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Abstract  It is demonstrated by means of a thought experiment that the special theory of relativity (STR) leads to 
contradiction when applied to a spacetime with more than one spatial dimension. The underlying cause of 
inconsistency proves to be the symmetry of relativistic effects, in particular the symmetry of Lorentz contraction due 
to the relativity of simultaneity. In this context, the preferred frame theory (PFT) is proposed and discussed. PFT 
bases on the assumptions different from the two postulates of STR (principle of relativity and constancy of the 
velocity of light), relating instead to the ideas originated and developed mainly by FitzGerald, Lorentz, Larmor, 
Voigt and Poincaré, before the advent of Einstein’s theory. However, contrary to the belief shared by the mentioned 
scholars, these ideas do not comply with the Lorentz transformation, but with the more than half a century later 
Tangherlini transformation, connecting time dilation and length contraction with the inconstant speed of light and 
the absolute simultaneity. Despite the fundamental differences, PFT and STR prove to be largely equivalent with 
each other as to the observational predictions; a significant albeit hardly detectable (on Earth) exception concerns 
energy. Unlike in the case of STR, in PFT the magnitude of the ratio between particular energies remains constant in 
all inertial frames (although specific values of energy vary from frame to frame), being thus an invariant of the 
Tangherlini transformation. This property makes PFT a Lorentz violating theory in a clearly defined way restricted 
to energy, which opens new perspectives in searching for an effective theory of quantum gravity. 
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1. Introduction 

It is no exaggeration to say that the special theory of 
relativity (STR), formulated by Albert Einstein in his two 
papers from 1905 [1,2] and complemented three years 
later by Hermann Minkowski with the geometrical model 
of spacetime [3] has largely determined the picture of 
modern physics. The core of relativistic dynamics, which 
is the increase of mass/energy due to velocity, provides 
the fundamental operating principle for all the most 
powerful experimental devices, such as LHC (CERN), 
RHIC (Brookhaven National Laboratory), Tevatron 
(Fermilab) or SLAC Linear Collider (Stanford). The 
limitations of Newtonian mechanics couldn’t be more 
evident. STR has successfully passed a great number of 
experimental tests, to mention the classical ones: 
Michelson-Morley, Kennedy-Thorndike, Trouton-Noble, 
Ives-Stilwell, Hafele-Keating, or the observed on the 
Earth surface excess of muons of the cosmic origin over 
the expectations not taking the time dilation into account.  

They all, along with many others, form an imposing 
experimental basis of special relativity [4]. On the purely 
theoretical grounds, STR serves as benchmark for other 
(both classical and quantum) theories in which space and 
time play essential role. The Lorentz symmetry 
implemented by STR makes one of two pillars (the second 
is defining gravitation in geometric terms, as the 
spacetime curvature) that underpin the general theory of 
relativity (GTR). The theoretical models such as the Dirac 
equation, relativistic quantum mechanics (RQM), 
quantum electrodynamics (QED) and the Standard Model 
of particle physics meet the criterion of Lorentz symmetry 
(Lorentz invariance) and the related concept of Lorentz 
covariance – the formal property of the spacetime 
manifold, roughly defined as the ability of physical 
quantities to keep their form unchanged under the Lorentz 
transformation. The same requirement, i.e., compliance 
with STR, with a slight but significant exception 
(mentioned later in this section) applies to the future 
theories or the ones currently under construction. The 
Lorentz symmetry is considered to be a fundamental 
“feature of nature” [5]. Viewed as mathematical construct, 
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Lorentz symmetry is defined as the Lorentz group of 
transformations (a subgroup of Poincaré group) or, in 
terms of analytic geometry, as the symmetries of 
Minkowski space. The Lorentz symmetry manifests itself 
within STR by different yet closely related to each other 
properties, jointly creating the special principle of 
relativity – the first postulate of STR. It states that all 
fundamental laws of physics are the same and can be 
stated in their simplest form in all inertial frames of 
reference. The Lorentz symmetry and the special principle 
of relativity are therefore like two sides of the same coin; 
the principle formulates certain demand, and the Lorentz 
symmetry shows how this demand comes into effect.  

According to the second postulate of STR, the velocity 
of light in vacuum is constant, regardless of the motion of 
the light source. The modern formulation of this postulate 
usually contains the phrase: “for all inertial observers” or 
any equivalent one – in fact postulating invariance of c . 
Expressed this way, it does not consider the constancy of 
the velocity of light in isolation from the first postulate, 
treating instead this particular property as one of the 
fundamental laws mentioned therein. Thus, the so-
formulated second postulate contains in itself the first 
postulate. This is logically awkward, although fully 
intentional. The purpose behind it is to cover up the traces 
of the Lorentz’s theory of ether, which however goes 
against Einstein’s original intention. To prove the last 
statement, let us quote the Einstein’s original formulation: 
“Any ray of light moves in the stationary system of co-
ordinates with the determined velocity c , whether the ray 
be emitted by a stationary or by a moving body” [1]. Let 
us also quote the more extensive (and more unequivocal in 
this regard) Einstein’s formulation, included in his reply to 
the comment by M. Abraham concerning Einstein’s theory 
of gravitation (then still in progress): “There exists a 
reference system K  in which every light ray propagates 
in vacuum with the universal velocity c , regardless of 
whether the light-emitting body is in motion or at rest 
relative to K  [6]”. 

It is quite clear that the second postulate of STR in both 
above formulations is independent from the first postulate. 
As Einstein explicitly stated [6]: “…the theory of 
relativity rests on two principles that are totally 
independent of one another”. Later on, in the same paper, 
while justifying the necessity of introducing the second 
postulate, Einstein wrote: “…it is impossible to base a 
theory of the transformation laws of space and time on the 
principle of relativity alone. As we know, this is 
connected with the relativity of the concepts of 
simultaneity and the shape of moving bodies. To fill this 
gap, I introduced the principle of the constancy of the 
velocity of light, which I borrowed from the H.A. 
Lorentz’s theory of the stationary luminiferous ether, and 
which, like the principle of relativity, contains a physical 
assumption that seemed to be justified only by the relevant 
experiments (experiments by Fizeau, Rowland etc.)”. 

From the two postulates of STR, the other symmetries 
follow: the formal symmetry of Lorentz transformation 
(we will consequently use this singular form to denote the 
respective set of equations), the symmetry of relativistic 
effects: length contraction, time dilation, and the resultant 
mass/energy increase – expected to manifest in the same 
way in every inertial frame of reference, the invariance of 

spacetime interval in the four-dimensional Minkowski 
space, and finally the relativity of simultaneity. The latter 
is particularly important for the whole rest; although it is 
not a postulate in the strict sense but rather a consequence 
of the mention two postulates of STR, it is however not by 
chance that Einstein devoted the first chapter of his 
seminal paper on STR [1] to the analysis of this extremely 
counter-intuitive concept. This is because, without the 
relative simultaneity, the whole rest would fall into pieces. 
Insofar as the two postulates of STR are the theory 
cornerstones (to use again architectural metaphor) the 
relativity of simultaneity acts as a keystone validating 
other STR symmetries, in particular the mutuality of 
relativistic effects and the invariance of c . We will 
develop this issue in the further parts of the paper. 

The Lorentz symmetry, interpreted as the Lorentz 
covariance applied to the infinitesimally local curved 
spacetime of general relativity, is involved in the main 
unsolved problem in theoretical physics, namely the still 
lacking effective theory of quantum gravity. If 
considered as a strict and universal demand, the Lorentz 
symmetry seems to be the main obstacle in connecting 
GTR and QM into one whole. Being aware of that, 
physicists look for the violations of Lorentz symmetry, 
called in short Lorentz violations [7]. Some leading 
candidate theories for quantum gravity such as string 
theory and loop quantum gravity predict spontaneous 
violation of the Lorentz symmetry at Planck scale, due to 
hypothetical polarization of various fields originated at 
Planck era. An “aggregate” theory called Standard 
Model Extension provides theoretical framework for the 
respective experiments [8,9,10]. However, beyond this 
extremely narrow sector, STR is still widely considered 
to be experimentally correct and formally coherent. In 
particular, the Minkowski’s geometrical model strongly 
suggests that special relativity is self-consistent in the 
way specific to the purely mathematical constructs such 
as Euclidean geometry. 

Despite its apparent novelty, and regardless of what 
Einstein knew or admitted he knew (no references in [1]!), 
STR is strongly rooted in the earlier research, most 
directly in the pre-relativistic works by FitzGerald [11], 
Lorentz [12], Larmor [13], Cohn [14] and Poincaré  
[15,16] – the last one often mentioned as the co-author of 
STR. Most elements constituting special relativity were 
“ready and waiting” before the advent of STR: special 
principle of relativity (Poincaré), Lorentz transformation 
(Heaviside, FitzGerald, Lorentz, Larmor, Voigt, Poincaré), 
time dilation (Larmor, Cohn), length contraction 
(FitzGerald, Lorentz, Larmor), relativity of simultaneity 
(Poincaré). Even the authorship, or the priority, 
concerning the famous mass-energy equation derived by 
Einstein in his second paper on STR [2] is not as obvious 
as it is widely believed [17]. Einstein’s “advantage” in 
inventing and developing special relativity consisted in 
gathering all these elements in the framework of a new 
paradigm, and to dispose of hesitation where others still 
had doubts. From the today’s perspective, all the attempts 
aimed at explaining the “relativistic” effects in absolute 
terms have a historical significance only – in so far 
relevant as paving the way for special relativity. The 
common mainstream opinion is that any approach to STR 
based on “ethereal ontology”, even if conceptually sound 
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and formally correct, is nevertheless unnecessarily 
complicated, thereby not worth exploring. 

However, the attempts to reinterpret or remodel special 
relativity in the ethereal framework have not ceased also 
after the release of Einstein’s and Minkowski’s papers. 
From the very beginning of its existence, STR raised 
doubts, also to Lorentz and Poincaré who both went far 
towards this theory, but even though remained faithful to 
the concept of ether. Despite spectacular success, STR 
became a target of criticism, widely diverse both as to the 
scientific level and motives. Most of arguments have been 
either neglected or deflected (usually justifiably) by the 
proponents of Einstein’s theory – as based on logical 
errors typical for the common-sense approach motivated 
by the Newtonian point of view. Some experimental 
results questioning STR, in particular the improved M-M 
experiments performed by Dayton Miller (with Edward 
Morley and then alone), has been claimed to be obtained 
due to subtle technical errors related to the lack of modern 
algorithms of data processing [18]. In general, in the 
dispute on STR, lingering for decades up to the present 
day, the valuable arguments have been unfavorably treated 
on equal footing with the unsound or even totally 
unscientific allegations. There is no place and need here to 
go into details of this otherwise very extensive topic. Let 
us quote just a few papers/books inspiring the present 
work, or in some way related to it (also as noteworthy 
views not shared by the present author): Reichenbach’s 
idea of the conventionality of measurement regarding 
velocity of light [19], Tangherlini transformation [20] and 
the related papers by Selleri [21,22], Mansouri & Sexl 
analyses concerning experimental equivalence between 
the putative theory based on Tangherlini transformation 
and STR [23,24,25]; finally, the thought-provoking 
analyses developing the Lorentz’s research, performed by 
J.S. Bell, who is mainly known for the famous Bell’s 
inequality – a theoretical tool to test the EPR paradox. 
This paradox, primarily formulated by Einstein, Podolski 
and Rosen as a thought experiment, has been intended to 
question the weird predictions of quantum mechanics 
from the positions of special relativity. The relevance of 
the real experiments using the Bell’s inequality (in 
particular these performed by A. Aspect) consists in 
invalidating the Einstein’s arguments based on STR. It 
turned out that the “spooky action at a distance” – a saying 
coined by Einstein – really takes place in the quantum 
entanglement, which can be interpreted (but is mostly not) 
as an argument for the absolute simultaneity. Besides, Bell 
made two other important contributions to special 
relativity, closely related to the problem considered in this 
paper. He namely developed a thought experiment first 
outlined by Dewan and Beran [26], called after him the 
“Bell’s spaceship paradox”. He also used the Maxwell’s 
equations to reveal the tangible physical mechanisms of 
length contraction and time dilation at atomic level, which 
confirmed the pre-relativistic conjectures as to the real 
origin and nature of these effects [27]. The term “real” 
means here an opposition to the phrase “related to 
observer” – appropriate for STR. The present paper, in the 
part devoted to the theory alternative to STR, owes much 
to the research mention in this paragraph. 

