
Journal of Embedded Systems, 2018, Vol. 5, No. 1, 1-6
Available online at http://pubs.sciepub.com/jes/5/1/1
©Science and Education Publishing
DOI:10.12691/jes-5-1-1

Impact of Reducing Bit Stuffing Jitter on the
Control Performance of a CAN-Based

Distributed Furnace System

Mouaaz Nahas*

Department of Electrical Engineering, College of Engineering and Islamic Architecture,
Umm Al-Qura University, Makkah, Saudi Arabia

*Corresponding author: mmnahas@uqu.edu.sa

Abstract The Controller Area Network (CAN) protocol is widely used in distributed real-time, resource-constrained
embedded systems. CAN uses “Non Return to Zero” (NRZ) coding and employs a bit-stuffing mechanism for clock
synchronization. Such a mechanism causes a variation in the CAN frame length which may have a detrimental
impact on the control behaviour of safety-critical systems employing this protocol. To address this issue, two
techniques known as “byte-based XOR masking” and “software bit stuffing” were developed and achieved a jitter
reduction of up to 20% and 40%, respectively, when employed in practical designs. This paper investigates the
effectiveness of such techniques in a real-time control application; that is a simple furnace system case study based
on a “hardware-in-the-loop” (HIL) testbed facility. The results show that reducing bit stuffing jitter has the potential
to improve the control performance of distributed real-time systems employing CAN protocol.

Keywords: jitter, bit stuffing, scheduler, time-triggered, shared-clock, furnace system, hardware-in-the-loop

Cite This Article: Mouaaz Nahas, “Impact of Reducing Bit Stuffing Jitter on the Control Performance of
a CAN-Based Distributed Furnace System.” Journal of Embedded Systems, vol. 5, no. 1 (2018): 1-6.
doi: 10.12691/jes-5-1-1.

1. Introduction

The Controller Area Network (CAN) protocol is widely
used in distributed embedded control systems [1,2]. CAN
uses “Non Return to Zero” (NRZ) coding for bit
representation, under which drift in the receiver’s clock
may occur when a long sequence of identical bits has been
transmitted. This drift might, in turn, result in message
corruption. To avoid the possibility of this scenario, the
CAN communication protocol (in its physical layer)
employs a bit-stuffing mechanism which operates as
follows. After five consecutive identical bits have been
transmitted in a given frame, the sending node adds an
additional bit of the opposite polarity. All receiving nodes
must remove the ‘stuffed’ bits to recover the original data
[3,4]. Figure 1 provides a schematic illustration of the bit
stuffing process in CAN hardware.

Figure 1. The CAN bit stuffing mechanism.

While providing an effective mechanism for clock
synchronization between the communicating processors,
the bit-stuffing mechanism in CAN makes it difficult to
predict the transmission time of messages, a fact which

may have an adverse impact on a wide-range of time- as
well as safety-critical embedded applications. In more
detail, the bit-stuffing mechanism causes the frame length
to become (in part) a complex function of the data
contents. In [5], the level of message variation that this
process may induce was discussed and it was clearly
demonstrated that at the maximum CAN baud rate (i.e. 1
Mbit/sec), the possible variation in message lengths is up
to 24 μs. Of course, at lowers data rates that is very
common in practice, it is expected that this variation
would increase linearly with a potential impact on the
performance of real-time systems employing this protocol.
One key impact of bit stuffing is that there can be a
relative jitter in the timing of tasks which are due to
execute simultaneously on different nodes in a CAN
network. The presence of such jitter may have a
detrimental impact on the performance of many
distributed embedded systems including control
applications [6-14].

