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Abstract  Hooke’s Law Formula is given as = −F kx  , where F denotes the force applied, 𝑥𝑥 is the displacement 
extension and k is the spring constant or force constant. In classical linear elasticity, with the stress tensor σ and the 
strain tensor ε, the generalized Hooke's law is written: =ij ijkl klσ C ε , where the tensor of fourth order ( )= ijklC C  is 
called tensor of elasticity. It is a tensor generalization of the stiffness constant k of a spring. The invariants of the 
elasticity tensors represent mechanical characteristics of the anisotropic materials (such as elasticity, ductility, 
resistance to deformations), help to classify materials following their symmetries, which generalize the concept of 
“stiffness of a spring”. In this paper, we perform the calculation of invariants for the anisotropic elasticity tensor 
under the rotation action of SO(3) groups. The tools developed by G. de Saxé et al. [1] to determine the independent 
invariants in 2D, essentially consisting of changing reference base and Kelvin’s decomposition of the elasticity 
tensor, are borrowed for the 3D case. In total, eighteen independent invariants also called global invariant emerge 
including 5 for the first order and thirteen for higher order. At the end, we give the physical signification of these 
invariants for isotropic materials. 
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1. Introduction 

The elasticity tensor is a fourth-rank tensor describing 
the stress-strain relation in a linear elastic body (Cowin [2] 
and Hehl [3]). For the constitutive law in linear elasticity 
for a homogeneous anisotropic body, the generalized 
Hooke’s law postulates a linear relation between the 
second-rank tensor field stress ijσ  and the second-rank 

tensor strain klε : 

 
=ij ijkl klσ C ε

 (1) 
The components of C generally acquire different values 

under a change of basis. Nevertheless, for certain types of 
transformations, there are specific combinations of 
components, called invariants, that remain unchanged. 
Invariants are defined concerning a given set of 
transformations formally known as a group operation. For 
example, an invariant for the group of proper orthogonal 
transformations called SO(3), is a quantity that remains 
constant under arbitrary 3D rotations. 

In mechanics, the search for the invariants is essential. 
It is used for materials geometry reconstitution and for 
mechanical properties determination. Some authors (Olive 

et al. [4], Ahmad [5], Norris [6], Thomson et al. [7], Ting 
[8], Thomson [9], Boehler [10]) developed methods for 
determining elasticity tensor invariants in 3D, but not 
explicitly the independent invariants allowing the 
measurement of symmetry defects.  

Thanks to Forte et al. [11], it’s known that there are 
eight classes of three-dimensional symmetries (with 
eighteen corresponding invariants according to de Saxé). 
Currently, a finite base of invariants allowing 
identification of the class of materials in 2D is known 
thanks to the works of G. de Saxé [1], Auffray et al. [12] 
and Atchonouglo et al. [13].  

Concerning the 3D case, G. de Saxé predicted eighteen 
independent invariants that engineers should take into 
consideration when measuring symmetry defects in 
materials. Certainly, an integrity base of 299 invariants 
was proposed by Olive et al. [4] but it turned out that these 
were not minimal at the end of Olive’s work in 2017 [14]. 
It was corrected in 2019 by Olive et al. [15], who reported 
297 invariants instead of 299. All these invariants do not 
yet allow the measurement of symmetry defects in 
materials or the explicit classification of materials 
according to the eighteen symmetry classes. They [14,15] 
also talk about global invariants which would be eighteen 
hesitating about their existence. 

Curiously, until now no one has been interested in these 
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eighteen invariants in the literature. 
In this paper, we will try to prove their existence and 

see their application in measuring symmetry defects in the 
case of isotropic materials. We use tools developed by G. 
de Saxé et al. [1] consisting in Kelvin’s representation [7] 
and a decomposition of elasticity tensor in irreducible 
under the action of element of SO(3). 