The paper is composed as follows. Sections 2 and 3 
(complemented with Appendix A) contain presentation 

and discussion of a thought experiment invalidating STR 
as a physical theory applied to the space with more than 
one spatial dimension. Sections 4, 5 and 6 (complemented 
by Appendices B, C, D and E) contain an outline of a 
theory proposed to replace STR. It is called the preferred 
frame theory (PFT), which is a generic name used in the 
past to name different alternative to the STR theories. In 
this paper, however, it applies to a specific theory 
including some original author’s findings, in particular 
concerning the question of experimental equivalence 
between STR and PFT in the realm of kinematics, and the 
difference in respective predictions concerning energy.  

2. A thought Experiment Questioning 
STR: Preliminary Discussion   

Our goal in this part is to prove that special relativity 
fails as a theory applied to the spatially two-dimensional 
spacetime, that is to Minkowski space with total 
dimension n = 3 (2+1). We will use for that purpose a 
simple thought experiment, outlined in few lines, below. 
This brief description will provide us with a reference 
point for the preliminary discussion. 

Imagine a long straight rail stretched “vertically” in a 
free space, and a rod sliding upward alongside this rail. An 
inertial observer, due to the rank and name called Major 
Tom – a lonely pilot of a spaceship representing the MT 
reference frame – moves away from the rail in the 
“horizontal” direction, so that, in the MT frame, the 
straight “horizontal” trajectory of the rail and the straight 
“oblique” trajectory of the rod form together an acute 
angle. All relative speeds are assumed uniform and 
relativistic. We claim that Major Tom is unable to make a 
consistent report on his observations concerning rail and 
rod, while trying to base them on STR. This claim can be 
proved in a remarkably simple way using the concept of 
Lorentz contraction. However, making sure this simplicity 
is not just an undue simplification requires more detailed 
study, which makes the preliminary discussion pretty 
extensive. In order to avoid misconceptions due to the 
ambiguities in terminology, we will focus first on few 
concepts that may prove useful in discussion. 

2.1. Kinematical Criterion of Spatial 
Dimensionality 

Since we claim that STR fails in the second (and, by 
extension, third) spatial dimension, so we should start with 
specifying the concept of “spatial dimensionality”. One can 
distinguish between two possible meanings of this term. 
The first refers to the inertial frames themselves and to the 
objects representing these frames. An inertial frame can be 
assumed one, two or three-dimensional, and thus be 
represented by the Cartesian coordinate system provided 
with one, two or three axes, respectively. Likewise, the 
objects considered in a thought experiment may vary as to 
the assumed number of spatial dimensions, usually from 
zero (geometrical point) to three (“full-size” object). 
Beyond the capability of a direct perception, but still in a 
mathematically consistent way, we can also consider 
objects (in fact the whole spacetimes) with more than three 
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spatial dimensions (plus one temporal, so greater than 4D). 
The noted examples are the 5D Kaluza-Klein theory, 10D 
string/superstring theory and 11D M-theory. 

The second meaning refers to kinematics; it is about the 
number and configuration of inertial frames (or the objects 
representing these frames) being in relative motion to one 
another. A given case can be spatially one, two or three-
dimensional, regardless of the (equal for all) spatial 
dimensionality of particular frames or objects. For 
example, three particles interpreted (according to the first 
meaning) as zero-dimensional geometrical points moving 
relative to each other in different directions, would make 
the whole case spatially two-dimensional (second meaning) 
– same as the three-legged stool always fits the two-
dimensional floor. Unless is stated otherwise, or the 
otherwise is clear from the context, the terms “spatial 
dimensionality” and “spatially n-dimensional” will be 
used in this second meaning, that is as kinematically 
defined spatial dimensionality. 

Most of the thought experiments or the so-called 
paradoxes in STR use the images of two or three-
dimensional objects such as trains, rockets, barns, etc. 
This might suggest that these experiments apply to the real 
spatially three-dimensional world or, at least, to the two-
dimensional model of physical reality. For example, since 
the relativity of simultaneity provides, in combination 
with time dilation, a solution to the famous twin paradox, 
one might conclude that this solution is universally valid, 
regardless of the fact that respective explanation (by 
means of Minkowski diagram) employs a one spatial 
dimension only. In fact, most of the paradoxes in STR, 
including twin paradox, ladder paradox or the Bell’s 
spaceship paradox are spatially one-dimensional in the 
above-defined kinematical terms. This is due to the 
number of inertial frames (two) or, in case of greater 
number, due to their collinearity. In Euclidean geometry, 
collinearity (of the set of points) is defined as the property 
of lying on a single straight line. As a kinematical 
property describing the set of inertial frames, collinearity 
should be defined a bit different – as the property relating 
to the only one direction of relative motion, where “one 
direction” includes both opposite velocity vectors. 
According to that criterion, any two inertial frames, 
regardless of their own (equal for both) spatial 
dimensionality, are collinear, thus one-dimensional. In 
order to make the case spatially two-dimensional, one 
needs at least three inertial frames: K, K', K'' in the 
noncollinear configuration, which means that respective 
directions of the three relative motions: K – K', K – K'' 
and K' – K'' are coplanar but non-parallel to one another.   

2.2. Trajectory and Position of a Moving 
Object 

All motions considered in our thought experiment are, 
by assumption, constantly uniform and rectilinear, ergo 
inertial. Consequently, the concept of “trajectory” 
(meaning in general the line of motion of a basically free 
shape) becomes specified here as the straight trajectory.  
Defined this way, “trajectory” is closely related to another 
concept, namely direction of motion – in the sense that 
both assume rectilinearity. Trajectory/direction of motion 
is determined with respect to inertial frame of reference, 

defined as a physical system having the property of inertia 
(due to the Newton’s first law of motion), and provided 
with Cartesian coordinates. Accordingly, a trajectory 
determined in the observer’s frame can be classified as 
“horizontal” (parallel to x  -axis), “vertical” (parallel to y  
-axis) or “oblique” (parallel to any intermediate xy  
direction). For better clarity of the thought experiment in 
question, “oblique” will refer to a trajectory roughly close 
to the bisector of the right angle between x  and y  axes. 

Instead, by “position” we mean spatial orientation of 
the observed object relative to the trajectory. This 
complies with our main goal which is examining the 
position of a moving object in the context of Lorentz 
contraction. Since the objects considered in our thought 
experiment (rail and rod) are, by assumption, straight and 
one-dimensional, so position becomes specified as the 
direction they determine on the plane. When it is quite 
clear from the context, “position” may also mean direction 
with respect to the coordinate system or to the other object 
(e.g., position of the rod with respect to the rail). Besides, 
“position” refers to the events (as a position four-vector) 
and thus can also be used in that context. 

2.3. Lorentz Transformation: Relativity of 
Simultaneity and the Symmetry of 
Relativistic Effects 

For the sake of better insight into the issue under 
consideration, let us write the Lorentz transformation 
(Lorentz boost in 'xx  direction) in the most developed form: 
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In the reverse direction, we have: 
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As long as the dependence of space coordinates on the 
time coordinates is a self-explanatory property of any 
kinematic transformation (including Galilean and Lorentz 
transformations), an opposite relation, i.e., dependence of 
time coordinates on the space coordinates is a unique and 
exclusive property of the Lorentz transformation. This 
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formal dependence makes a mathematical base for the 
relativity of simultaneity. Specifically, each of the two 
mutually symmetrical equations for time can be 
formulated as a function: 

 ( )f X a bX= +  (2) 

where: ( ) ~f X t , 
1

2 2
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 and ~X x′ , with “ ~ ” meaning 

“corresponds to the term”. By analogy, we can write 
( )f X a bX= − , replacing mutually the primed and 

unprimed coordinates. In that interpretation, the space 
coordinates form the domain of function, the time 
coordinate on the right side of each equation is fixed for a 
selected moment (thus plays the role of a variable of the 
preset value), and the resultant time coordinates on the left 
side of each time equation form the codomain of function. 

All four nontrivial equations from Eqns. (1a) and (1b), 
i.e., the ones including the variables x  and 'x , contain 

the Lorentz factor 
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effects. However, if we look only at two equations for the 
space coordinates in isolation from other transformational 
equations (in particular, not knowing how the time 
equations look like), we could wrongly presume that they 
predict not a contraction but elongation of the transformed 
object. It is only the interrelation between the equations 
for space and for time that gives an ultimate result, i.e., 
Lorentz contraction and time dilation manifesting in the 
same way in each frame, thus making together a 
symmetrical whole. In particular, the term 2

vx
c

 – 

responsible for the relativity of simultaneity – plays the 
role of a “pivot” making the Lorentz symmetry possible. 
In other words, the symmetry of relativistic effects and the 
relativity of simultaneity mutually condition each other, 
while the underlying cause is the constant (invariant) 
speed of light. Having said that, let us remind once again 
that every case consisting of two inertial frames is 
spatially one-dimensional in kinematical terms. 
Consequently, every single Lorentz transformation is 
spatially one-dimensional. 

2.4. The length Defined in Terms of the 
Spacetime Interval  

Let us consider the Lorentz transformation (boost) 
between two inertial frames of reference: K ( , , ,t x y z ) and 
K' ( ', ', ', 't x y z ) being in standard configuration to each 
other (common origin of respective coordinate systems at 

' 0t t= = , collinearity of 'xx  axes, parallelism of 'yy  
and 'zz  axes). Any specific combination of the 
coordinates , , ,t x y z  forms the position four-vector 
applying to an event in spacetime, as determined in K. 

After being transformed to K', these coordinates form 
another position four-vector: ', ', ', 't x y z , referring to the 
same event, e.g., particle collision, or the astronaut’s sneeze 
while landing on Mars. This is just the way a single event is 
transformed from one inertial frame to another. 