To begin to address this issue, Nolte et al [15,16]
proposed a technique in which the data section of each
CAN frame is XOR-ed with a bit-pattern that includes
alternating ones and zeros (i.e. 101010…). At the receiver,
the same bit operation must be applied to extract the
original data. This study was based on the analysis of
25,000 CAN frames gathered from a real automotive
system where it was found that probability of having bit
value of “1” (or “0”) in the data section was not 50% as
assumed with pseudorandom data. In a more general case,
where the data transmitted do not have the same

2 Journal of Embedded Systems

characteristics as those observed by Nolte and his
colleagues, we would not expect to see a significant
reduction in the level of bit-stuffing if the Nolte’s (XOR)
transform is applied (this was discussed and verified in
[17]). Therefore, two techniques were proposed to deal
with such high levels of message-length variations (i.e.
jitter) when pseudorandom data is exchanged in the CAN
network. The first technique was based on the investigation
of each byte and only if the byte is subject to CAN bit
stuffing is the whole byte XOR-ed with the bit-pattern
10101010; such a technique was described as “selective
byte-based XOR masking” and referred to as “Nolte C”
[5,17]. Please note that in [5], “Nolte A” refers to the
direct application of Nolte’s method, and “Nolte B” refers
to a “frame-based XOR masking” which was also found
ineffective with pseudorandom data. The results of
implementing “Nolte C” technique in practical systems –
employing time-triggered, shared-clock scheduling
protocols [18] – demonstrated a 20% reduction of
transmission jitter. To achieve a better improvement in the
overall temporal behaviour of the system, the “software
bit stuffing” (SBS) [5] and “eight-to-eleven modulation”
(EEM) [19] techniques were developed and evaluated.
Both techniques were found to be effective in reducing the
jitter – in CAN frames – by up to 40% (which is twice that
achieved by “Nolte C” approach). However, as detailed in
[19], the main advantage of EEM over SBS is its
flexibility, manifested in the wide range of possible
implementation options that can be adopted. In contrast,
the SBS – which can only be implemented using online
approach – has the potential to reduce memory
requirements in practical hardware designs, making it
superior to EEM in many practical cases. Note that the
abovementioned jitter-reduction techniques have been
taken further by other researchers, and a set of modified
versions as well as alternative techniques were presented
to deal with jitter and clock synchronisation issues in
CAN-based systems [20-26]. It is worth noting that CAN
protocol still works well for many systems due to its
profound roots in automotive industry besides its
simplicity, low implementation costs and widespread
availability [27]. Moreover, experience gained with CAN

over the past decades allows the creation of extremely
reliable systems using this protocol [28].

The impact of a preliminary version of software bit
stuffing algorithm on a control performance of a distributed
CAN-based adaptive cruise control system was investigated
in [11] and a general improvement had been achieved. In
this paper, we seek to explore the impact of applying
“Nolte C” and SBS on another realistic case study; that is
the distributed control of a CarboNitriding heat treatment
furnace system built using “hardware-in-the-loop” (HIL)
testing method [29,30]. HIL has been extensively used in
embedded systems development and refinement processes,
particularly for automotive applications (see, for example,
[31-37]).

The main aim of this study is to show how much
improvement in the control performance of such a furnace
system can be achieved by reducing transmission jitter
in the CAN network when applying “Nolte C” and
SBS techniques. The system considered here has two
nodes connected via CAN (hardware) protocol and
the “shared-clock” (S-C) scheduling (software) protocol
that is employed to achieve time-triggered message
communication (see [38] for various implementation
schemes of the S-C scheduler). Moreover, each individual
node executes its tasks using a “time-triggered
co-operative” (TTC) scheduler (see [39,40] for further
details).

The remainder of the paper is organised as follows.
Section 2 describes the CarboNitriding heat treatment
furnace system. In Section 3 the experimental methodology
used in this study is outlined. Section 4 presents the empirical
results obtained in this study which includes both jitter
and control performance measures. Finally, the overall
paper conclusions is drawn in Section 5.

2. Furnace System

CarboNitriding heat treatment furnace system is used
here as a real-time case study which can be implemented
using HIL testbed. The furnace system designed in this
study will be first described.

Figure 2. CarboNitriding Furnace Schematic Embedded control system.

 Journal of Embedded Systems 3

2.1. CarboNitriding Heat-Treatment Furnace
System

Furnace system based on CarboNitriding heat treatment
process [41] has been developed to harden the surface of
steel parts to enable them to resist surface wear. Since
most steel components need to be produced soft to allow
them to be machined, the case hardening technique is
normally applied after the part has been formed, and
before final machining takes place. The parts to be
hardened are heated to a critical temperature in a furnace
with a carefully controlled, artificially created atmosphere
that is rich in nitrogen (from endogas – ammonia) and
carbon (from methane) mixed with a suitable carrier gas
(in this case air). The parts are left at this critical
temperature for a required amount of time before being
quenched in hot oil to achieve the full case hardening. A
fully representative HIL simulation of such a process has
been developed to evaluate different approaches to the
development of a suitable control system [42]. Figure 2
shows a general schematic of the process.

