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Abstract  The integration of Artificial Intelligence (AI) in healthcare holds immense promise for revolutionizing 
clinical practices and patient outcomes. However, the lack of transparency in AI decision-making processes poses 
significant challenges, hindering trust and understanding among healthcare professionals. Explainable Artificial 
Intelligence (XAI) has emerged as a promising solution to address these concerns by shedding light on AI model 
predictions and enhancing interpretability. This review explores the efficacy and applications of XAI within the 
healthcare domain, focusing on key research questions regarding challenges, effectiveness, and utilized algorithms. 
Through a comprehensive examination of 50 recent literature, we identify challenges related to the integration of 
XAI into clinical workflows, the necessity for validation and trust-building, and technical hurdles such as diverse 
explanation methods and data quality issues. Popular XAI algorithms such as SHAP, LIME, and GRAD-CAM 
demonstrate significant promise in clarifying model predictions and aiding in the interpretation of AI-driven 
healthcare systems. Overall, this review underscores the immense potential of XAI in revolutionizing healthcare 
delivery and decision-making processes, emphasizing the need for further research and development to address 
challenges and leverage its full potential in enhancing healthcare practices. 
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1. Introduction 

Researchers in [1] are actively exploring innovative 
approaches to seamlessly incorporate Artificial Intelligence 
(AI) across diverse industries, with healthcare emerging as 
a sector that has witnessed notable strides in this integration. 
Nevertheless, due to the sensitive nature of human lives, 
making decisions using AI models raises a lot of concern as 
we do not properly understand the intricate workings of 
most of these models [2]. Explainable Artificial intelligence 
(XAI) simply deals with understanding how machine 
learning systems make decisions so we can trust the 
decision it gives us [1]. This lack of transparency as seen in 
[3] can hinder health professionals' trust in AI systems, 
potentially impeding their integration into healthcare 
workflows. Moreover, the ethical implications of AI 
decisions necessitate that AI systems in healthcare are not 
only accurate but also interpretable, to ensure accountability 
and justify clinical decisions [2]. 

1.1. Potential of AI in Healthcare  
As listed in [4], Artificial Intelligence exhibits diverse 

applications within the medical sector, encompassing but 
not limited to precision medicine, drug discovery, medical 
visualization, education, and intelligent health records. In 
the area of diagnosis, treatment, and patient care, there 
remains a spectrum of untapped potential for artificial 
intelligence as we explore this burgeoning technology. In 
precision medicine, traditional machine learning finds its 
primary application in predicting the success of treatment 
protocols for individual patients. According to [5,6] this 
involves analyzing various patient attributes and contextual 
factors associated with the treatment to determine the most 
effective course of action. Also, [6] opines that AI has been 
used to recognize intricate patterns in medical images such 
as understanding chest radiographs, allowing them to 
achieve comparable or superior performance compared to 
clinicians in certain instances.  

[7] believes that machine learning algorithms can 
analyze genetic data, and clinical information that can 
predict high-risk patients, recommend personalized 
treatment plans, and prevent adverse events. AI-powered 
patient engagement tools like chatbots, wearables, and 
mobile devices support self-care, education, decision-
making, and chronic condition management. In [8,9], it is 
understood that patients can access their health data, 
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interact with healthcare providers online, and receive 
personalized recommendations. It is of no doubt that AI 
assists clinicians in decision-making by processing 
narrative health data, providing critical summaries of 
patient information, and improving diagnostic processes. 
It enhances disease diagnosis, treatment selection, and 
clinical laboratory testing.  

Recent advancements in Explainable Artificial 
Intelligence (XAI) have made significant progress in 
addressing a crucial gap – the disparity between AI 
predictions and the understanding of end-users. These 
advancements focus on developing techniques that clarify 
the reasoning behind AI predictions, making them more 
understandable for people [10]. This progress is especially 
important in areas like healthcare, where the ability to 
grasp the basis of AI-generated recommendations plays a 
vital role in influencing patient outcomes [11]. 
Understanding how AI arrives at its decisions is crucial 
for healthcare professionals and patients alike, as it 
contributes to informed and confident decision-making in 
clinical settings.  

Additionally, the evolving landscape of regulations now 
places a growing emphasis on the explainability of these 
systems. This emphasis is particularly relevant in clinical 
settings, where ensuring the safe and ethical deployment 
of AI technologies is a top priority. Adhering to regulatory 
requirements, which increasingly stress the need for 
explainability, is essential to guarantee that AI models 
meet ethical standards and prioritize patient well-being 
[12]. The call for transparency and accountability in AI is 
not just a response to the growing complexity of these 
systems but also an acknowledgment of the ethical 
responsibility associated with their deployment in such 
critical areas. 