First, in the subsections of section 3, we adapt the tools 
proposed by G. de Saxé et al. [1], in their works in two 
dimensions for the three-dimensional case with a rotation 
matrix around the z-axis. Second, Kelvin’s representation 
under the generalized form is used to parameterize the 
stress tensor. This allows us to define an action that acts 
on the elasticity tensor. This action was performed by 
Ting using an orthogonal matrix Q. Then, Ting 
decomposes the new elasticity tensor into six groups. For 
our approach, the orthogonal matrix Q is a rotational 
matrix R and the elasticity tensor due to Kelvin’s 
representation is decomposed into four groups. The five 
linear invariants determined by Ting and Ahmad, were 
obtained. For the second-order and third-order invariants, 
some of them are in the literature. 
In the last section, we discuss the measurement of 
symmetry defects of isotropic materials. 

2. Methodology 

The approach used to determine the invariants by acting 
an element of SO(3) on the elasticity tensor is described in 
this section. 

2.1. Hooke’s Law and Kelvin’s 
Representation 

The orbits of elasticity tensor space 2 2 3S S R  under the 
action of SO(3) on 3R  are described by E when for linear 
representation  

( )=C' ρ r C  

where  

( ) ( ) ( ){ }3 | 3 ,= ∈ ∃ ∈′ ′ =E C E r SO C ρ r C
 

In classical linear elasticity, Hooke’s law states that 
=σ Cε. This law can be represented by Voigt’s 

representation and Kelvin’s one. But Voigt’s notation is 
not relevant for an easy study of symmetries. We will then 
use Kelvin’s representation (Thomson et al. [7], Thomson 
[9]) where C expression is: 

1111 1122 1133 1123 1113 1112

1122 2222 2233 2223 2213 2212

1133 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312
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12

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
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C C C C C C

C

     

     

     

     

     

11 1222 1233 1223 1213 12122 2 2 2 2

 
 
 
 
 
 
 
 
 
 
 C C C C C     

 (2) 

 

using Kelvin’s representation and changing the notation of 
stress tensor σ to s we can have the following generalized 
form:  
 

( ) ( )1
3

2

1,2,3, ,

2 , 1, 2,3, , ,+ 
+ − + 

 

= = …


= = … <



ij ij

ijd d
i j

s σ for i d

s σ for i j d with i j

 (3) 
thus for d=3 we have: 

1 11 2 22 3 33 4 23

5 13 6 12

; ; ; ;

;

= = = =

= =

' ' ' ' ' ' ' '

' ' ' '

s σ s σ s σ s σ

s σ s σ
 

2.2. Parameterization of the Stress Tensor 
We apply a rotation of angle θ on the stress tensor 

along the Z axis in dimension three. According to 
Monteghetti [16] and Euler [17], the rotation matrix θr  is: 

 

0
0

0 0 1

 
 = − 
 
 

θ

cosθ sinθ
r sinθ cosθ  (4) 

let’s write = t
θ θσ' r σr , we can write = ′σ' R σ  with: 

 
2 2

2 2

2 2

cos sin 0 0 0 2

sin cos 0 0 0 2
0 0 1 0 0 0
0 0 0 0
0 0 0 0

0 0 0 cos sin

 
 
 −
 
 =  −
 
 


′

 − − 

θ θ sinθcosθ

θ θ sinθcosθ

R
cosθ sinθ
sinθ cosθ

sinθcosθ sinθcosθ θ θ

 

  (5) 

Considering the relation (2) in the same way, we have:  

1 11 2 22 3 33 4 23

5 13 6 12

; ; ; ;

;

= = = =

= =

' ' ' ' ' ' ' '

' ' ' '

s σ s σ s σ s σ

s σ s σ
 

The elements of S’ are then given by: 
 

( ) ( )

2 2
1 11 1 6 2

2 2
2 22 1 6 2

3 33 3

4 23 4 5
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6 12
2 2

6 4 5 6
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sin 2 cos
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
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' '