Assume now that, instead of one, the two different 
events determined in K are transformed from K to K'. To 
be considered different, they have to be separated in space 
or in time, or both in space and in time. The defining 
property of the Lorentz transformation (and, consequently, 
of the Minkowski space) is the invariance of a “distance” 
in spacetime between any pair of events, called the 
spacetime interval – an analogue to the spatial distance in 
Euclidean space, based on the Pythagorean theorem. It is 
defined as the 4-vector of the length equal to the 
difference between two position four-vectors: 1 1 1 1, , ,t x y z  
and 2 2 2 2, , ,t x y z , where, e.g., 2 1x x x− = ∆ . When using 
the sign convention based on metric signature ( − + + + ), 
the squared spacetime interval reads:  

 ( )22 2 2 2s c t x y z∆ = − ∆ + ∆ + ∆ + ∆  (3) 

where ( )22s c τ∆ = ∆ , τ  – proper time (time measured by 
the clock comoving with an object). The invariance of the 
spacetime interval under the Lorentz boost means that any 
pair of events transformed from K to K' satisfies the 
equation:  
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− ∆ + ∆ + ∆ + ∆ =

− ∆ + ∆ + + ∆′ ′∆  (4) 
that is s s∆ = ∆ ′ . Assume the rod (at rest or in motion) in 
K, in a free position (parallel or diagonal) to xx′  direction 
of the relative motion between K and K'. The measured in 
K nonzero extent of the rod in x  direction (which 
coincides with the rod’s length, defined as the size 
measured along the rod, for the parallel position only) is 
equivalent to the spacetime interval between two events 
determined in K, containing two different space 
coordinates: 1x , 2x , corresponding to the rod’s endpoints, 
and only one time coordinate 0t  combined separately with 
these space coordinates. As a result, we have a certain 
spatial distance: 2 1 0x x x− = ∆ >  and the null time 
difference 0t∆ = , which reduces the spacetime interval in 
K to the purely spatial form: 

 2 2 2 2s x y z∆ = ∆ + ∆ + ∆  (5) 

In the special case when the rod is arranged in K in 
parallel to x  -axis, the other spatial dimensions also equal 
zero: 0y z∆ = ∆ = , so the spacetime interval additionally 
reduces to: 

 2 2s x∆ = ∆  (6) 
Expressed this way (i.e., by Eqns. 5 or 6), the x  

oriented “size” of the rod can be defined as the spacetime 
interval between two simultaneous events. This definition 
in fact applies to any theory and to any clear-cut object, in 
compliance with the concept of “length” defined as the 
distance between two extreme points measured in the 
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direction of motion at one moment. This means that the 
length of a diagonally positioned rod is measured not 
along the rod itself (which only applies to the parallel 
position corresponding to Eq. 6), but along x  direction, 
assuming motion in that direction. With regard to STR, 
the condition “at one moment” becomes nontrivial due to 
the relativity of simultaneity predicted by this theory. 
From the Lorentz transformation it follows that two events 
simultaneous in one frame are usually not simultaneous in 
the other frame. In the spatially one-dimensional cases 
with the events differing by x  coordinates, the phrase 
“are usually not simultaneous” turns into “are never 
simultaneous”. In particular, the two simultaneous events 
in K: 1 0x t  and 2 0x t , determining the rod’s length in K, 
are no longer simultaneous as transformed to K' – 
differing not only by space coordinates, but also by time 

coordinates, namely: ' 11 0 2
 = − 
 

vxt t
c

γ  and 

' 22 0 2
 = − 
 

vxt t
c

γ
.
 Therefore, these two events, being 

expressed by the coordinates of K', do not determine the 
rod’s length in K'. 

When using the sign convention ( − + + + ), every two 

spatially separated events fulfilling the condition 2 0s∆ >  
make the respective spacetime interval “spacelike”, i.e., 
connecting the causally disconnected events, situated 
outside the light cone on Minkowski diagram. For any 
such pair of events, there can be found a frame in which 
these events are simultaneous, hence respective spacelike 
interval can be identified with length. When an object 
fulfills the condition of simultaneity in given frame, we 
call it (in this paper) integral. The property of being 
integral is not dependent on whether given object is at rest 
with respect to observer; the only criterion is the 
simultaneity of all events constituting this object in the 
observer’s frame. The difference between “integral” and 
“simultaneous” is not due to the physical property itself, 
but due to different designata of this property; both terms 
mean that  0t∆ = , however “simultaneous” refers to the 
particular points (events) constituting given object, 
whereas “integral” describes this object as a whole. 

Understandably, the condition of simultaneity is not 
essential to determine the length of an object at rest in the 
frame in which the measurement is taken. This is due to 
the constant (in time) location of respective points, e.g., 
the rod’s endpoints. However, if the coordinates of these 
endpoints are to be transformed from the rod rest frame K 
to the observer’s frame K', then the condition of 
simultaneity in K must be respected. Otherwise, we 
couldn’t say it is the rod (and not just a set of free events) 
that is an object of transformation. The fact that the rod, 
being integral in K, is no longer integral as transformed 
(by the Lorentz boost) to K' is described here as a 
discrepancy between the Lorentz transformation and 
observation. Although it is clear that also the non-
simultaneous events can be observed (over a period of 
time) in given frame, it is just as much clear that such 
events do not form integral objects. As it turns out in the 
further analysis, the consequences of the said discrepancy 
are of crucial importance to the question of consistency of 
STR in two spatial dimensions. 

2.5. Conclusions Drawn from the Previous 
Consideration 

Terminological note 1: For the sake of brevity, we 
introduce the terms “source frame” and “target frame”, 
meaning respectively the frame from which and to which 
the transformation (Lorentz boost) is performed. 

Terminological note 2: In special relativity, the 
concepts of “Lorentz contraction” and “length contraction” 
mean exactly the same. However, we’ll treat them and use 
separately, to denote respective effects as alternatively 
defined according to STR and PFT. Leaving the details for 
later, let us agree for now that “Lorentz contraction”, as 
specifically connected with the Lorentz transformation, 
will be used exclusively in the context of STR, whereas 
“length contraction” will apply to PFT to denote an effect 
specifically connected with the Tangherlini transformation.  

With the aim to perform the right (compliant with STR) 
analysis of the thought experiment, let us summarize in an 
orderly manner the most important conclusions. They are 
namely: 

(1) The length (as well as any other spatial dimension) 
of the spatially extended object has to meet the condition 
of simultaneity, defined as identity of the time coordinates 
of all events constituting given object. The condition of 
simultaneity (making the observed object integral) is 
particularly essential when the measurement concerns an 
object in motion. In order to meet this condition, the 
Poincaré-Einstein synchronization has to be applied. 

(2) In the case of an object in motion, the concept of 
length strictly corresponds to the Lorentz contraction: the 
observed (coordinate) length is equal to the proper length 
measured in parallel to the relative velocity vector, 
divided by respective Lorentz factor. 

(3) The relativity of simultaneity does not amend (does 
not impact on) the way Lorentz contraction manifests 
itself in a particular observer’s frame – no matter if this 
effect is detected using the measurements based on the 
Poincaré-Einstein synchronization, is obtained from 
velocity using the Lorentz factor, or is indirectly deduced 
from the Lorentz boost (see point 7). The contracted 
object is by definition integral. The only notable impact of 
the relativity of simultaneity on the Lorentz contraction 
consists in making this effect mutual, ergo symmetrical 
within any pair of inertial frames, in compliance with the 
formal symmetry of Lorentz transformation. 

(4) Lorentz contraction always, i.e., regardless of the 
“proper” shape and position of the moving object, 
manifests itself in the same simple way, namely as the 
shortening along the direction of motion, depending on 
relative velocity according to the Lorentz factor. This 
“shortening” can be understood as follows. Imagine a flat 
figure of a free shape drawn on the Cartesian plane. Let 
the whole Cartesian plane be compressed along certain 
direction and to a certain degree (which is equivalent to 
viewing this plane at a definite acute angle). Of course, the 
drawn figure will become compressed together with the 
plane, i.e., in the same direction and to the same degree. 
That’s exactly how the Lorentz contraction works.  

(5) The above conclusion determines the prediction 
referring to a specific arrangement: the Lorentz 
contraction of a line segment (rod) whose position is 
diagonal to the trajectory delineated in the observer’s 
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frame, results in the increase of the (acute) angle between 
the rod and trajectory – so that position becomes “more 
transverse” compared to a position the rod would take if it 
stops in the observer’s frame (Figure 1). Quantitatively (in 
trigonometrical terms), this effect is developed in 
Appendix A. 

(6) The above rule is also working in the opposite 
direction: in the rod rest frame, the angle between the rod 
and the trajectory (of the moving observer) is smaller than 
respective angle in the observer’s frame. 

(7) An object of a nonzero length, being integral in the 
source frame (i.e., fulfilling the condition of simultaneity 
in this frame), is no longer integral as being transformed 
by the Lorentz boost to the target frame. This is because 
the events separated in space (differing by x  -coordinates) 
that are simultaneous in the source frame, are no longer 
simultaneous in the target frame. To put it jokingly, an 
exemplary rod AB boosted from the source frame to the 
target frame becomes defined in the latter in such a way 
that point A finds itself “in yesterday” while point B finds 
itself “in tomorrow”. Hence, the so-defined object cannot 
be identified with the rod observed (in any single moment) 
in the target frame. 

 
Figure 1. The rod diagonally positioned to the trajectory (green) changes 
its position (from green to red) due to the Lorentz contraction. The green 
line can be interpreted either as a position the rod would take if it stops in 
the observer’s frame (in which it is actually moving) or as a position 
viewed in the rod rest frame (in which the observer is moving). These 
two interpretations are equivalent by virtue of the principle of relativity  

Let us elaborate on the last point. Say, the rod at rest in 
the inertial frame K is transformed by the Lorentz boost to 
the inertial frame K'. Let this rod, regardless of being 
transformed to K', be also observed in K' by means of the 
measurements performed in this frame, based on the 
Poincaré-Einstein synchronization. As a result, we obtain 
in K' two different virtual objects: the first, non-integral – 
obtained from the Lorentz boost, and the second, integral 
– obtained from observation. This entails discrepancy 
between transformation and observation. Let us note that 
this discrepancy is, due to the relativity of simultaneity, 
specific to the Lorentz transformation only. 

It follows that the Lorentz boost alone does not tell us 
directly how the transformed object “looks like” being 
contracted in the target frame. To figure it out, it is not 
enough to transform respective events, e.g., simultaneous 
locations of the rod’s endpoints, from the source frame to 

the target frame. This is only half the job. In order to adjust 
the results of Lorentz boost to the results of observation, we 
must additionally infer the simultaneous positions of the 
rod’s endpoints in the target frame (at a basically free 
moment) – from the non-simultaneous positions obtained 
from the sole Lorentz boost. We can achieve that by doing 
simple calculations regarding velocity and time. In that 
roundabout (compared to the direct measurements) way, we 
are able to extract from the Lorentz boost of particular 
events an integral object (rod), shortened according to the 
usual rules of Lorentz contraction. 