2.2. Embedded Control System
The furnace control system consists of three main elements:
• The sequence controller
• The temperature controller
• The atmosphere controller
The sequence controller mainly controls the sequence

of opening, loading and starting the furnace for a
particular batch of parts. The temperature controller reads
the signal from a processed thermocouple, and controls
the state of a gas burner to regulate the temperature to a
given set point. The atmosphere controller directly
controls the composition of the furnace atmosphere, by
controlling the gas inlet valves based on readings from
one or more CO analysis devices. In the present study, the
performance of the temperature controller is examined,
both before and after the data is masked (processed) for
reducing jitter. Hereby, the temperature controller is

distributed over two nodes: Master and Slave. The Master
node samples and filters the temperature reading. This
information is then transmitted to the Slave, along with
the elapsed time, which allows the Slave to calculate the
desired set-point, apply negative feedback and calculate
the required burner setting. The Slave then applies this
signal to the proportional gas valve.

2.3. Temperature Controller
Due to the fact that the furnace chamber is relatively

small and the furnace is directly gas fired, the dynamics
can be considered to be quite quick and responsive. The
burners are able to heat the furnace to a maximum
temperature of 1250°C when fully ignited. The burner
proportional valves are to be controlled by a 5V signal
from the control system. The process can be represented
by a “first order plus time delay” (FOPTD) model, which
is given by:

2250()

1 6

s

p
eG s

s

−
=

+
 (1)

From this process model, the “integral of time-
multiplied absolute error” (ITAE) set-point criterion was
used to select gains for a parallel PID controller [42]. The
open-loop gain crossover frequency of the compensated
plant is 0.1156 Hz. To discretize the controller, a limit was
calculated for the sampling frequency so as to introduce
no more than approximately 1° extra phase shift due to the
sampling process; that is fs ≥ 180 × 0.1156 = 20.8 Hz.

In the Master node, a digital anti-aliasing filter was
implemented with a cut-off frequency of 62.8 rad/s, using
a sampling frequency of 100 Hz, to reduce the effects of
noise and high-frequency components in the input signal.
The representative, realistic hardware implementation of
the temperature control system is shown in Figure 3. Thus,
from the figure, it can be seen that any jitter in the Slave
tasks may detriment the quality of the temperature control.
The following section describes the metrics that were used
to assess this quality measure.

Figure 3. Temperature control system implementation.

4 Journal of Embedded Systems

3. Experimental Methodology

The system setup in this study has one Master node and
one Slave node, both are based on Infineon C167-CS
boards (running at 1 Mbit/s baudrate). The Master
processor performs two tasks: timing task and sampling
task. In the sampling task, the controller reads the signal
from a processed thermocouple. In the “interrupt service
routine” (ISR) [43] and through the tick message, Master
sends the elapsed time and the sampled temperature over
the CAN bus. A 5 ms tick interval is used; the sampling
task is therefore executed every 2 ticks, and the actuation
task is executed every 10 ticks. After calculating the
control output, the Slave applies this as a 10-bit input into
the simulation model. In all models considered here, six
bytes are used for ‘real’ data (the first byte contained the
Slave ID; see [18] for further details). Note that one
additional bit is required for “Nolte C” coding and two
additional bits were required for SBS coding (this is
explained in detail in [5]).

To measure the performance of both controller
implementations, ITAE of the system is measured in
response to a 60°C change of set-point. The ITAE is
defined mathematically in (2). The error signal e(t)
represents the difference between the measured
temperature and the reference at each time instant t, over
the period of the test duration T, which is equal to 300
seconds:

0

()
T

ITAE e t t dt= ⋅∫ (2)

In addition, to gauge the disturbance rejection
performance of the system, the “integral of absolute error”
(IAE) of the system is measured after injecting a 10°C
disturbance in the process output at t = 20 seconds, after
allowing the controller to settle into a steady-state at a
given set-point.

