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Abstract  The Controller Area Network (CAN) protocol is widely used in distributed real-time, resource-constrained 
embedded systems. CAN uses “Non Return to Zero” (NRZ) coding and employs a bit-stuffing mechanism for clock 
synchronization. Such a mechanism causes a variation in the CAN frame length which may have a detrimental 
impact on the control behaviour of safety-critical systems employing this protocol. To address this issue, two 
techniques known as “byte-based XOR masking” and “software bit stuffing” were developed and achieved a jitter 
reduction of up to 20% and 40%, respectively, when employed in practical designs. This paper investigates the 
effectiveness of such techniques in a real-time control application; that is a simple furnace system case study based 
on a “hardware-in-the-loop” (HIL) testbed facility. The results show that reducing bit stuffing jitter has the potential 
to improve the control performance of distributed real-time systems employing CAN protocol. 
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1. Introduction 

The Controller Area Network (CAN) protocol is widely 
used in distributed embedded control systems [1,2]. CAN 
uses “Non Return to Zero” (NRZ) coding for bit 
representation, under which drift in the receiver’s clock 
may occur when a long sequence of identical bits has been 
transmitted. This drift might, in turn, result in message 
corruption. To avoid the possibility of this scenario, the 
CAN communication protocol (in its physical layer) 
employs a bit-stuffing mechanism which operates as 
follows. After five consecutive identical bits have been 
transmitted in a given frame, the sending node adds an 
additional bit of the opposite polarity. All receiving nodes 
must remove the ‘stuffed’ bits to recover the original data 
[3,4]. Figure 1 provides a schematic illustration of the bit 
stuffing process in CAN hardware. 

 
Figure 1. The CAN bit stuffing mechanism. 

While providing an effective mechanism for clock 
synchronization between the communicating processors, 
the bit-stuffing mechanism in CAN makes it difficult to 
predict the transmission time of messages, a fact which 

may have an adverse impact on a wide-range of time- as 
well as safety-critical embedded applications. In more 
detail, the bit-stuffing mechanism causes the frame length 
to become (in part) a complex function of the data 
contents. In [5], the level of message variation that this 
process may induce was discussed and it was clearly 
demonstrated that at the maximum CAN baud rate (i.e. 1 
Mbit/sec), the possible variation in message lengths is up 
to 24 μs. Of course, at lowers data rates that is very 
common in practice, it is expected that this variation 
would increase linearly with a potential impact on the 
performance of real-time systems employing this protocol. 
One key impact of bit stuffing is that there can be a 
relative jitter in the timing of tasks which are due to 
execute simultaneously on different nodes in a CAN 
network. The presence of such jitter may have a 
detrimental impact on the performance of many 
distributed embedded systems including control 
applications [6-14]. 

To begin to address this issue, Nolte et al [15,16] 
proposed a technique in which the data section of each 
CAN frame is XOR-ed with a bit-pattern that includes 
alternating ones and zeros (i.e. 101010…). At the receiver, 
the same bit operation must be applied to extract the 
original data. This study was based on the analysis of 
25,000 CAN frames gathered from a real automotive 
system where it was found that probability of having bit 
value of “1” (or “0”) in the data section was not 50% as 
assumed with pseudorandom data. In a more general case, 
where the data transmitted do not have the same 
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characteristics as those observed by Nolte and his 
colleagues, we would not expect to see a significant 
reduction in the level of bit-stuffing if the Nolte’s (XOR) 
transform is applied (this was discussed and verified in 
[17]). Therefore, two techniques were proposed to deal 
with such high levels of message-length variations (i.e. 
jitter) when pseudorandom data is exchanged in the CAN 
network. The first technique was based on the investigation 
of each byte and only if the byte is subject to CAN bit 
stuffing is the whole byte XOR-ed with the bit-pattern 
10101010; such a technique was described as “selective 
byte-based XOR masking” and referred to as “Nolte C” 
[5,17]. Please note that in [5], “Nolte A” refers to the 
direct application of Nolte’s method, and “Nolte B” refers 
to a “frame-based XOR masking” which was also found 
ineffective with pseudorandom data. The results of 
implementing “Nolte C” technique in practical systems – 
employing time-triggered, shared-clock scheduling 
protocols [18] – demonstrated a 20% reduction of 
transmission jitter. To achieve a better improvement in the 
overall temporal behaviour of the system, the “software 
bit stuffing” (SBS) [5] and “eight-to-eleven modulation” 
(EEM) [19] techniques were developed and evaluated. 
Both techniques were found to be effective in reducing the 
jitter – in CAN frames – by up to 40% (which is twice that 
achieved by “Nolte C” approach). However, as detailed in 
[19], the main advantage of EEM over SBS is its 
flexibility, manifested in the wide range of possible 
implementation options that can be adopted. In contrast, 
the SBS – which can only be implemented using online 
approach – has the potential to reduce memory 
requirements in practical hardware designs, making it 
superior to EEM in many practical cases. Note that the 
abovementioned jitter-reduction techniques have been 
taken further by other researchers, and a set of modified 
versions as well as alternative techniques were presented 
to deal with jitter and clock synchronisation issues in 
CAN-based systems [20-26]. It is worth noting that CAN 
protocol still works well for many systems due to its 
profound roots in automotive industry besides its 
simplicity, low implementation costs and widespread 
availability [27]. Moreover, experience gained with CAN 