The discrepancy between Lorentz transformation and 
observation is of crucial importance to the question of 
internal consistency of STR in the two (and hence three) 
spatial dimensions. Mainstream presentations usually tend 
to misconstrue this issue. When faced with this problem, a 
typical line of argument is the following: “In the case 
described by this thought experiment, the rod cannot be 
contracted in such a straightforward naive way! Defining 
the Lorentz contraction as the shortening along direction 
of motion in the observer’s frame is a rough simplification 
of the otherwise complex nature of this effect, hidden in 
the Lorentz transformation. This simplified interpretation 
surely cannot be applied to all kinematical cases, in 
particular to the complex cases like this one. One cannot 
just “compress” the rod along the line of its motion; the 
only reliable way in dealing with Lorentz contraction is to 
strictly follow the Lorentz transformation of particular 
events constituting given object. Accordingly, the space-
time coordinates of essential points, which in this case 
means the rod’s endpoints, have to be transformed one by 
one from the source frame (especially from the rest frame 
of the rod) to the target frame, the latter identified with the 
observer’s frame. Only such proceeding allows avoiding 
fallacies, and thus enables us to find the right way Lorentz 
contraction comes into effect in the observer’s frame.” 
Another claim, closely related to the previous one, reads: 
“The alleged contradiction is only due to incorrect 
understanding of special relativity; it is well-known that, 
besides the Lorentz contraction, one should also include 
the relativity of simultaneity!” As for the latter, it is just 
the opposite: one has to exclude (eliminate) the effects of 
relativity of simultaneity from the results of Lorentz boost, 
so as to make the object, being integral in the source frame, 
again integral in the target frame. Concluding, both above 
“guidelines”, although seemingly sound reasonable, are 
nevertheless totally wrong. 

3. Major Tom Observes the Rail and the 
Rod: A Thought Experiment 
Disproving STR in the Second  
Spatial Dimension 

The whole previous consideration, in particular the 
conclusions listed in s-sec. 2.5, provide us with adequate 
tools for analyzing the thought experiment and to answer 
the title question “Why and How?” Let us remind the 
relevant data: the experiment consists of three “elements” 
specified as rail, rod and Major Tom, representing three 
inertial frames in the noncollinear coplanar configuration. 
Let us start with the brief analyses of the observations 
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made in the rail and rod frames; then we’ll move on to the 
crucial observations performed by Major Tom. 

Both the rail and the rod are interpreted as the spatially 
one-dimensional objects. The proper length of the rod is 
interpreted as the unit length; accordingly, the rail is 
divided into the line segments of that unitary proper length. 
Instead, Major Tom is depicted as a point-like object. 
However, because all three objects represent three 
different inertial frames, the bold lines (for rail and rod) 
and the bold dot (for Major Tom) are complemented by 
thin lines – the x  and y  axes of the respective coordinate 
systems attached to these objects. Each coordinate system, 
apart from being a tool to measure spatial locations of the 
observed objects, is itself a “rigid” object being observed 
and thus subject to the Lorentz contraction in other frames. 
The figure 2a, figure 2b (below) and figure 2c (on the 
right) show the mentioned above three objects, each one 
as observed in its own inertial frame of reference.  

 
Figure 2a. The rail (bold vertical line) as observed in its own inertial 
frame of reference. The rail is identified with the y  -axis of respective 
coordinate system. Each line segment (both vertical and horizontal) 
determines the unitary proper length, defined as “unit length” 

 
Figure 2b. The vertical rod (bold line segment) as observed in its own 
inertial frame of reference. The rod’s proper length is equal to the unit 
length, as defined in the previous figure 

According to the experiment’s scenario, in each of three 
frames, the observed two objects move uniformly and 
rectilinearly at relativistic speeds in different directions, 
thus being subject to the Lorentz contraction. In the figure 

3, figure 4 and figure 5, the observer’s rest frames (each 
time marked in black) are successively: the rail frame, the 
rod frame and the Major Tom’s frame. All three cases are 
spatially two-dimensional in kinematical terms, due to the 
total number of inertial frames and their noncollinearity.  

 
Figure 2c. Inertial observer Major Tom (MT) as observed in his own 
stationary inertial frame of reference. Major Tom can be identified – as a 
point observer – with the bold dot located at the origin of the MT 
coordinate system, or with the entire inertial frame represented by this 
coordinate system 

An observation made in the rail rest frame (Figure 3) 
does not cause any controversy. This is because the 
trajectories of Major Tom and of the rod are perpendicular 
to each other. These trajectories intersect at one point in 
the MT coordinate system; however, the objects 
themselves (as limited in size) may, or may not, collide 
with each other, just as two cars approaching a crossroads 
from the mutually perpendicular directions. In either case, 
however, there is no logical collision.  

 
Figure 3. In the rail rest frame (black), the vertical rod (green) moves 
upward in the position parallel to the trajectory, being thus contracted 
along its length. Instead, Major Tom (red) travels horizontally to the 
right, so the MT coordinate system is contracted along x  -axis, while its 
vertical-horizontal position remains unchanged 

In turn, in the rod rest frame (Figure 4), the vertical rail 
is moving downwards, so it undergoes Lorentz contraction 
along the entire length. This contraction manifests itself 
by the equal compression of every single line segment 
(and of every set of neighboring segments), consequently 
becoming shorter than the unit length. The contraction of 
the rail in the rod frame is fully symmetrical to the 
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contraction of the rod in the rail frame. Instead, Major 
Tom travels in the oblique bottom-right direction (red 
arrow), so the MT coordinate system becomes contracted 
along that direction. As a result, the x  and y  -axes of the 
MT coordinate system are no longer perpendicular to each 
other, as well as no longer parallel to the respective axes 
of the rod coordinate system. 

 
Figure 4. In the rod rest frame (black), the vertical rail (green bold line) 
moves downwards, being thus contracted along its length. Instead, Major 
Tom (red) moves in the bottom-right oblique direction, so the MT 
coordinate system is contracted along that direction 

Finally, let us consider the observations performed by 
Major Tom (Figure 5). In the MT frame, the vertical rail 
moves horizontally to the left. Instead, the rod, diagonally 
positioned to the trajectory, moves to the top-left (red 
arrow). The horizontal component of the rod’s velocity is 
equal to the velocity of the rail, which results in the 
constant proximity of these objects. Because the rail is 
spatially one-dimensional, so it does not undergo any 
visible Lorentz contraction. Instead, the rod being in the 
diagonal position to trajectory is contracted along this 
trajectory (as shown in Figure 1), in result of which it 
changes its position, i.e., deviates from the vertical. 
Consequently, the rod is not parallel (does not adhere) to 
the vertical rail. As it can be clearly seen by comparing 
figures 5 and 4, the deviation of the rod from vertical 
(identified with deviation of the whole y  -axis, and 
complemented by a similar skew of x -axis) is exactly the 
same as the respective distortion of the MT coordinate 
system, observed in the rod reference frame. 

The observation made by Major Tom is in conflict with 
the observations concerning spatial relation between rail 
and rod, made in the rail and the rod frames of reference 
(Figure 3 and Figure 4); in both cases, the rod and the rail 
adhere to each other. This means a contradiction, since the 
property of constant adherence must be indisputably an 
invariant of any transformation. 

Let us notice that, from the formal point of view, an 
equal contradiction refers to the observation performed 
in the rod frame (Figure 4) – although in this case, it 
does not concern the relation between specific “objects” 
(such as rail and rod), but between x  -axis of the rail 
coordinate system and x  -axis of the MT coordinate 
system. The first (of these axes) is equivalent to the rail, 
and the second is equivalent to the rod – both as 

observed in the MT frame (Figure 5). 

 
Figure 5. In the Major Tom’s rest frame (black), the vertical rail (green 
bold line) moves horizontally to the left, thus remains unchanged due to 
its position and spatial one-dimensionality. Instead, the rod moving in 
the oblique top-left direction in the position diagonal to trajectory, 
becomes contracted along that direction (bold red line segment, red 
arrow). In result, it deviates from the vertical and thereby from the rail 

It has to be clearly stated that contradiction revealed in 
this thought experiment does not relate to the nature itself 
(the nature, as it were by definition, cannot be self-
contradictory), but to a specific description of nature, 
which in this case means STR. 

We intentionally leave aside in this paper the effect 
known as Thomas-Wigner rotation, and its specific 
manifestation called Thomas precession [28,29]. This is 
because much attention has been devoted to this issue in 
the author’s previous two papers on the same topic [30,31] 
– partly in reaction to some attempted criticism using this 
effect to argue against the presented proof. This is 
however a false lead. As interpreted according to STR, 
Thomas-Wigner rotation can be simply explained as a 
consequence of the relativity of simultaneity, in application 
to the curvilinear motion due to the (continuous or discrete) 
action of net lateral force [32]. Meanwhile, all motions in 
the thought experiment are constantly uniform, rectilinear, 
ergo inertial. No force and, consequently, no longitudinal or 
transverse acceleration is assumed and thereby considered. 
Therefore, we will stop at quoting an ultimate conclusion 
drawn from the analysis of this issue in the author’s above-
mentioned papers: Thomas-Wigner rotation does not apply 
to the thought experiment in question.   

4. Preferred Frame Theory: Preliminary 
Remarks 

4.1. PFT Postulates vs STR Postulates 
The consequences of the evidence taken in the previous 

sections are of great importance to physics. The two 
postulates of STR (principle of relativity and the 
constancy of the velocity of light) have to be replaced by 
different postulates based on a different paradigm. At the 
same time, the theory based on these new postulates has to 
meet the challenge of the already existing experimental 
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tests confirming STR. In other words, the new theory must 
be experimentally equivalent to STR in the range of all 
previous experiments, including the ones mentioned in 
introduction. However, in order to be recognized as a 
distinct theory, it should also make some specific 
predictions, other than derived from STR, being thus 
falsifiable in the Popper’s sense. Eventually, the 
postulated theory has to be internally consistent in formal 
and logical terms. Although a thorough verification in that 
regard requires extensive research, we aim to prove in 
general and yet formally consistent way that the preferred 
frame theory (PFT) meets these stringent demands. 

The theoretical differences between STR and PFT are 
indeed radical, since they affect the basic postulates. Let 
us quote once again the Einstein’s paper from 1912 [6]: 
“This theory [i.e., STR)] is correct to the extent to which 
the two principles upon which it is based are correct. 
Since these seem to be correct to a great extent, the theory 
of relativity in its present form seems to represent an 
important advance; I do not think that it has hampered the 
further development of theoretical physics!” The above 
opinion is exactly what requires revision. Indeed, STR 
complies with the postulates upon which it is based. 
However, these postulates do not comply with the nature – 
if they are considered not as an approximation but, as they 
claim to be, the exact rules. STR indeed did not hamper 
the physics development in the past, but it does so “at 
present”, that is since the quantum gravity became the 
holy grail of theoretical physics. The special principle of 
relativity stating:  

 
All fundamental laws of physics express themselves in 

the same way in all inertial frames of reference 
 

becomes replaced in PFT by its negation, namely: 
 
Physical laws do not express themselves in the same 

way in every inertial frame of reference. In particular, 
length contraction, time dilation and the mass-energy 
increase manifest differently in different inertial frames, 
being basically referred to the preferred frame. 

 
Also, the second postulate of STR stating:  

 
The velocity of light in empty space has the same value 

c  in all inertial frames of reference, independently of the 
state of motion of the source and independently of the 
direction of emission 

 
becomes replaced in PFT by its partial negation, namely: 

 
The one-way velocity of light in empty space depends 

both on the absolute velocity of inertial observer and on 
the direction of emission. Instead, the two-ways velocity of 
light (an averaged velocity along the free closed path) is 
always constant and equals c . 