The jitter for both the compensated and uncompensated
systems (i.e. before and after “Nolte C” and SBS are
applied) is also measured. To obtain data regarding real-
time stability, the latency between Master and Slave clock
ticks is recorded for a period of 10,000 samples for each
system. To make these measurements, a pin on the Master
node is set high (for a short period) at the start of the
Master ISR function. Another pin on the Slave (initially
high) is set low at the start of Slave ISR function. The
signals from these two pins are then AND-ed (using a
74LS08N chip from Texas Instruments), to give a pulse
stream with widths that represent the transmission delays.
These widths are measured using a National Instruments
data acquisition card ‘NI PCI-6035E’ [44], used in
conjunction with appropriate software LabVIEW 7 [45].

Note that the jitter values presented here reflect the
impact of CAN bit-stuffing only (since the scheduler
software is designed to have no jitter [46]). Two values
are recorded for jitter: the average jitter and the difference
jitter. The average jitter is taken as the standard deviation
of the total latency of the entire sample range. As the
standard deviation increases the jitter level increases. The
difference jitter is taken as the difference between the
worst-case and the best-case latency values of the entire

sample range (this jitter is sometimes referred to as
absolute jitter: see [47]).

4. Results from the Furnace System

Before the timing and performance experiments were
carried out, a small experiment was done to select the
optimal values of the KP, KI and KD gains for the PID
controller (implemented on the Slave node). The
experiment was based on running the system with all
possible combinations of some suggested gains. These
gains were:

P

I

D

K 2.4552 10%
K 0.3057 10%
K 1.6404 10%.

= ±
= ±
= ±

Note that the original values were calculated based on
the ITAE tuning criteria for an FOPDT process model,
adapted from [42]. The best system performance was
obtained when the following gains were used: KP =
2.20968, KI = 0.33627 and KD = 1.80444. Table 1
summarizes the basic timing results obtained from this
furnace system.

Table 1. Basic timing results from the furnace study (all in µs)

Test Without
Masking

With
“Nolte C”

With
SBS

Min transmission time 164.5 171 177.2

Max transmission time 173 177.8 182

Average transmission time 167.2 173.6 179.5

Difference Jitter 8.5 6.8 4.8

Average Jitter 1.2 1.1 0.9

Figure 4. Difference jitter levels before and after encoding the furnace
system.

The results presented in the table show that jitter levels
have been improved as an effect of applying “Nolte C”
and SBS on the transmitted data between the sampling
(Master) node and the actuating (Slave) node in the
furnace system considered. For comparison purposes,
Figure 4 summarizes the difference jitter levels with and
without masking. If the difference jitter is to be looked at,
almost the same rate of jitter reduction has been found
here as compared to that obtained with random data using
the same processor hardware [5]. However, average jitter
improvement level has been somewhat reduced. The

 Journal of Embedded Systems 5

reason for this is that there are no large changes in the
transmitted information (e.g. sampled temperature) after
the first few seconds of the system run, which means that
there is less opportunity for average jitter reduction. This
simply implies that for each application, results would
entirely depend on the characteristics of the data
exchanged between the Master and Slave nodes.

After observing the jitter enhancement, it would only
make sense to consider such techniques in real applications if
we see a significant improvement in their control
performance. The performance measurements of the
furnace system are presented in Table 2 and Table 3.

Table 2. Impact of “Nolte C” and SBS on the observed behaviour in
the furnace study (without disturbance)

Version ITAE Improvement %
ITAE IAE Improvement %

IAE
Original 2616.2983 0 458.4764 0

“Nolte C” 2616.7705 -0.0180 458.4697 0.0015

SBS 2578.8867 1.4299 454.6107 0.8432

Table 3. Impact of “Nolte C” and SBS on the observed behaviour in
the furnace study (with disturbance)

Version ITAE Improvement %
ITAE IAE Improvement %

IAE
Original 239.1617 0 51.6693 0

“Nolte C” 238.9135 0.1038 51.6055 0.1235

SBS 159.8445 33.1647 43.6295 15.5601

The table shows that there is no measurable

improvement in the system performance as a direct
application of “Nolte C” jitter-reduction technique. When
SBS was applied, the improvements in the ITAE and IAE
measures, without a disturbance, were about 1.4% and
0.8%, respectively. The situation was seen better when
considering a 10°C disturbance. In this case, around 33%
and 16% improvements were achieved for the ITAE and
IAE measures, respectively. This is best explained by
observing that a control system will respond differently to
set-point changes than it will for disturbances, due to the
topology of the feedback scheme and the source of the
disturbing signal.