There have been a lot of advances in the application of 
AI in healthcare, however, some challenges still present 
themselves. By performing a systematic literature review 
on recent papers in the domain, we aim to answer the 
following major questions. 

1.  What are the current challenges and problems in 
XAI for healthcare? 

2.  How effective has explainable AI been in 
healthcare? 

3.  What are the explainable AI algorithms that have 
been used? 

2. Methodology  

In this research, our objective is to explore the efficacy 
of Explainable Artificial Intelligence (XAI) in the 
healthcare sector. We are conducting a systematic review 
employing the scoping study methodology. Our study 
involves an exhaustive examination of the existing 
literature within this research domain, focusing on 
identifying the metrics and algorithms employed.  

2.1. Search Strategy 
For the systematic literature review, we conducted a 

comprehensive search for articles related to Explainable 
AI (XAI) applications across various healthcare domains, 
spanning from diagnosis to treatment recommendation. 

Our search strategy involved querying two widely used 
academic databases: Google Scholar and PubMed. We 
utilized a combination of relevant keywords such as 
"explainable AI", and "healthcare", ensuring a broad scope 
of articles covering a diverse range of applications. We 
limited our search range from 2020 to 2024, specifically 
on March 5th, 2024.  

Overall, our search strategy aimed to identify a 
comprehensive selection of literature encompassing 
various healthcare domains, including but not limited to 
radiology (use of X-rays for diagnosis and treatment), 
pathology, cardiology, and oncology, to provide a 
thorough understanding of the current landscape of XAI 
applications in healthcare. 

Table 1. Query Information 

Group A: Explainable artificial 
intelligence Keywords 

 
Group B: Machine learning-related 

keywords 
 

Group C: Medical-related 
keywords 

 
Query 

XAI or Explainable Artificial 
Intelligence 

 
 

AI or Artificial intelligence or 
Deep learning 

 
Healthcare 

 
 

(Group A) AND (GROUP B) 
AND (GROUP C) 

Table 2. Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 
Year of publication: Studies must 

be published after 2020 
 

XAI studies in healthcare: Must be 
related to a particular field in 

healthcare. 
 

XAI algorithms used with clinical 
data 

Duplicate publications 
 

Preprint articles / Author’s 
original manuscript 

 
Survey and review papers 

 
Figure 1. PRISMA Flow Diagram of Literature Search and Selection 
Process showing the number of studies identified, screened, extracted, 
and included in the review 
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2.2. Screening and Eligibility  
In this stage, we screened papers based on our specific 

inclusion and exclusion criteria. Initially, we eliminated 
survey papers, review papers, and preprints after assessing 
their abstracts and conclusions, as they did not align with 
the focus of our research, which centered on the utilization 
of Explainable Artificial Intelligence (XAI) within a 
particular domain of healthcare. We systematically 
identified, screened, and extracted relevant information 
from all retrieved studies, adhering to the guidelines 
outlined in the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [13]. 

2.3. Data Extraction and Analysis  
Here, data from 50 papers was extracted and organized 

into a Google spreadsheet. Each paper was assigned a 

unique numeric identifier, and the 10 members of the 
research team were each allocated 10 papers. 
Consequently, there was overlap, with at least one paper 
being shared by two people. The extracted information 
underwent comparison, collation, and cross-checking by 
the lead researcher to ensure credibility.  

Following data cleaning, which involved removing 
whitespaces and ensuring consistency among values, the 
dataset was preprocessed and analyzed using the Pandas 
library. Plots were generated using Matplotlib and Seaborn. 
The table below provides descriptions of the columns. 
Notably, for publishers, journals such as Nature, Scientific 
Reports, Springer, and other related journals were grouped 
under 'Springer Nature.' Also, review [14], survey [15], and 
preprint papers [16] authored by the original researchers 
and published in journals such as arXiv [17,18] and 
MedRxiv [19] were excluded from the analysis. 

 
Figure 2. Publishers vs No. of publications before screening 

 
Figure 3. Publishers vs No. of publications after screening
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2.4. Threats to Validity 

�  Search String: The query that was originally made 
included the words "XAI," "explainable," and 
"healthcare." From our limited search query, this 
might have caused us to miss some valuable articles 
related to our domain of study 

�  Selection of databases: We only made use of 
Google Scholar and PubMed since our domain is 
medical and healthcare, and we ignored other 
databases for the sake of credibility and quality. 

�  Time frame: We have only considered studies from 
2020. There may have been some studies before 
that time that could be of beneficial contribution to 
our domain of study. 