 
In STR, the relative simultaneity links up with the 

constant velocity of light and the symmetry (mutuality) of 
relativistic effects due to the relativity principle; instead, 
in PFT, the absolute simultaneity links up with the 
anisotropy of the one-way velocity of light and the 
asymmetry of relativistic effects (covering the mutually 

opposite effects), all of them originating from the absolute 
motion, i.e., the motion relative to the preferred frame. 

4.2. The Properties of Inertial Observer 
According to PFT 

In a nutshell, PFT can be specified as a theory in which 
the term “inertial” does not unambiguously define the 
observer or the frame. Various inertial observers may 
differ from each other in the physically important terms. 
In particular, the preferred inertial observer differs from 
any non-preferred inertial observer. Likewise, two non-
preferred inertial observers may differ physically from one 
another due to their different “proximity” to the preferred 
frame. 

Imagine you are a preferred inertial observer, which 
means you are at rest relative to the preferred frame. 
Compared with your stationary clocks and rulers, the 
(absolutely) moving clocks go slower and the rulers are 
shrunken along the line of their motion. These two effects 
depend in a specific way (quantitatively defined by the 
Lorentz factor) on their absolute velocities, always 
definable as a proper fraction of c – the limiting speed in 
the preferred frame. The constant velocity of light in the 
preferred frame makes this frame similar to every inertial 
frame as defined according to STR. The PFT predictions 
formulated in the preferred frame are identical to the STR 
predictions. 

Imagine now, you occupy one of the objects previously 
observed from the preferred frame as uniformly moving, 
say a comfortable spaceship equipped with standard 
clocks and rulers (measuring sticks). Now, you are still an 
inertial observer, however not the preferred inertial 
observer. If you set your rulers in the direction parallel to 
that of your absolute motion, they will become contracted 
in maximal degree compared to the other possible 
positions; the same applies to all spatial objects including 
the whole spaceship and yourself. The basic property of 
the contracted ruler is that it indicates an “improper” 
length of the measured objects. Namely, whether they 
move or not, they all lengthen in the direction of absolute 
motion of your (i.e., observer’s) frame. This apparent 
elongation combines with the “basic” length contraction 
of any measured object, caused by its own absolute 
velocity – although both effects do not necessarily take 
place along the same direction. Seemingly paradoxical, but 
in fact entirely obvious consequence is that the length 
contraction of the absolutely moving observer’s inertial 
frame is not directly, i.e., by means of measurements of any 
object at rest to observer, detectable in this frame. This is 
because the contracted ruler “measuring itself” by definition 
cannot detect any contraction! The same refers to any 
slowed down clock “measuring” its own pace. In result, all 
inertial frames become similar to the preferred frame, which, 
as we shall see in Sec. 6, wrongly suggests that all inertial 
frames are fully equivalent (physically identical) to one 
another – as it is postulated by the special principle of 
relativity. 

Both time dilation and length contraction primarily 
occur due to the absolute motion. However, the final result 
of measurement follows from the fact that these effects 
apply both to the observed object and the observer. 
Consequently, one has to distinguish between direct 
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measurements (e.g., of the length of a body at rest) and 
indirect measurements (of the length of a body in motion). 
The indirect measurements depend on the assumptions 
specific to given theory (STR or PFT), in particular 
concerning the velocity of light (the second STR postulate 
or its partial negation in PFT). As we shall see in s-sec. 
5.2 (and in more detail in Appendices B and C), this 
“ambiguity” results in the observational equivalence 
between STR and PFT in the range of kinematics. 

The above rules suffice for the consistent description of 
the thought experiment discussed in previous sections, as 
formulated according to PFT. However, we’ll leave the 
detailed analysis for another occasion, for now referring 
the Reader to the previous author’s papers [30,31]. One 
thing however is worth mentioning here. The paradox 
behind, unsolvable by STR, can be effectively solved 
within PFT in various ways, depending on the assumed 
arrangement. Because we don’t deal here with a “real” 
experiment, so the preferred frame can be arbitrarily set. 
Basically, it can be identified with any inertial frame, in 
particular with one of three frames represented by Major 
Tom, rail, and rod. In combination with the same three 
frames alternatively chosen as the observer’s frames, this 
gives nine distinct scenarios, all of them free from 
contradiction – unavoidable in the case of STR. The 
absolute reference of both the observer and the observed 
object so to say “ensures” internal consistency.  

5. Basics of the PFT Kinematics 

5.1. Tangherlini Transformation vs Lorentz 
Transformation 

Let us derive the Tangherlini transformation starting 
from the hypothesis of length contraction formulated by 
FitzGerald and Lorentz, and the related concept of time 
dilation primarily advanced by Larmor, with application to 
electrons orbiting the atomic nucleus. It has been 
conjectured that both these effects occur due to the 
absolute motion, i.e., motion with respect to the preferred 
frame identified with the motionless medium then called 
“luminiferous aether”. Let us also assume that Maxwell’s 
equations hold good in the preferred frame, which means 
in particular that velocity of light is isotropic in that frame. 
Based on these premises, let us derive the transformational 
equations applying to the simplest case of two inertial 
frames with one of them being preferred. 

Let K be the preferred frame, and K' be the frame in 
absolute motion. If we measure the duration time of any 
physical process using the clocks at rest in K and in K', 
we’ll obtain the relations: tt γ∆ ′ ∆=  and t t γ∆ = ∆ ′ , 

where γ  is the Lorentz factor. Owing to Lorentz, Voigt 
and Poincaré (and to Einstein, of course) we already know 

the right shape of that factor, namely 
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Hence, assuming that respective time is measured starting 
from '

0 0 0t t= = , we obtain the time transformation 

formulae: tt γ′ =  and t t γ= ′ . 

Assuming that both frames are in the standard 
configuration, we also obtain for '

0 0 0t t= =  the “static” 

spatial relations: x xγ′ =  and 'xx γ= . In order to 

complete the transformation for space (as a function of 
time), we have to include the velocity combined with time, 
thus introduce an element analogous to the component vt  
in the Galilean transformation (GT). Considering that v  is 
the velocity of the frame K' measured in K, and having 
regard to t t γ= ′ , we obtain the equation for the spatial 

coordinates in the preferred frame: xx vt γγ= +′ ′ . 

If the speed of K' measured in K equals v , while v  
corresponds to a distance l x= ∆  covered during time t , 
that is lv t= , then the speed of K measured in K' will be 

( )
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γ

. Consequently, the reciprocal velocities between 

K and K' are not equal, but relate to each other as: 

 2v vγ′ =  (7) 

Finally, because tt γ′ = , so we get 
2v tx x γγ γ= −′ , 

which reduces to x x vtγ γ−′ = . We thus arrived at the 
Tangherlini transformation [20], the only transformation 
consistent with ontological assumptions shared by 
FitzGerald, Lorentz, Larmor and (to some extent) by 
Poincaré. The complete Tangherlini transformation (TT) 
reads: 
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Let us compare it with the Lorentz transformation (LT): 
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In both transformations, γ  denotes the Lorentz factor 
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. However, unlike in LT, in TT this 
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factor has an absolute reference, i.e., relates to the 
preferred frame, which means that v  is the absolute 
velocity. Tangherlini transformation is non-symmetrical in 
the sense of negation of the Lorentz symmetry. LT and TT 
can be considered as two different amplifications of the 
Galilean transformation, since they both reduce to GT for 

0v → . However, the relation of each of these two 
transformations to GT is basically different: the Lorentz 
transformation extends the principle of relativity to all 
velocities up to v c< : v c→ , thus transmutes the 
Galileo’s principle of relativity (Galilean invariance) into 
the special principle of relativity (Lorentz invariance). 
Instead, Tangherlini transformation defines the Galileo’s 
principle of relativity as an approximate law for v c , 
whereas, in a strict sense, the relativity principle, in 
whatever form, proves to be invalid as a universal law 
applicable to the whole range of velocities.  

Any two inertial frames connected by the Tangherlini 
transformation are considered to be physically 
inequivalent; one of them is the preferred frame, thus 
determines absolute rest, and the other (by convention the 
primed one) is absolutely moving. The general shape of 
TT (then called “inertial transformations”) has been 
derived by the present author [33]. Accordingly, a specific 
relation between any two inertial frames results from their 
absolute relations, as taken separately due to respective 
absolute velocities, and from the angle between respective 
velocity vectors measured in the preferred frame. In the 
particular cases, when two frames move with equal absolute 
velocities in different directions (opposite or any others), 
they are physically identical, despite moving against each 
other. Owing to this property, TT could be described as 
representing the axial symmetry, with the preferred frame 
acting as the “axis of symmetry” In that context, it is 
important to realize that Lorentz symmetry is a specific 
exemplification of the general concept of symmetry, and 
not just a universal pattern of symmetry. In both LT and TT, 
the velocity of light c  is treated as the physical constant of 
a fixed value. However, the resulting from LT and TT 
predictions as to the real velocity of light in various inertial 
frames are different, and therefore may serve as a defining 
property of each transformation. Namely:   

 
Lorentz transformation (LT) connects together any pair 

of inertial frames in such a way that the one-way velocity 
of light is always constant (isotropic) in both frames. 

 
Tangherlini transformation (TT) connects the preferred 

frame with any other inertial frame in such a way that the 
two-way velocity of light is always constant (isotropic) in 
both frames, whereas the one-way velocity of light is 
constant (isotropic) in the preferred frame only. 

 
In the case of Lorentz transformation, the assumed 

constant one-way velocity of light links up with the 
Lorentz contraction and time dilation, in connection with 
the relativity of simultaneity – making these effects 
symmetrical. Instead, the constancy of the two-way 
velocity of light predicted by the Tangherlini 
transformation (with the one-way constancy restricted 
solely for the preferred frame) links up with the 
corresponding effects of length contraction/elongation and 
time slowing/speeding, in connection with the absolute 

simultaneity. The latter is formally expressed in TT in 
such a way that, unlike in LT, the time coordinates do not 
depend on the space coordinates. 

5.2. Kinematical Equivalence Between  
PFT and STR in the Spatially One-
dimensional Cases 

In this subsection, we will consider the property 
announced in s-sec. 4.2, described as the “observational 
equivalence between STR and PFT in the range of 
kinematics”. In short, the point is as follows. PFT predicts, 
besides length contraction and time dilation, also the 
opposite effects, here called: length elongation and time 
speeding; nevertheless, the direct results (readings of the 
measuring instruments) are identical to these predicted by 
STR. This is because, both in PFT and STR, the 
conclusions as to the “real” nature of these effects do not 
follow from the readings alone, but from these readings 
combined with specific (to STR or PFT) synchronization 
conventions, each one based on a different assumption as 
to the velocity of light (considered in next subsection).   

Let us analyze in that regard the kinematically one-
dimensional case (assuming the motion along 'xx  
direction), described alternatively by the Lorentz and 
Tangherlini transformations. Both these transformations 
determine elementary relationships between basic 
kinematical quantities: distance/length, time and velocity. 
If the respective coordinate systems remain in the standard 
configuration, then the space and time coordinates are 
identifiable with the covered distance and elapsed time, 
starting from the position four-vector { }1 1 1 1, , , 0t x y z = , 
implying x x∆ = , t t∆ =   – so that all quantities become 
expressed in a simple way: x tv= , xt v=  and xv t= . 