' '
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'

s σ s θ s cosθsinθ s θ

s σ s θ s cosθsinθ s θ

s σ s

s σ s cosθ s sinθ

s σ s sinθ s cosθ

s σ

s s s cosθsinθ s θ θ

 (6) 

as a function of θ . Wich leads to (7) where elements of 
s’ are a function of θ  and 2 θ : 
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( )
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1

' 61 2 1 2
2
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3 3
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5 4 5

'
6 1 2 6

ss s s s
s cos 2θ sin 2θ

2 2 2
ss s s s

s cos 2θ sin 2θ
2 2 2

s s

s s cosθ s sinθ

s s sinθ s cosθ
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2
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It is then suggested to use the following parameters in 
the old and new orthogonal frame:  

 

1 2 1 2

1 2 1 2

;
2 2

;
2 2

+ − = =



+ − = = ′


' ' ' '

s s s sp k

s s s sp k'
 (8) 

We make some permutations and pass to s(s1, s2,  s3,  s5,  

s6) into ( )6 4 5 3, , , , ,*s p k s s s s , a new base formed by 

( )1 2 6 4 5 3, , , , ,e e e e e e . 

 =*s Ps  (9) 

In this new base, the elements of s’ are given by  
=*' *s Rs  with R: 

1 0 0 0 0 0
0 cos 2 sin 2 0 0 0
0 sin 2 cos 2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 1

 
 
 
 −

=  
− 

 
  
 

θ θ
θ θ

R
cosθ sinθ
sinθ cosθ

(10) 

Along the e1 axis we have one invariant (p), (s3) along 
e6 axis, (q1)2 formed by e2 and e3 and (q2)2 formed by e4 
and e5. The first two represent straight lines and the last 
two describe Mohr circles with radius q1 and (1/ 2√ )q2 
respectively.  

We also verify that R is a rotation matrix: det(R) = 1 
and Rt = R.  

It is this rotation matrix R that we will use in the 
following lines. 

2.3. Permutations and Decomposition of the 
Elasticity Tensor 

By analogy to Kelvin’s representation, we set 
=IJ ijklC C . Considering the permutations performed in (7) 

we rewrite C according to Hooke’s law:   

=s Ce  

With s the stress tensor, C the elasticity and e for strain 
tensor. From the equation (8) we deduced  

 
1−=*C P CP  (11) 

where:   

1

1 1 0 0 0 0
2 2

1 1 0 0 0 0
2 2

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−

 
 
 

− 
 
 = =
 
 
 
 
 
 

P P
  

We get the new elasticity tensor that we note C*. Let 
now Č = C* with = *

ij ijČ C . It will be the simplified form 
of the elasticity tensor that we are going to use in the 
remaining part of the paper. At the end, the coefficients 
will be replaced by their respective expression. 

2.4. Action of R on Č 
The action of R on Č gives: 

 = tČ R ČR  (12) 

let’s write R in the reduced following form: 

2 3

3

0
0

 
=  
 

θ

θ

R
R

r  

2 3

3

0

0

 
 =
 
 

t
θt

t
θ

R
R

r  

1 2

2 3

 
=   
 

t

C C
Č

C C  
This reduced form helps us to simplify the calculation, 

and we get: 

 
2 1 2 2 1

2 2 2 3
Č

 
 =
 
 

′
t t
θ θ θ θ

t t t
θ θ θ θ

R C R R C r

r C R r C r
 (13) 

Let’s denote 1 2 1 2=' t
θ θC R C R , 2 2 2 2=' t t

θ θC r C R  , 

2 2 1='t t
θ θC R C r  and  3 3=' t

θ θC r C r . We can rewrite  

 
1 2

2 3

 
 =
 


′


' 't

' '

C C
Č

C C
 (14) 

We see that ′Č  is divided into three groups associated 

with 1
'C , 2

'C  and 3
'C  the transformation of each group is 

uncoupled from the others.  
One can see that, the tensor C is divided into six groups 

by Ting [8]. By doing this, he found that the invariants of 
some groups contain components from different groups of 
Ck, k = 1, 2, 3, ..., 6. Let’s remark that, other authors 
(Lekhnttskii [18], Hearmon [19], Tsai [20]) have used the 
same decomposition as Ting but the transformations were 
written out explicitly, not in the matrix form. 

