 

ppm, and estimates power consumption, power factor, 

leakage percentage, superheat, and suction and discharge 

temperatures. With these capabilities, it provides a 

comprehensive analysis of refrigeration system conditions, 

ensuring their protection. 

The use of Recurrent Neural Networks (RNNs) in 

refrigeration systems proves to be an effective method for 

diagnostic support and predictive maintenance. RNNs 

excel in analyzing time series data, making them suitable 

for examining the collected data from additional sensors  

in the cooling system. By identifying complex patterns 

and relationships, RNNs improve fault classification 

accuracy and can adapt to new data, continuously 

improving their performance over time. However, training 

RNNs requires substantial data and computational 

resources, and the quality of input data can affect their 

performance. Additionally, the interpretability of RNNs 

presents challenges, which can impact confidence and 

explainability in the model's conclusions and results. 

References 

[1] T. Birmpili, “Montreal protocol at 30: The governance structure, 

the evolution, and the kigali amendment,” Comptes Rendus 
Geoscience, vol. 350, no. 7, pp. 425-431, 2018. 

[2] U. N. E. Programme, “The kigali amendment to the montreal 

protocol: Hfc phase-down,” United Nations Environment 
Programme, Nairobi, Kenya, Tech. Rep., 2016. [Online]. 

Available: 

https://wedocs.unep.org/bitstream/handle/20.500.11822/25495/Ki
gali Amend eng.pdf. 

[3] A. Koons-Stapf, “Condition based maintenance: Theory, 
methodology, application,” 01 2015, pp. 1-35. 

[4] D. L. Pinzón Niño, “Panorama de aplicación de internet de las 

cosas (iot),” 2016. 

[5] A. A. Kader, “Increasing food availability by reducing postharvest 
losses of fresh produce,” in V International Postharvest 

Symposium 682, 2004, pp. 2169-2176. 

[6] T. Stuart, Waste: Uncovering the global food scandal. WW 
Norton & Company, 2009. 

[7] R. S. Rolle, “Improving postharvest management and marketing in 
the asia-pacific region: issues and challenges,” Postharvest 

management of fruit and vegetables in the Asia-Pacific region, vol. 

1, no. 1, pp. 23–31, 2006. 

[8] J. Gustavsson, C. Cederberg, U. Sonesson, R. Van Otterdijk, and 
A. Meybeck, “Global food losses and food waste,” 2011. 

[9] Nelson Sierra, “Symbionte UN,” GitHub repository, 2022. 

[Online]. Available: {https://github.com/nasierras/Symbionte UN} 

[10] H. Air-Conditioning and R. Institute, “2020 standard for 

performance rating of positive displacement refrigerant 
compressors,” in AHRI Standard 540, march 2020, pp. 6-23. 

[11] J. Chaudhary and A. Mishra, “Detection of gas leakage and 
automatic alert system using arduino,” SSRN Electronic Journal, 

01 2019. 

[12] “Mechanical vibration — measurement and evaluation of machine 

vibration —  part 8: Reciprocating compressor systems,” 

International Organization for Standardization, Geneva, CH, 

Standard, Mar. 2018. 

[13] M. Corporation, “Arduino sdk cloud azure development for 
arduino,” https://github.com/Azure/azure-sdk-for-c-arduino, 2013. 

[14] S. Nan, “Thingesp cloud client library,” Sep 2021. [Online]. 
Available: https://github.com/SiddheshNan/ThingESP-Arduino-

Library. 

[15] N. Tudoroiu, M. Zaheeruddin, E.-R. Tudoroiu, and V. Jeflea, 
“Fault detection and diagnosis (fdd) in heating ventilation air 

conditioning systems (hvac) using an interactive multiple model 
augmented unscented kalman filter (immaukf),” 2008 Conference 

on Human System Interactions, pp. 334–339, 2008. 

[16] National Electrical Manufacturers Association (NEMA), “Nema 
standards publication mg 1-2020: Motors and generators,” NEMA, 

Rosslyn, VA, Technical Report MG 1, 2020. [Online]. Available: 
https://www.nema.org/Standards/Pages/Motors-and-

Generators.aspx. 

[17] J. Smith and M. Johnson, “Effects of voltage and current 
unbalance on the performance and efficiency of three-phase 

induction motors,” IEEE Transactions on Industry Applications, 

vol. 51, no. 2, pp. 987–996, 2015. 

[18] Z. Soltani, K. K. Sorensen, J. Leth, and J. D. Bendtsen, “Fault 
detection and diagnosis in refrigeration systems using machine 

learning algorithms,” International Journal of Refrigeration, vol. 

144, pp. 34-45, 2022. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S014070072200

2997. 

[19] Y. Ust, “Performance analysis and optimization of irreversible air 
refrigeration cycles based on ecological coefficient of performance 

criterion,” Applied Thermal Engineering, vol. 29, no. 1, pp. 47-55, 
2009. 

[20] H. Air-Conditioning and R. Institute, “2012 standard for 
performance rating of positive displacement carbon dioxide 

refrigerant compressors and compressor units,” in AHRI Standard 

571, march 2012, pp. 6-23. 

[21] Y. Cengel and M. Boles, Thermodynamics: An Engineering 

Approach, ser. Cengel series in engineering thermal-fluid sciences. 

McGraw-Hill, 2011. 

[22] E. Winandy, C. Saavedra, and J. Lebrun, “Experimental analysis 

and simplified modelling of a hermetic scroll refrigeration 
compressor,” Applied thermal engineering, vol. 22, no. 2, pp. 107-

120, 2002. 

[23] D. Adelekan, O. Ohunakin, and B. Paul, “Artificial intelligence 
models for refrigeration, air conditioning and heat pump systems,” 

Energy Reports, vol. 8, pp. 8451–8466, 2022. 

 

 

©  The Author(s) 2023. This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