The same pertains to the primed coordinates. 
As an inertial observer you cannot directly measure all 

three quantities: length, time and velocity. Assume, you 
intend to measure the velocity of a point-like body 
(particle) moving in your stationary reference frame along 
x -axis, using equation xv t= , where x  denotes the 

covered distance. This task, trivial in the range of small 
velocities ( v c ) to which the Galilean transformation 
effectively applies, is not as obvious for ~v c . The point 
is that you can’t reliably measure the velocity using two 
distant stationary clocks. To be suited for that goal, they 
should be synchronized, thus able to determine 
simultaneity in your frame. Basically, synchronization 
consists in sending the light signal from one clock to 
another. However, the Reichenbach’s conventionality of 
measurement [19] comes into play; in order to make the 
light synchronization credible, you must know the 
velocity of light. In turn, to measure this velocity (hence, 
not just to postulate it!), your clocks have to be 
synchronized. And so on; the vicious circle ends up. 

Assume next, you want to measure the velocity of a 
meter-stick (rod) moving parallel to x -axis, using a single 
stationary clock. Now another difficulty arises. To make 
the measurement credible, you should know the length of 
the moving rod as measured in your frame. Knowing it, 
you might compare the indications of your single 
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stationary clock in the moments of passing it by the rod’s 
front and rear ends, then divide the rod’s length by the 
elapsed time. But, to find the length of the rod, you need 
(at least) two synced clocks indicating equal times while 
being passed by the front and rear ends of this rod, 
respectively. However, in order to synchronize the 
clocks… etc.; the vicious circle ends up again. It follows 
that you cannot unambiguously infer from the direct 
measurements whether and how the length of the rod is 
affected due to its motion relative to your frame. 

 
Also, the other than “standard synchronization” (i.e., 

using light signals) methods: (1) the slow transport of one 
standard clock and (2) the symmetrical transport of two 
standard clocks at equal speeds in opposite directions, face 
the same difficulties. Namely, the first method requires 
itself synchronization to determine the exact velocity of 
the transported clock; by the same token, the second 
method requires prior synchronization to settle if the 
opposite velocities of two clocks are indeed equal. A brief 
preliminary discussion of this issue can be found in [34]. 
As shown below and developed in Appendix B, different 
numerical results of synchronization according to STR 
and PFT do not however translate into different 
predictions concerning directly observed results obtained 
in the kinematical experiments. Likewise, as shown in 
Appendix C, there is no effective difference between 
velocity-addition formulae according to STR and PFT – 
although their shapes are different. This is just what we 
mean by “kinematical equivalence”. 

Hence, what we actually know “for sure”? Two things 
in fact. The first are the indications of a single stationary 
clock. The second is the length of an object at rest 
measured using the stationary rod (meter-stick). Let us 
call these two quantities “direct”, due to the direct mode 
of acquiring them – independent from any related-to-
theory assumptions. The other quantities: velocity of the 
moving objects, pace of the moving clocks and length of 
the moving extended bodies, are theory-dependent, thus 
we call them here the “indirect” quantities. Although we 
cannot directly measure the “indirect” quantity, we may 
postulate its value (based on direct measurements) 
according to the predictions of given theory, i.e., STR or 
PFT. Until it is done, the “indirect” quantity remains 
“unspecific”; instead, once this is settled, the “indirect” 
quantity becomes “specific”. Understandably, every 
“direct” quantity is by definition “specific”. According to 
this naming convention, we obtain three classes of 
quantities, denoted as:   

 
direct quantities: x , t  (assuming standard 

configuration) 
indirect unspecific quantities: V , L , T  
indirect specific quantities, alternatively: STRV , STRL , 

STRT  – postulated by STR, and PFTV , PFTL , PFTT  – 
postulated by PFT.  

 
Using this classification, we are able to express the 

general scheme of kinematical equivalence between STR 
and PFT. Let us consider the two modes of measuring the 
velocity mentioned in the beginning of this subsection, 
defined as: (a) measuring the velocity of a single point 

object using two distant stationary clocks; (b) measuring 
the velocity of the moving rod (two distant fixed points) 
using one stationary clock. When written in general terms, 
the relations between distance/length, time and velocity 
have the form: direct quantities + indirect unspecific 
quantities, so that the (a) and (b) modes are expressed 
respectively:   

 xV T=  (10a) 

 LV t=  (10b) 

Once the predictions of respective theories are applied, 
these two equations turn into the direct + indirect specific 
form. In the first case (10a), we have alternatively: 

 
STR STR

PFT PFT

xV T
xV T

=

=
 (11) 

The equivalence consists in the fact that one has always: 

 = ⋅ = ⋅STR STR PFT PFTx V T V T  (12) 

This is because, in the case of STR, we have: 

 L v T vTγ′ ′ ′= =  (13) 

whereas PFT gives: 

 2 TL v T v vTγ γγ= ′ =′ ′ =  (14) 

Likewise, in the second case (10b), we have 
alternatively: 

 
STRSTR

PFTPFT

LV t
LV t

=

=
 (15) 

One has always: 

 = =STR PFT

STR PFT

L Lt V V  (16) 

This is because, in the case of STR, we have: 

 L LT v vγ
′′ ′= =  (17) 

whereas PFT gives: 

 2
LL LT v vv
γ

γγ
=′ = =′

′  (18) 

The above general relationships between STR and PFT 
determine the more specific applications, namely the 
experimental (empirical) equivalence between the STR 
and PFT synchronization conventions and the equivalence 
of respective velocity-addition formulae. These are bit 
more complicated issues, although they are governed by 
the same general rules. They are developed in Appendices 
B and C. 

5.3. Velocity of Light 
Each of the two above discussed attempts to measure 

the velocity in the observer’s frame faced the problem of 
synchronization connected with the “indirect” (theory-
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dependent) measurability of the velocity of light. Once 
this velocity is settled according to given theory, all other 
velocities also become unambiguously defined. In STR, 
the constant isotropic velocity of light is set by the 
postulate. Consequently, in any frame, the wave-front 
connected with the photons emitted radially from the 
point-source is thought to form the sphere increasing in 
time (4D light cone in the Minkowski space). Instead, 
according to PFT, the wave-front of the radially emitted 
light has the exact shape of a sphere in the preferred frame 
only. In all other (absolutely moving) inertial frames, 
regardless of the state of motion of the emitter, the wave-
front forms the prolate spheroid (ellipse in 2D depiction), 
with the source of emission located in the “frontal” focus 
(Figure 6). 

 
Figure 6. Velocity of light in the absolutely moving observer’s inertial 
frame. The light front forms the prolate spheroid (ellipse in 2D 
representation), with the source of emission located in the “frontal” focus, 
compatible with the direction and sense of the absolute velocity vector 

One of the properties of ellipse is that harmonic mean of 
the lengths of the oppositely directed radii is identical for all 
such pairs of radii. Let us identify the radii with the photon 
velocity vectors, whereas identical opposite radii (vertical 
arrows in Figure 6) would refer to the unitary velocity 
vector of the magnitude c . Consequently, regardless of the 
absolute velocity and the direction of emission, the 
averaged two-way velocity of light always equals c . The 
general PFT formula for the velocity of light is 

 

 
2

2

cos

1 cos

c vc
v
c

ϕ

ϕ

′ −
=

 −  
 

 (19) 

(ϕ  – angle of propagation related to the direction of 
absolute motion, measured in observer’s reference frame). 
For the angles of propagation 0ϕ =  and 180ϕ =  , i.e., for 
the light rays parallel to x -axis, one has respectively:  

 
( )
( )

' 2
1
' 2
2

c c v

c c v

γ

γ

= −

= +
 (20) 

The further consequence of the above equations is that, 
for the observer’s absolute velocity v c→  (corresponding 
with extreme flattening of the ellipse depicted in Figure 6), 
the speed of light emitted in parallel to vector v  does not 

tend to zero (as Einstein conjectured in the inspiring 
youthful thought experiment in which he considered the 
observer chasing the light beam), but to 0.5c . This clearly 
follows from the upper Eq. (20) – resulting from the 
Tangherlini transformation, and not from c v−  specific to 
the Galilean transformation, assumed by Einstein in that 
experiment. Instead, the velocity of photon moving in the 
opposite direction (lower Eq. 20) tends to infinity. 
Therefore, like for all other values of the opposite angles 

ϕ and 180ϕ +  , the harmonic mean (denoted 𝐻𝐻) of the 
two-way velocity of light equals c : 

 ( )' '
1 20.5 ;v c c c c H c→ ⇒ → →∞ ⇒ =  (21) 

6. Towards the PFT Dynamics 

6.1. Corresponding Velocities Instead of a 
One Relative Velocity 

The kinematical equivalence between STR and PFT, 
although important and symptomatic, is however also 
deceptive. It namely strongly suggests that a theory based 
on the idea of preferred frame must be, as a whole, 
equivalent to STR. It would indeed be so if the theory in 
question were based on the Lorentz transformation; but, as 
we know, PFT (in the present formulation) is based on the 
Tangherlini transformation. As it will be demonstrated in 
the next subsections, the PFT experimental predictions 
concerning dynamics prove to be partly different from the 
STR predictions. This fact, apart from the otherwise 
crucial conclusions resulting from the thought experiment 
considered in Sec. 3, makes STR and PFT fundamentally 
different, also in experimental terms. 

In STR, the symmetry of relativistic effects corresponds, 
apart from the relativity of simultaneity, with the identity 
of “relative velocity” measured by each of the two inertial 
observers. Same as in Newtonian physics, this identity has 
a status of self-explanatory axiom: 

 
The velocity of B relative to A is identical to the velocity 

of A relative to B. 
 
By contrast, in PFT, the effects of length contraction 

and time dilation, to which the name “relativistic” can be 
attached by the pure convention only, are basically 
unsymmetrical. In particular, in the case of two inertial 
frames with one of them being the preferred frame, the 
length contraction and time dilation observed by the 
preferred inertial observer, correspond with length 
elongation and time speeding of the objects at rest in the 
preferred frame, observed by the absolutely moving 
inertial observer. This asymmetry is not directly 
measurable in the kinematical experiments (as was shown 
in s-sec. 5.2); however, it manifests itself indirectly in 
dynamics, specifically in the predictions concerning 
mass/energy. It is associated with the asymmetry 
(inequality) of mutual velocities. Namely, the concept of 
relative velocity relevant for both relativistic and 
Newtonian mechanics, becomes replaced in PFT by the 
usually different corresponding velocities, namely: 

 



189 International Journal of Physics  

Except the cases when both frames have identical 
absolute velocity, the velocity of B relative to A differs 
from the velocity of A relative to B. 

An obvious reason for this asymmetry is the following. 
All standards of length and time used to measure mutual 
velocities are differently affected by the absolute motion 
in each of the frames constituting given pair. In particular, 
in the case with one frame preferred and the other one 
moving at absolute velocity v , the corresponding speeds 
relate to each other according to Eq. (7), i.e., 2v vγ′ = . 
This relationship largely determines both kinematical and 
dynamical relations between STR and PFT.  

6.2. Identical Predictions of STR and PFT 
Concerning Momentum 

Consider the uniformly and rectilinearly moving 
massive particle observed in an inertial frame of reference. 
The only thing required to describe its motion in 
kinematical terms is the velocity. However, by including 
dynamics, e.g., while considering possible collision with 
another particle, we also need to know the effective 
masses. Despite the difference connected with the fact that 
velocity is a vector and mass is a scalar, these two 
quantities combine together into the third one: the 
momentum vector. The magnitude of momentum vector is 
a product of two scalars: the length (magnitude) of the 
velocity vector and the mass. Instead, direction and sense 
of the momentum vector replicate direction and sense of 
the respective velocity vector. 