over the past decades allows the creation of extremely 
reliable systems using this protocol [28].  

The impact of a preliminary version of software bit 
stuffing algorithm on a control performance of a distributed 
CAN-based adaptive cruise control system was investigated 
in [11] and a general improvement had been achieved. In 
this paper, we seek to explore the impact of applying 
“Nolte C” and SBS on another realistic case study; that is 
the distributed control of a CarboNitriding heat treatment 
furnace system built using “hardware-in-the-loop” (HIL) 
testing method [29,30]. HIL has been extensively used in 
embedded systems development and refinement processes, 
particularly for automotive applications (see, for example, 
[31-37]).  

The main aim of this study is to show how much 
improvement in the control performance of such a furnace 
system can be achieved by reducing transmission jitter  
in the CAN network when applying “Nolte C” and  
SBS techniques. The system considered here has two 
nodes connected via CAN (hardware) protocol and  
the “shared-clock” (S-C) scheduling (software) protocol 
that is employed to achieve time-triggered message 
communication (see [38] for various implementation 
schemes of the S-C scheduler). Moreover, each individual 
node executes its tasks using a “time-triggered  
co-operative” (TTC) scheduler (see [39,40] for further 
details). 

The remainder of the paper is organised as follows. 
Section 2 describes the CarboNitriding heat treatment 
furnace system. In Section 3 the experimental methodology 
used in this study is outlined. Section 4 presents the empirical 
results obtained in this study which includes both jitter 
and control performance measures. Finally, the overall 
paper conclusions is drawn in Section 5. 

2. Furnace System 

CarboNitriding heat treatment furnace system is used 
here as a real-time case study which can be implemented 
using HIL testbed. The furnace system designed in this 
study will be first described. 

 
Figure 2. CarboNitriding Furnace Schematic Embedded control system. 
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2.1. CarboNitriding Heat-Treatment Furnace 
System 

Furnace system based on CarboNitriding heat treatment 
process [41] has been developed to harden the surface of 
steel parts to enable them to resist surface wear. Since 
most steel components need to be produced soft to allow 
them to be machined, the case hardening technique is 
normally applied after the part has been formed, and 
before final machining takes place. The parts to be 
hardened are heated to a critical temperature in a furnace 
with a carefully controlled, artificially created atmosphere 
that is rich in nitrogen (from endogas – ammonia) and 
carbon (from methane) mixed with a suitable carrier gas 
(in this case air). The parts are left at this critical 
temperature for a required amount of time before being 
quenched in hot oil to achieve the full case hardening. A 
fully representative HIL simulation of such a process has 
been developed to evaluate different approaches to the 
development of a suitable control system [42]. Figure 2 
shows a general schematic of the process. 

2.2. Embedded Control System 
The furnace control system consists of three main elements: 
•  The sequence controller 
•  The temperature controller  
•  The atmosphere controller 
The sequence controller mainly controls the sequence 

of opening, loading and starting the furnace for a 
particular batch of parts. The temperature controller reads 
the signal from a processed thermocouple, and controls 
the state of a gas burner to regulate the temperature to a 
given set point. The atmosphere controller directly 
controls the composition of the furnace atmosphere, by 
controlling the gas inlet valves based on readings from 
one or more CO analysis devices. In the present study, the 
performance of the temperature controller is examined, 
both before and after the data is masked (processed) for 
reducing jitter. Hereby, the temperature controller is 

distributed over two nodes: Master and Slave. The Master 
node samples and filters the temperature reading. This 
information is then transmitted to the Slave, along with 
the elapsed time, which allows the Slave to calculate the 
desired set-point, apply negative feedback and calculate 
the required burner setting. The Slave then applies this 
signal to the proportional gas valve. 