5. Conclusions

The main aim of this paper was to explore the impact of
two data coding algorithms developed previously for jitter
reduction purposes on the performance of real-time
applications. Therefore, both “Nolte C” (i.e. selective
byte-based XOR masking) and SBS techniques were
applied here using an HIL testbed facility. The case study
considered was the CarboNitriding heat-treatment furnace
system consisting of two communicating nodes where the
nodes were connected physically via CAN hardware
network protocol.

In addition to the timing measurements, the impact of
“Nolte C” and SBS methods on the performance of the
furnace system was studied using quantitative measures
which are directly related to the control behaviour of the
system. Overall, from the results obtained, the SBS
technique had higher potential to improve the system

performance by significantly reducing the impact of bit-
stuffing in CAN hardware, especially with the case of
disturbance rejection that is required in many control
applications. This implies that despite that the SBS
method is based on a simple idea and that it does not
require high computational and memory requirements
[19], its impact on real application can still be seen
significant especially when it is considered for time- and / or
safety-critical embedded systems.

It would then be recommended to test the effectiveness
of such data coding techniques on a wider range of control
applications to verify their usefulness in this area of
studies. Moreover, alternative, more recent data coding
techniques (such as those referred to in the literature
review) can also be tested to demonstrate their
effectiveness in real-time resource-constrained embedded
control applications.

Acknowledgements
Author would like to thank Dr Michael Pont (SafeTTy

Systems Ltd, UK) for providing useful comments on the
work carried out in this paper. The HIL simulation model
used here was developed by Dr Michael Short (Teesside
University, UK) to whom the author is grateful.

References
[1] M. Farsi and M. B. M. Barbosa, CANopen implementation:

applications to industrial networks. Baldock, Hertfordshire,
England; Philadelphia, PA: Research Studies Press, 1999.

[2] M. D. Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding
and Using the Controller Area Network Communication Protocol:
Theory and Practice. Springer Science & Business Media, 2012.

[3] Bosch, CAN Specification Version 2.0. Bosch, 1991.
[4] R. Obermaisser, Time-Triggered Communication. CRC Press,

2011.
[5] M. Nahas, M. J. Pont, and M. Short, “Reducing message-length

variations in resource-constrained embedded systems implemented
using the Controller Area Network (CAN) protocol,” Journal of
Systems Architecture, May 2009, vol. 55, no. 5-6, pp. 344-354.

[6] F. Abugchem, M. Short, and D. Xu, “An experimental HIL study
on the jitter sensitivity of an adaptive control system,” in 2013
IEEE 18th Conference on Emerging Technologies Factory
Automation (ETFA), 2013, pp. 1-8.

[7] F. Cottet and L. David, “A Solution to the Time Jitter Removal in
Deadline Based Scheduling of Real-time Applications,” presented
at the 5th IEEE Real-Time Technology and Applications
Symposium - WIP, Vancouver, Canada, 1999, pp. 33-38.

[8] Q. Huynh-Thu and M. Ghanbari, “Impact of jitter and jerkiness on
perceived video quality,” in Proc. Workshop on Video Processing
and Quality Metrics, 2006.

[9] A. J. Jerri, “The Shannon sampling theorem #8212; Its various
extensions and applications: A tutorial review,” Proceedings of the
IEEE, Nov. 1977, vol. 65, no. 11, pp. 1565-1596.

[10] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Jitter
compensation for real-time control systems,” in 22nd IEEE Real-
Time Systems Symposium, 2001. (RTSS 2001). Proceedings, 2001,
pp. 39-48.