The complex nature of momentum is the reason for 
which kinematical equivalence between STR and PFT 
steps into the area of dynamics. Despite different 
predictions of STR and PFT as to the mass and velocity 
taken in isolation, their product (momentum) is always the 
same. For instance, if a body at rest in the preferred frame 
is observed in the absolutely moving frame, then, 
according to PFT, its mass decreases compared with the 
rest mass, hence all the more as compared with the 
increased mass predicted by STR. However, this loss is 
compensated „with interest” by the gain in velocity, due to 
the difference between the corresponding velocities 
predicted by PFT (Eq. 7) and the (equal for both frames) 
relative velocity predicted by STR. Besides this specific 
arrangement (i.e., with one frame preferred), also all other 
ones, namely with the rest frames for the observer and for 
the observed object freely related to the preferred frame, 
give identical momenta – as alternatively predicted by 
PFT and STR. This is because, each time, the 
combinations of differently defined effective masses (due 
to the different Lorentz factors), and the differently 
defined velocities of these masses, always give the same 
result (product), that is identical momentum. This can be 
written in a form of general rule: 

 STR STR PFT PFTP M V M V= =  (22) 

The specific derivations (also regarding momentum of 
photon) are performed in Appendices D and E. 

6.3. PFT vs STR: Different Predictions 
Concerning Energy  

Just as it is with STR, energy in PFT is equivalent to 
mass, according to the famous mass-energy formula 
derived by Einstein in his second 1905 paper on STR [2]. 
However, because in PFT the increase of mass/energy is 
basically due to the absolute velocity, so, unlike in STR, 
the total energy of a moving body may both increase or 
decrease, compared with energy of this body at rest in the 
observer’s frame. Let us write the Einstein’s mass-energy 
formula in the form distinguishing between rest mass and 
relativistic mass: 

 2
0E m cγ=  (23) 

In the above notation, the “relativistic mass” 0m γ  (in 
the equation below replaced by symbol m , meaning 
“mass”) is unambiguously defined by the quotient of total 
energy and the squared speed of light:  

 2
Em

c
=  (24) 

This definition is important because the mass of a 
moving body considered as a quotient of force and 
acceleration (i.e., inertial mass, ergo mass resisting the 
applied force) is not identical with the mass interpreted as 
the carrier of energy, obtained as a quotient of momentum 
and velocity. In the first case, the value of mass depends 
on the direction of acting force, ranging from 0m γ  

(transverse mass) to 3
0m γ  (longitudinal mass). 

According to STR, only the transverse mass 0m m γ=  is 
strictly equivalent to energy. The velocity-dependent 
increase of energy is interpreted in STR in the purely 
kinematical terms, as a consequence of time dilation, 
thought to originate “not in the object but in the geometric 
properties of space-time itself” [32]. Basically, this is not 
at odds with the PFT perspective, although in PFT we 
have both increase and decrease of energy, due to the 
kinematical effects of time slowing and time speeding, 
respectively.   

Although energy is a scalar, we can speak in a certain 
definite sense about isotropy or anisotropy connected with 
energy. To explain this claim, let us return to momentum. 
Consider the set of identical elementary massive particles 
moving inertially in 3D space, radially outwards with 
respect to the absolutely moving inertial point-observer. 
Imagine that all velocity vectors are caught at a common 
point identified with that observer. Let all these particles 
have equal momenta in the observer’s frame. According to 
STR, this simply implies equal velocities (because the 
proper (rest) masses are identical), hence equal length of 
all virtual velocity vectors, forming thus together a 
spherical bundle. Instead, according to PFT, equal 
momenta of identical particles neither imply equal masses 
nor equal velocities. The latter are anisotropic due to the 
inequality of corresponding velocities, as a result of which, 
the respective velocity-vectors bundle forms a prolate 
spheroid. 

Having regard to directions, equal momenta link 
basically (except crosswise directions) with different 
masses, each time multiplied by respective velocity. In 
turn, according to the mass-energy equivalence, different 
masses mean different energies, which finally results in 
the asymmetry of energy distribution. Eventually, this 
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determines the disparity between energy and momentum 
in the frames being in absolute motion. In analogy to the 
isotropy of the two-way velocity of light in PFT, the 
arithmetical average of energies connected with the 
oppositely directed velocities is also isotropic, being 
quantitively equal to the total energy of the moving body 
– as predicted by STR. However, unlike in the case of the 
one-way velocity of light, the “one-way” energy is 
basically measurable, making possible direct experimental 
tests of PFT. The PFT equation of energy for the general 
case reads: 

 1 2
0δE m cγ −=  (25) 

where: 
1

2 2
1

21 v
c

γ
−

 
= − 
 

 and
1

2 2
2

2δ 1 v
c

−
 

= − 
 

, 1v  – absolute 

velocity of the observed object, and 2v  – absolute velocity 
of observer. In this equation, in a sense most important for 
PFT, the Lorentz absolute factors γ  and δ  have the 
following designates: the lowercase gamma refers (like in 
STR) to the inertial frame of observed object; instead, the 
lowercase delta refers to the inertial frame of observer. 
Therefore, only their quotient (dimensionless – since γ  
and δ  are both dimensionless) makes an appropriate 
“relative” Lorentz factor determining energy of a body in 
the observer’s frame. It is clear that for the objects at rest 
in any inertial frame of reference, one has always 1 2v v=  

and consequently 1δ 1γ − = , implying 2
0E m c= , in 

agreement with the STR prediction of the rest energy.  
Although the PFT predictions concerning the energy 

measured in experiments performed on Earth very slightly 
differ from the respective STR predictions (the next 
subsection explains why that is so), they fundamentally 
differ as to respective predictions in the general case. 
Namely, in STR, energy strongly depends on the choice of 
reference frame; in other words, same as length and time, 
it is a relative quantity. Basically, one can determine a 
hypothetical frame in which energy of a single particle in 
motion would be comparable to the energy of a planet at 
rest; it is only a question of the parameter fit. Instead, 
according to PFT, the relation of total energies between 
any pair of massive bodies moving relative to each other 
(which means that each body travels with a definite 
absolute velocity) is identical in all inertial frames. In 
other words, the hierarchy of energies is invariant under 
Tangherlini transformation – although particular energies 
taken separately depend (quantitatively to the same degree) 
on the Lorentz factor for the observer δ . This property 
seems to be a significant advantage of PFT over STR in 
the context of a sought theory of quantum gravity. Let us 
briefly explain why. Say that, for the theoretically sound 
reasons, at the extremely great speeds (greater than these 
currently obtainable in the particle accelerators), the 
quantum effects connected with total energy of given 
particle are expected to appear. However, the quantum 
effects – whatever they might be – should be absolute, 
which means that they simply either appear or do not 
appear (exactly as the Schrödinger’s cat must be dead or 
alive after opening the box), regardless of the choice of 
reference frame. Meanwhile, according to STR, the 
velocity is relative, hence energy – no matter how great in 

given particular frame – is also relative, which implies that 
quantum effects are relative too. This unacceptable 
conclusion explains why the Lorentz symmetry creates the 
fundamental obstacle in searching for an effective theory 
of quantum gravity. 

6.4. Possibility of Experimental Test of 
Energy According to PFT (Popper’s 
Falsifiability) 

As far as the predictions of STR and PFT concerning 
energy are identical in the preferred frame, they differ 
from each other in all other inertial frames to a various 
extent depending on the absolute velocity of given frame. 
Assuming that the physically preferred frame coincides 
with the strictly isotropic CMB radiation, we deal (on 
Earth) with the close similarity of the respective PFT and 
STR predictions, but not with their entire identity. Let us 
look at specifics. Apart from the intrinsic inequalities in 
the CMB radiation resulting from the quantum 
fluctuations preceding the cosmic inflation, we observe on 
Earth the global Doppler effect of the CMB anisotropy 
connected with the peculiar motion of Earth through 
cosmic space. The respective “dipole pattern” obtained 
from the WMAP data gives the Earth peculiar velocity 

368 2± km/s, i.e., 31.23 10 c−× , or 627 22± km/s, i.e., 
32.0 10 c−×  – the second result estimated as the resultant 

velocity of Local Group with respect to isotropic CMB. 
This discrepancy (not really essential in the context of our 
present analysis) results from the precise calculations 
based however on inexact data connected with the 
uncertainties of some basic estimates. Anyway, the 
peculiar velocity of Earth corresponds to a very small 
Lorentz factor 71 10γ −≈ + . Meanwhile, the typical values 
of the energy increase gained in the largest particle 
accelerators usually exceed the values: 310γ ≈  for 

protons and 510γ ≈  for electrons. The resulting 

corrections to energy are therefore of the order of 410−  – 
210−  parts of the particles’ rest energy; hence, are far 

beyond the current possibilities of detection. This 
“practical” indistinguishability between energy predictions 
according to STR and PFT explains why STR has not 
been questioned so far (as a side effect) in the real 
accelerator experiments dedicated to other goals. However, 
detecting this difference could be likely achievable in the 
specially dedicated experiments. 

7. Conclusions 

Two points of this paper are of paramount importance. 
First, we have proved by means of a thought experiment 
that STR fails in formal terms as a theory applied to the 
spacetime with at least two spatial dimensions. Let us 
quote (in a slightly shortened form) the statement from 
Section 3: The revealed contradiction does not relate to 
the nature itself, but to a specific description of nature, 
namely STR. With no doubt, if the rod constantly adheres 
to the rail in both rail and rod frames, it does the same as 
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observed in any other frame. That’s how the real-world 
works; to expect otherwise would be absurd. 
Consequently, the presented thought experiment does not 
provide us with a basis for the real experiment aimed at 
testing STR; instead, it shows, using logic, that STR lacks 
internal consistency. In the sense, this thought experiment 
is a real paradox – where “real” means that it reveals true 
contradiction within STR.  

Second, we have put forward and discussed a theory 
proposed to replace special relativity. The respective 
preferred frame theory turns out to be: (1) experimentally 
equivalent to STR in the range of kinematics – despite 
different predictions regarding particular kinematic 
quantities taken separately, including the velocity of light; 
(2) identical to STR, both numerically and experimentally, 
as to the predictions of momentum; (3) different from 
STR regarding predictions of energy. The last property 
can be used to test PFT in the real experiments, which 
makes PFT falsifiable in the Popper’s sense. 

The evidence taken in this paper seems to settle the 
further fate of STR, at least in the purely scientific terms. 
Eventually, this theory, due to specific (Lorentz) 
symmetry, turns out to be a kind of kaleidoscopic illusion 
of physical reality. It is perfectly consistent as applied to 
the spatially one-dimensional model, but fails as applied 
to the real physical world with the second and third spatial 
dimensions included. The scientific intuition shared by 
Lorentz and other eminent scholars in the times directly 
preceding the appearance of STR (and partly at a later 
time) was the right one; however, the fact that the same 
scholars were involved in formulating the Lorentz 
transformation (rederived by Einstein from the two 
postulates) determined the future development of physics 
for nearly 120 years. The current attitude towards STR, 
despite conventional signs of respect, seems however to 
evolve or even erode, mostly due to the pressure caused 
by ineffectiveness of the quantum gravity research, which 
manifests itself by intensive attempts to detect the Lorentz 
violations. 