2.3. Temperature Controller 
Due to the fact that the furnace chamber is relatively 

small and the furnace is directly gas fired, the dynamics 
can be considered to be quite quick and responsive. The 
burners are able to heat the furnace to a maximum 
temperature of 1250°C when fully ignited. The burner 
proportional valves are to be controlled by a 5V signal 
from the control system. The process can be represented 
by a “first order plus time delay” (FOPTD) model, which 
is given by: 

 
2250( )

1 6

s

p
eG s

s

−
=

+
 (1) 

From this process model, the “integral of time-
multiplied absolute error” (ITAE) set-point criterion was 
used to select gains for a parallel PID controller [42]. The 
open-loop gain crossover frequency of the compensated 
plant is 0.1156 Hz. To discretize the controller, a limit was 
calculated for the sampling frequency so as to introduce 
no more than approximately 1° extra phase shift due to the 
sampling process; that is fs ≥ 180 × 0.1156 = 20.8 Hz. 

In the Master node, a digital anti-aliasing filter was 
implemented with a cut-off frequency of 62.8 rad/s, using 
a sampling frequency of 100 Hz, to reduce the effects of 
noise and high-frequency components in the input signal. 
The representative, realistic hardware implementation of 
the temperature control system is shown in Figure 3. Thus, 
from the figure, it can be seen that any jitter in the Slave 
tasks may detriment the quality of the temperature control. 
The following section describes the metrics that were used 
to assess this quality measure. 

 
Figure 3. Temperature control system implementation. 
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3. Experimental Methodology 

The system setup in this study has one Master node and 
one Slave node, both are based on Infineon C167-CS 
boards (running at 1 Mbit/s baudrate). The Master 
processor performs two tasks: timing task and sampling 
task. In the sampling task, the controller reads the signal 
from a processed thermocouple. In the “interrupt service 
routine” (ISR) [43] and through the tick message, Master 
sends the elapsed time and the sampled temperature over 
the CAN bus. A 5 ms tick interval is used; the sampling 
task is therefore executed every 2 ticks, and the actuation 
task is executed every 10 ticks. After calculating the 
control output, the Slave applies this as a 10-bit input into 
the simulation model. In all models considered here, six 
bytes are used for ‘real’ data (the first byte contained the 
Slave ID; see [18] for further details). Note that one 
additional bit is required for “Nolte C” coding and two 
additional bits were required for SBS coding (this is 
explained in detail in [5]). 

To measure the performance of both controller 
implementations, ITAE of the system is measured in 
response to a 60°C change of set-point. The ITAE is 
defined mathematically in (2). The error signal e(t) 
represents the difference between the measured 
temperature and the reference at each time instant t, over 
the period of the test duration T, which is equal to 300 
seconds: 
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In addition, to gauge the disturbance rejection 
performance of the system, the “integral of absolute error” 
(IAE) of the system is measured after injecting a 10°C 
disturbance in the process output at t = 20 seconds, after 
allowing the controller to settle into a steady-state at a 
given set-point.  

The jitter for both the compensated and uncompensated 
systems (i.e. before and after “Nolte C” and SBS are 
applied) is also measured. To obtain data regarding real-
time stability, the latency between Master and Slave clock 
ticks is recorded for a period of 10,000 samples for each 
system. To make these measurements, a pin on the Master 
node is set high (for a short period) at the start of the 
Master ISR function. Another pin on the Slave (initially 
high) is set low at the start of Slave ISR function. The 
signals from these two pins are then AND-ed (using a 
74LS08N chip from Texas Instruments), to give a pulse 
stream with widths that represent the transmission delays. 
These widths are measured using a National Instruments 
data acquisition card ‘NI PCI-6035E’ [44], used in 
conjunction with appropriate software LabVIEW 7 [45]. 

Note that the jitter values presented here reflect the 
impact of CAN bit-stuffing only (since the scheduler 
software is designed to have no jitter [46]). Two values 
are recorded for jitter: the average jitter and the difference 
jitter. The average jitter is taken as the standard deviation 
of the total latency of the entire sample range. As the 
standard deviation increases the jitter level increases. The 
difference jitter is taken as the difference between the 
worst-case and the best-case latency values of the entire 

sample range (this jitter is sometimes referred to as 
absolute jitter: see [47]). 

4. Results from the Furnace System  

Before the timing and performance experiments were 
carried out, a small experiment was done to select the 
optimal values of the KP, KI and KD gains for the PID 
controller (implemented on the Slave node). The 
experiment was based on running the system with all 
possible combinations of some suggested gains. These 
gains were:  
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K  2.4552  10%
K  0.3057  10%
K  1.6404  10%.