3. References Results and Discussions: 
Invariants Determination 
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In the following subsections we are going to determine 
the invariants of each transformation separately. We have 
for each component of ′Č  six independent invariants. 

3.1. The invariants of 1
'C  

The transformation of (13) gives us 1 2 1 2=' t
θ θC R C R , 

which can be seen as a miniature of the transformation of 
the 6x6 matrix Č' . Then we evaluated the invariants of Č 
compared to their same quantity in C.  

let’s write: 

 11 1
1

1 1

 
=   
 

'
t

Č q
C

q a
 (15) 

11Č  is scalar, 1q  is vector and 1a , a 2x2 matrix. 
The calculations give the following invariants: 

- The coefficient (I1) 

11Č  

- The length square (I6) 
2 2 2
1 12 13Č Č= +q  

- The trace of a1 the reduced matrix issue to 1
'C  (I2) 

( )1 22 33Č Č= +tr a  

- The determinant of a1 (I11) 

( ) 2
1 22 33 23det Č Č Č= −a  

- The sum of two length squares 𝐿𝐿1
2  issue to a1 (I10) 

2 2 2 2
1 22 33 23Č Č 2Č= + +L  

- The determinant of 1
'C  (I12) 

( )' 2 2 2
1 11 22 33 12 13 23 11 23 22 13 33 12det Č Č Č 2Č Č Č Č Č Č Č Č Č= + − − −C

 

3.2. The Invariants of 3
'C  

The transformation of (13) gives us 3 3=' t
θ θC r C r . In the 

same way, we evaluated the invariants of Č compared to 
their same quantity in C.  

let’s write: 

 3 3
3

3 66

 
=   
 

'
t

a q
C

q Č
 (16) 

66Č  is scalar, 3q  is a vector and 3a  is a 2x2 matrix. 
The calculations give the following invariants: 

- The coefficient (I3) 

66Č  

- The length square (I7) 
2 2 2
3 46 56Č Č= +q  

- The trace of a3 the reduced matrix issue to 3
'C  (I4) 

( )3 44 55Č Č= +tr a  

- The determinant of a3 (I14) 

( ) 2
3 44 55 45det Č Č Č= −a  

- The sum of two length squares 2
3L  issue to a3 (I13) 

2 2 2 2
3 44 55 45Č Č 2Č= + +L  

- The determinant of 3
'C  (I15) 

( )'
3 44 55 66 46 56 45

2 2 2
44 56 55 46 66 45

det Č Č Č 2Č Č Č

Č Č Č Č Č Č

= +

− − −

C
 

3.3. The Invariants of 2
'C  

Similarly, 2 2 2 2='t t t
θ θC r C R . 

let’s write: 

 

( )

( )

1
22

2 2
16 2

 
 =
 
 

' q a
C

Č q
 (17) 

16Č  is a scalar, ( )
3

iq  are vectors and 2a , a 2x2 matrix. 
The calculation gives the following invariants: 

- The coefficient (I5) 

16Č  

- The length square (I8) 

( )( )21 2 2
14 152 = +q Č Č  

- The length square (I9) 

( )( )22 2 2
26 362 = +q Č Č  

- The determinant of a2 (I17) 

( )2 24 35 25 34det Č Č Č Č= −a  

- The sum of two length squares 2
2L  issue to a2 (I16) 

2 2 2 2 2
3 24 25 34 35Č Č Č Č= + + +L  

- The determinant of 2
'C  (I18) 

( ) ( )
( )
( )

'
2 14 25 36 26 35

15 26 34 24 36

16 24 35 25 34

det Č Č Č Č Č

Č Č Č Č Č

Č Č Č Č Č

= −

+ −

+ −

C

 

A total of eighteen invariants are found. 