3. Results and Discussions 

3.1. RQ 1 - What Are the Current Challenges 
and Problems in Xai For Healthcare? 

The papers present a comprehensive overview of 
challenges in implementing explainable AI (XAI) within 
healthcare. Some of the challenges revolve around the 
integration of AI into clinical workflows and the need for 
validation and trust-building. This includes the absence of 
real-world performance data, limited involvement of 
medical experts in algorithm design, and the necessity for 
rigorous internal and external validation to increase user 
trust and confidence in AI-driven decisions [6,11,20,21] 
[22,23,24,25]. Moreover, technical hurdles such as the 
vast number of explanation methods and the need for 
tailored solutions for each application further complicate 
the implementation of XAI in healthcare [26,27]. These 
challenges underscore the importance of addressing issues 
related to model interpretability, data quality, and trust-
building mechanisms to facilitate the effective deployment 
of AI in clinical practice.  

Additionally, issues related to data quality and how 
well the data reflects the real world pose significant 

hurdles. For instance, imbalanced datasets in classification 
tasks and overrepresentation of certain samples, such as 
tumor samples in training datasets, limit the 
generalizability of AI models and their applicability in 
real-world clinical settings [7] [28,29]. 

3.2. RQ 2 - How Effective Has Explainable AI 
Been in Healthcare? 

Multiple studies underscore the significance of XAI in 
enhancing clinical decision-making processes by 
providing insights into AI model predictions and 
facilitating better understanding among medical 
professionals. For instance, one study showcases the 
potential of XAI techniques such as SHAP and LIME in 
aiding clinicians to interpret machine learning models for 
diagnosing diseases like Alzheimer's and retinoblastoma, 
thereby improving trust and confidence in AI-driven 
healthcare systems [9,11] [30,31,32,33]. 

Furthermore, XAI methods have been instrumental in 
elucidating the decision-making process of complex deep-
learning models, particularly in medical image analysis for 
diseases like pulmonary ailments and stroke detection 
[3,34,35,36,37] [38,39,40,41] [42,43,44,45]. These 
techniques not only increase transparency but also help in 
identifying the crucial factors influencing model 
predictions, thereby facilitating more accurate diagnoses 
and personalized treatment plans [12,15,25] [46,47,48,49].  

The collective findings underscore the immense 
potential of XAI in revolutionizing healthcare by 
improving the interpretability of AI models, enhancing 
trust among healthcare practitioners, and ultimately 
facilitating better clinical decision-making processes [23] 
[50,51]. As the field continues to evolve, further research 
and development in XAI are expected to drive innovations 
that will significantly impact healthcare delivery and 
patient outcomes. 

3.3. RQ 3 - What Are the Explainable AI 
Methods that Have Been Used?

 
Figure 4. Total number of XAI algorithms used by publications 
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From the plot above, we can infer that the most popular 
XAI algorithms being used are SHAP, LIME, and GRAD-
CAM. These may be used alone, as demonstrated in 
[3,17,27] [52,53,54,55,56,57], or in combination, as 
shown in [9,11] [58,59,60,61,62]. By combining both 
methods, researchers can leverage the strengths of each 
approach to gain a more comprehensive understanding of 
model behavior. In [11] LIME produced segmentations of 
the images and highlighted the important regions for 
classification. On the other hand, SHAP provided a more 
accurate explanation of the model’s predictions by 
assigning feature importance scores to individual pixels in 
the image. We observed that SHAP was more effective in 
identifying important regions of the image, with pink 
areas highlighting the areas correctly identified as 
significant in retinoblastoma images and blue areas 
indicating the lack of significant features in normal images. 

4. Conclusion 

The integration of Artificial Intelligence (AI) in 
healthcare has witnessed substantial advancements, 
offering a myriad of applications ranging from precision 
medicine to patient engagement tools. However, the 
opacity of AI decision-making processes poses challenges 
in fostering trust and understanding among healthcare 
professionals. Explainable Artificial Intelligence (XAI) 
emerges as a pivotal solution, that aims to shed light upon 
AI model predictions and enhance interpretability. This 
systematic literature review delves into the efficacy and 
applications of XAI within the healthcare domain, 
addressing key research questions concerning challenges, 
effectiveness, and utilized algorithms. Technical hurdles, 
such as the numerous XAI explanation methods and data 
quality issues, further underscore the complexity of 
implementing XAI in healthcare settings. XAI methods 
such as SHAP, LIME, and GRAD-CAM have 
demonstrated significant promise in clarifying model 
predictions, aiding in disease diagnosis, treatment 
planning, and medical image analysis.  The collective 
findings underscore the immense potential of XAI in 
revolutionizing healthcare delivery and decision-making 
processes. As the field continues to evolve, further 
research and development in XAI are imperative to 
address challenges and leverage its full potential in 
enhancing healthcare practices. 
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