[11] M. Nahas, M. Short, and M. J. Pont, “The impact of bit stuffing on
the real-time performance of a distributed control system,”
presented at the Proceeding of the 10th International CAN
conference iCC, Rome, Italy, 2005, pp. 10-1-10-7.

[12] F. M. Proctor and W. P. Shackleford, “Real-time operating system
timing jitter and its impact on motor control,” in Intelligent
Systems and Advanced Manufacturing, 2001, pp. 10016.

[13] F. Smirnov, M. Gla\s s, F. Reimann, and J. Teich, “Formal
reliability analysis of switched Ethernet automotive networks

6 Journal of Embedded Systems

under transient transmission errors,” in Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE, 2016, pp. 1-6.

[14] F.-Y. Wu and Y.-M. Chen, “Impact of PWM Duty Cycle Jitter on
Switching-Mode Power Converter Efficiency,” IEEE Transactions
on Power Electronics, 2017.

[15] T. Nolte, H. Hansson, and C. Norstrom, “Minimizing CAN
response-time jitter by message manipulation,” in Eighth IEEE
Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings, 2002, pp. 197-206.

[16] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat, “Using bit-
stuffing distributions in CAN analysis,” presented at the IEEE
Real-Time Embedded Systems Workshop, London, 2001.

[17] M. Nahas and M. J. Pont, “Using XOR operations to reduce
variations in the transmission time of CAN messages: A pilot
study,” in Proceedings of the Second UK Embedded Forum,
Birmingham, UK, 2005, pp. 4-17.

[18] M. J. Pont, Patterns for time-triggered embedded systems:
building reliable applications with the 8051 family of
microcontrollers. Harlow: Addison-Wesley, 2001.

[19] M. Nahas, “Applying Eight-to-Eleven Modulation to reduce
message-length variations in distributed embedded systems
using the Controller Area Network (CAN) protocol,” Canadian
Journal on Electrical and Electronics Engineering, vol. 2, no. 7,
pp. 282-293, 2011.

[20] G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “A mechanism
to prevent stuff bits in CAN for achieving jitterless
communication,” IEEE Transactions on Industrial Informatics,
2015, vol. 11, no. 1, pp. 83-93.

[21] M. M. Hassan, “Third Bit Complement (TBC) Mechanism to
Reduce Bit Stuffing Jitter in Controller Area Network (CAN),”
International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering (An ISO 3297: 2007
Certified Organization), vol. 4, no. 5, 2015.

[22] T. R. Jena, A. K. Swain, and K. Mahapatra, “A novel bit stuffing
technique for Controller Area Network (CAN) protocol,” in
Advances in Energy Conversion Technologies (ICAECT), 2014
International Conference on, 2014, pp. 113-117.

[23] S. K. Kabilesh and B. V. Kumar, “Design and simulation of
modified selective XOR algorithm for payload attrition in CAN,”
in 2016 3rd International Conference on Advanced Computing
and Communication Systems (ICACCS), 2016, vol. 1, pp. 1-6.

[24] H. J. Lad and V. G. Joshi, “Hybrid message conversion technique
to reduce jitter in CAN based distributed embedded system,” in
Emerging Technology Trends in Electronics, Communication and
Networking (ET2ECN), 2014 2nd International Conference on,
2014, pp. 1-6.

[25] K. R. Priyanga, K. Venkatesan, and others, “A fixed length
payload encoding for can,” International Journal of Advanced
Research in Electronics and Communication Engineering
(IJARECE), 2014, vol. 3, no. 12.

[26] G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “Fixed-length
payload encoding for low-jitter controller area network
communication,” IEEE Transactions on Industrial Informatics,
2013, vol. 9, no. 4, pp. 2155-2164.

[27] D. Ayavoo, “The development of reliable x-by-wire systems:
assessingt he effectiveness of a’simulation first’approach,” PhD
Thesis, University of Leicester, 2006.

[28] M. Short and M. J. Pont, “Fault-Tolerant Time-Triggered
Communication Using CAN,” IEEE Transactions on Industrial
Informatics, May 2007, vol. 3, no. 2, pp. 131-142.