= ±
= ±
= ±

 

Note that the original values were calculated based on 
the ITAE tuning criteria for an FOPDT process model, 
adapted from [42]. The best system performance was 
obtained when the following gains were used: KP = 
2.20968, KI = 0.33627 and KD = 1.80444. Table 1 
summarizes the basic timing results obtained from this 
furnace system. 

Table 1. Basic timing results from the furnace study (all in µs) 

Test Without 
Masking 

With 
“Nolte C” 

With 
SBS 

Min transmission time 164.5 171 177.2 

Max transmission time 173 177.8 182 

Average transmission time 167.2 173.6 179.5 

Difference Jitter 8.5 6.8 4.8 

Average Jitter 1.2 1.1 0.9 

 
Figure 4. Difference jitter levels before and after encoding the furnace 
system. 

The results presented in the table show that jitter levels 
have been improved as an effect of applying “Nolte C” 
and SBS on the transmitted data between the sampling 
(Master) node and the actuating (Slave) node in the 
furnace system considered. For comparison purposes, 
Figure 4 summarizes the difference jitter levels with and 
without masking. If the difference jitter is to be looked at, 
almost the same rate of jitter reduction has been found 
here as compared to that obtained with random data using 
the same processor hardware [5]. However, average jitter 
improvement level has been somewhat reduced. The 
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reason for this is that there are no large changes in the 
transmitted information (e.g. sampled temperature) after 
the first few seconds of the system run, which means that 
there is less opportunity for average jitter reduction. This 
simply implies that for each application, results would 
entirely depend on the characteristics of the data 
exchanged between the Master and Slave nodes. 

After observing the jitter enhancement, it would only 
make sense to consider such techniques in real applications if 
we see a significant improvement in their control 
performance. The performance measurements of the 
furnace system are presented in Table 2 and Table 3. 

Table 2. Impact of “Nolte C” and SBS on the observed behaviour in 
the furnace study (without disturbance) 

Version ITAE Improvement % 
ITAE IAE Improvement % 

IAE 
Original 2616.2983 0 458.4764 0 

“Nolte C” 2616.7705 -0.0180 458.4697 0.0015 

SBS 2578.8867 1.4299 454.6107 0.8432 

Table 3. Impact of “Nolte C” and SBS on the observed behaviour in 
the furnace study (with disturbance) 

Version ITAE Improvement % 
ITAE IAE Improvement % 

IAE 
Original 239.1617 0 51.6693 0 

“Nolte C” 238.9135 0.1038 51.6055 0.1235 

SBS 159.8445 33.1647 43.6295 15.5601 

 
The table shows that there is no measurable 

improvement in the system performance as a direct 
application of “Nolte C” jitter-reduction technique. When 
SBS was applied, the improvements in the ITAE and IAE 
measures, without a disturbance, were about 1.4% and 
0.8%, respectively. The situation was seen better when 
considering a 10°C disturbance. In this case, around 33% 
and 16% improvements were achieved for the ITAE and 
IAE measures, respectively. This is best explained by 
observing that a control system will respond differently to 
set-point changes than it will for disturbances, due to the 
topology of the feedback scheme and the source of the 
disturbing signal. 

5. Conclusions 

The main aim of this paper was to explore the impact of 
two data coding algorithms developed previously for jitter 
reduction purposes on the performance of real-time 
applications. Therefore, both “Nolte C” (i.e. selective 
byte-based XOR masking) and SBS techniques were 
applied here using an HIL testbed facility. The case study 
considered was the CarboNitriding heat-treatment furnace 
system consisting of two communicating nodes where the 
nodes were connected physically via CAN hardware 
network protocol. 

In addition to the timing measurements, the impact of 
“Nolte C” and SBS methods on the performance of the 
furnace system was studied using quantitative measures 
which are directly related to the control behaviour of the 
system. Overall, from the results obtained, the SBS 
technique had higher potential to improve the system 

performance by significantly reducing the impact of bit-
stuffing in CAN hardware, especially with the case of 
disturbance rejection that is required in many control 
applications. This implies that despite that the SBS 
method is based on a simple idea and that it does not 
require high computational and memory requirements  
[19], its impact on real application can still be seen 
significant especially when it is considered for time- and / or 
safety-critical embedded systems.  

It would then be recommended to test the effectiveness 
of such data coding techniques on a wider range of control 
applications to verify their usefulness in this area of 
studies. Moreover, alternative, more recent data coding 
techniques (such as those referred to in the literature 
review) can also be tested to demonstrate their 
effectiveness in real-time resource-constrained embedded 
control applications. 
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