3.4. Summary of Invariants 
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Using relation (11), we replace the coefficients of ijČ  
by their expressions, giving us the following invariants: 

( )1 11 12 22
1 2
2

= + +I C C C  

( )2 11 12 22 66
1 2
2

= − + +I C C C C  

3 33=I C  

4 44 55= +I C C  

( )5 13 23
1
2

= +I C C  

1 22=I Φ , 3 1=I Φ , 4 4=I Φ , 5 32 =I Φ , where 1Φ , 

3Φ , 4Φ  are the invariants of Ting.  

( ) ( )22
6 11 22 16 26

1 1
4 2

= − + +I C C C C  

2 2
7 34 35= +I C C  

( ) ( )22
8 14 24 15 25

1
2
 = + + +  

I C C C C  

7 1=I ψ  and 8 62 =I ψ , where 1ψ  and 6ψ  are once 
more Ting invariants. 

( )2 2
9 13 23 36

1
2

= − +I C C C  

( ) ( )22 2
10 11 12 22 66 16 26

1 2
4

= − + + + −I C C C C C C  

( ) ( )211 11 12 22 66 16 26
1 2
2
 = − + − −  

I C C C C C C  

( )2 2 2
12 11 22 12 66 12 16 26 11 26 22 164= − + − −I C C C C C C C C C C C

2 2 2
13 44 55 452= + +I C C C  

2
14 44 55 45= −I C C C  

13 3=I ψ  and 14 3= 'I ψ , 3ψ  and 3
'ψ  being the invariants 

of Ting.  
2 2 2

15 33 44 55 34 35 45 44 35 55 34 33 45I C C C 2C C C C C C C C C= + − − −

( ) ( )22 2 2
16 14 24 15 25 46 56

1 1I C C C C C C
2 2

= − + − + +  

( ) ( )17 56 14 24 46 15 25
1I C C C C C C
2
 = − − −   

( )
( )
( )

18 36 15 24 14 25

56 14 23 13 24

46 13 25 15 23

I C C C C C

C C C C C

C C C C C

= −

+ −

+ −

 

This is a proof that these eighteen invariants exist. Note 
that we can combine these invariants to get joins 
invariants. 

In the following lines we will see their forms for 

isotropic materials like fiber composite materials that we 
can assimilate as isotropic. 

4. Physical Signification: Isotropic Case 

Materials are isotropic when in the elasticity tensor 
(Zuber [21] and Dieulesaint et al. [22]) 11 22 33= =C C C ,  

12 13 23= =C C C  and 44 55 66= =C C C . The remaining 
coefficients 0=ijC .  

We can see that ( )1 4
1
2

−I I  and 4I  correspond to 

Lame coefficients respectively λ and μ. These two 
coefficients are sufficient to classify isotropic materials.  

This proves that these eighteen invariants can be used 
for the classification of materials while waiting to make 
the 297 base useful. 

5. Conclusion 

In this work, we defined a rotation of SO(3) thanks to 
which we found eighteen  independent invariants that we 
also called global invariants in a cartesian reference frame 
proving their existence. The invariants of the first order 
and some (quadratic) of the second degree have also been 
found by other authors such as Ahmad [5], Norris [6] and 
Ting [8]. Since these invariants (function of coefficients of 
Č) are identical around the three axis for Cartesian base, it 
gives an advantage in the measurement of the elasticity 
tensor or in the mechanical characterization of materials.   

 About the question of knowing the type of materials 
that characterize each invariant, we treat the isotropic case 
which proves that these invariants can be useful for 
materials classification. It will be interested to give a 
mechanical interpretation and completed classification 
according to the invariants we have found. 
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