[29] M. Bacic, “On hardware-in-the-loop simulation,” in Decision
and Control, 2005 and 2005 European Control Conference.
CDC-ECC’05. 44th IEEE Conference on, 2005, pp. 3194-3198.

[30] M. Schlager, Hardware-in-the-Loop Simulation. Omniscriptum
Gmbh & Company Kg., 2008.

[31] I. Briggs, M. Murtagh, R. Kee, G. McCulloug, and R. Douglas,
“Sustainable non-automotive vehicles: The simulation challenges,”
Renewable and Sustainable Energy Reviews, 2017, vol. 68,
pp. 840-851.

[32] K. Enisz, D. Fodor, I. Szalay, and L. Kovacs, “Reconfigurable
real-time hardware-in-the-loop environment for automotive electronic
control unit testing and verification,” IEEE Instrumentation &
Measurement Magazine, vol. 17, no. 4, pp. 31-36, 2014.

[33] V. Josef, G. Robert, K. Petr, L. František, and M. Karel,
“Hardware-In-the-Loop simulation for automotive parking
assistant control units,” in Mechatronics-Mechatronika (ME),
2014 16th International Conference on, 2014, pp. 325-330.

[34] M. Kloc, R. Weigel, and A. Koelpin, “Making real-time hardware-
in-the-loop testing of automotive electronic control units wireless,”
in Advanced Technologies for Communications (ATC), 2016
International Conference on, 2016, pp. 407-412.

[35] J. Schroeder, C. Berger, and T. Herpel, “Challenges from
integration testing using interconnected hardware-in-the-loop test
rigs at an automotive oem: An industrial experience report,” in
Proceedings of the First International Workshop on Automotive
Software Architecture, 2015, pp. 39-42.

[36] M. Short and M. J. Pont, “Assessment of high-integrity embedded
automotive control systems using hardware in the loop simulation,”
Journal of Systems and Software, Jul. 2008, vol. 81, no. 7,
pp. 1163-1183.

[37] Z.-G. Zhao, L.-J. Zhou, J.-T. Zhang, Q. Zhu, and J.-K. Hedrick,
“Distributed and self-adaptive vehicle speed estimation in the
composite braking case for four-wheel drive hybrid electric car,”
Vehicle System Dynamics, pp. 1-24, 2017.

[38] M. Nahas, “Developing a Novel Shared-Clock Scheduling
Protocol for Highly-Predictable Distributed Real-Time Embedded
Systems,” American Journal of Intelligent Systems, Dec. 2012,
vol. 2, no. 5, pp. 118-128.

[39] M. Nahas, “Implementation of highly-predictable time-triggered
cooperative scheduler using simple super loop architecture,”
International Journal of Electrical & Computer Sciences, 2011,
vol. 11, pp. 33-38.

[40] M. Nahas, “Employing Two ‘Sandwich Delay’ Mechanisms to
Enhance Predictability of Embedded Systems Which Use Time-
Triggered Co-Operative Architectures,” Journal of Software
Engineering and Applications, 2011, vol. 4, no. 7, pp. 417-425.

[41] W. Joseph M, “Control arrangement for controlled atmosphere
furnace,” US3237928 A, 01-Mar-1966.

[42] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. Doyle III,
Process dynamics and control. John Wiley & Sons, 2010.

[43] M. Nahas and A. M. Nahhas, Ways for implementing highly-
predictable embedded systems using time-triggered co-operative
(TTC) architectures. INTECH Open Access Publisher, 2012.

[44] “Datasheet PDF Template - 4daqsc202-204_ETC_212-213.pdf.”
[Online]. Available:
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-
213.pdf. [Accessed: 30-Aug-2017].

[45] “LabVIEW System Design Software - National Instruments.”
[Online]. Available: http://www.ni.com/labview/. [Accessed: 30-
Aug -2017].

[46] M. Nahas, M. J. Pont, and A. Jain, “Reducing task jitter in shared-
clock embedded systems using CAN,” in Proceedings of the UK
Embedded Forum 2004, Birmingham, UK, 2004, pp. 184-194.

[47] G. C. Buttazzo, Hard real-time computing systems: predictable
scheduling algorithms and applications. New York: Springer,
2005.