The findings reported in this paper reveal the basic 
inadequacy of STR, not only in application to the Planck 
scale (as the current searches for the Lorentz violation 
presume), but in the entire range of physical phenomena. 
Once this result is confirmed, it would make necessary to 
draw the right conclusions. While the general proposal is 
to replace STR with PFT, one should specifically: (1) 
develop PFT to the form including electrodynamics and 
other forces; (2) review other modern theories, paying 
special attention to their relations with STR; in particular: 
(2a) revise the general relativity so as to make it reducible 
to PFT in the limit of negligeable gravity – as is the case 
with STR, (2b) revisit the quantum gravity theories in the 
context of invalidation of Lorentz symmetry; (3) elaborate 
and carry out an experiment testing the specific PFT 
predictions concerning energy. Besides, considering that 
Minkowski space is inherently connected with STR, it 
would be interesting to find respective space for PFT. This 
short list certainly does not exhaust the complete range of 
a great work to be done. 

Appendices 

Appendix A. Lorentz Contraction of a Rod in 
the Diagonal Position to Trajectory 

Let ( )befL


 be the parallel to trajectory component of 

the rod’s length (dimension measured in the direction of 
motion) before contraction, ( )aftL



 – the respective 

component after contraction, and L⊥  – perpendicular 
component of the rod’s length (obviously the same before 
and after contraction). Then the Lorentz factor 
determining the Lorentz contraction becomes defined as: 

 ( )

( )

bef

aft

L

L
γ =





 (A.1) 

So: 

 ( )
( )bef

aft
L

L
γ

=




 (A.2) 

where 
1

2 2
21 V

c
γ

−
 = − 
 

; V  – velocity of the rod in the 

observer’s frame. Let the angle of deviation before 
contraction be denoted befα , and respective angle after 

contraction – aftα . From the above relations it follows:  

 
( )

tan bef
bef

L
L

α ⊥=


 (A.3) 

and  

 
( ) ( )

tan aft
aft bef

L L
L L

γ
α ⊥ ⊥= =

 

 (A.4) 

Let difα  be the angle by which the deviation increases 

due to the Lorentz contraction: dif aft befα α α= − . This 
angle is trigonometrically defined as: 

 ( ) tan tan
tan

1 tan tan
aft bef

dif
bef aft

α α
α

α α

−
=

+
 (A.5) 

where tan befα  and tan aftα  are defined according to 
Eqns. (A.3) and (A.4). 

Appendix B. Equivalence of the STR and 
PFT light Synchronizations  

Assume a particle at rest in the preferred frame   
traveling in the frame ′  along the stationary measuring 
rod L′  ended with two clocks: 1C  and 2C . Let v  be the 
velocity of ′  relative to  . We synchronize both clocks 
by sending the light signal from 1C  to 2C , having regard 
to the velocity of light defined alternatively by STR and 
PFT. Likewise, let the velocity of the particle traveling on 
distance L′  from 2C  to 1C  be alternatively defined. An 
ultimate criterion of the experimental equivalence of both 
synchronizations, is the indication of clock 1C  in the 
moment of passing it by the particle. Let’s get into details: 
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Synchronization according to STR: While sending the 
light pulse from the clock 1C  showing '

1t  to the clock 2C  
located at distance L′ , we set 2C  in the moment of 
reaching it by the ray for the time:  

 ' ' 1
2 1t t L c−= + ′  (B.1) 

The velocity of a particle moving along the distance L′  
from 2C  to 1C  is v ; hence, the (denoted by '

3t ) indication 
of clock 1C  in the moment of passing it by the particle is  

 ( )' ' '
3 1 1

L v cL Lt t t
c v vc

+
= + + = +

′′ ′  (B.2) 

Synchronization according to PFT: In order to 
synchronize the clocks 1C  and 2C  in the direction from 

1C  to 2C  one has to set the clock 2C  in the moment of 
reaching it by the light beam for: 

 
( )

' '
2 1 2

Lt t
c v γ

= +
−

′  (B.3) 

Because, according to PFT (TT), the velocity of a 
particle traveling along L′ , from 2C  to 1C  is 2vγ , so the 
clock 1C  will indicate in the moment of passing it by the 
particle the time: 

 

( )

( )

( )

' '
3 1 2 2

2 2
2 2'

1

2

' '
1 12

1 1
=

L Lt t
c v v

v vL L
c ct

c v v

vL c c L v c
t t

vcvc v

γ γ
= + +

−

   − −   
   + +

−

 −  + = + = +
−

′ ′

′ ′

′ ′

 (B.4) 

The empirical equivalence between synchronizations 
according to STR and PFT (despite different predictions 
as to the velocity of light) is confirmed by identity of the 
results of Eqns. (B.2) and (B.4). 

Appendix C. Equivalence of the STR and 
PFT Velocity-addition Formulae 

Consider three collinear inertial frames:  , ′  and '' . 
The frame ′  moves with respect to   with the velocity

v  in x  positive direction. The particle at rest in ''  
moves with respect to ′  with the velocity V  in x′  
positive direction. The resultant velocity 𝜎𝜎 of the particle 
velocity in  , derived from LT, is 

 
1

21 vVv V
c

σ
−

 = + + 
 

 (C.1) 

which is the well-known STR velocity-addition formula. 
Let us find an analogous formula for PFT, assuming that 
  is the preferred frame. Since we consider the result of 
summation referred to , so velocities v  and σ , as the 

absolute velocities of ′  and ''  respectively, will remain 

unchanged compared to the respective values according to 
STR. However, the question of velocityV  looks different. 
This velocity refers to frame ′  that, unlike in STR, 
differs from  . From the fact that σ  and v  remain intact, 
it follows that velocity of the particle relative to ′  is 

 V vσ= −  (C.2) 

Because the stationary rods and clocks in ′  are 
shortened and slowed by the Lorentz factor (respectively: 

( )v
ll γ′ =  and ( )vt tγ′ = ), so in the frame ′  the velocity 

of particle is 

 ( )
2
vV Vγ′ =   (C.3) 

Eventually, the PFT velocity-addition formula applied 
to summation in the preferred frame   takes the form: 

 
( )
2
v

Vvσ
γ
′= +   (C.4) 

Let us compare this equation with the STR velocity-
addition formula. Our goal is to test whether velocity V , 
defined according to LT, is empirically equivalent to the 
velocity V ′ , defined according to TT. Let’s convert the 
STR velocity-addition formula to the form: 

 

( )

2
2

2 2

2
2

1

1 1

=
1 v

v
v V cv V
vV vV

c c
Vv

vV
c

σ

γ

 − +
= = +  

+ +  
 

+
 + 
 

 (C.5) 

Now, the STR velocity-addition reminds Eq. (C.4); 
moreover, both formulae will totally coincide if we define 
velocity V ′  as: 

 
1

21 vVV V
c′

−
 = + 
   (C.6) 

Hence, the question of equivalence between the STR 
and PFT formulae reduces to another question, namely if 
velocities V  and V ′  are distinguishable in the 
kinematical experiments. To answer it, let us consider the 
following example. Let the “added” velocity (defined by 
STR as V , and by PFT as V ′ ) be the velocity of a rod at 

rest in ''  of the length L , as measured in  . Let this rod 
pass the clock at rest in ′ . The criterion of empirical 
equivalence between STR and PFT are the readings of the 
clock in the moment of passing it by the rear end of the 
rod. To meet this criterion, the respective readings should 
be identical despite different STR and PFT predictions as 
to the rod’s length and its velocity, both inserted to the 
equation for time. We assume that the clock, when passed 
by the front end of the rod, in both cases indicates 
identical time 0 0t = . According to STR, the rod’s length 

in ′ is 
( )V

LL γ′ = . Instead, according to PFT, the rod’s 
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length results from the mutual relation of the observer’s 
frame and the rod rest frame, expressed by the quotient of 
respective absolute Lorentz factors: 

 ( )
( )

vL
L

σ

γ
γ′ =  (C.7) 

The requirement of identical clock indications is 
tantamount to the requirement of equality between 
respective times according to STR and PFT. Hence, we 
need to see if the following equality holds: 

 
( )

( )

( )

? v

V

LL
V Vσ

γ

γ γ ′
=


 (C.8) 

Considering that: 

 21 vVV V
c′

 = + 
   (C.9) 

we have: 

 
( )

( )

( )21

v

V

LL
VvVV

c
σ

γ

γγ ′
′

=
 + 
 




 (C.10) 

Simplifying and rearranging gives: 

 
( )

( ) ( )

21
1v

V

vV
c

σ

γ

γ γ

 + 
  =  (C.11) 

After rewriting the Lorentz factors, we get (for 1c = ): 
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( ) ( )

( )

( )( )
( )

2

2

2 2

2

2 2 2

2

2 2

2

1 1 1
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1

1

1
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1 1 1
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v γ

+ − + + −
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=

−
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=

−

− −
= =

−

 (C.12) 

which confirms empirical equivalence between STR and 
PFT velocity-addition formulae. 

Eq. (C.4) is however not the general formula for the 
PFT velocity-addition since (first of all) it applies 
exclusively to summation in the preferred system  . This 
in particular means that the final velocity (σ ) is identical 
for STR and PFT. Meanwhile, in a more general case of 
summation in x  positive direction performed in a frame 

different from the preferred one (here: '' ), the final 
velocities derived alternatively from LT and TT might be 
different. Apart from the absolute Lorentz factor for the 
“intermediate” frame ( ′  in Eq. C.4) we must also take 

into account the absolute Lorentz factor for '' i.e., the one 
in which the summation is executed. In other words, Eq. 
(C.4) applies to the particular case in which the Lorentz 
factor for the observer equals 1, while in the general case 

it may differ from 1. The generalized “collinear” velocity-
addition formula is 

 ( )
( )

2 21 2
1

O
V

VVσ γ
γ

 
 = +
 
 

 (C.13) 

where ( )Oγ  denotes the absolute Lorentz factor for the 

observer’s frame '' , ( )1Vγ  – absolute Lorentz factor for 

“intermediate” frame ′ , and 1V  – velocity of 

“intermediate” frame ′  relative to '' , as measured in 
the preferred frame  . The velocity 1V  corresponds to 
the velocity v  in Eq. (C.4). Instead, 2V  denotes the 
velocity of the particle in “intermediate” frame ′ :  

 ( ) ( )
2

2 1 1VV Vσ γ= −  (C.14) 

corresponding to the velocity V ′  in Eq. (C.4). 

Appendix D. Identity of Momenta of a 
Massive Body According to STR and PFT 

Let the massive object at rest in the frame ′  fall apart 
into two equal parts (here called “forward” and “backward” 
particles, denoted respectively   and  ) receding in 
opposite directions along x′ -axis, so that net momentum 
in ′  amounts to zero. Let “forward” means the direction 
compatible with the motion of ′  relative to the preferred 
frame  , and “backward” – the opposite direction. Let 
the rest mass of each particle be 0m . According to STR, 
the momentum of each particle in ′  (for 1c = ) is 

 ( ) ( )
1

2 2
0 0 1Vp m V m V Vγ

−
= = −  (D.1) 

where V  is the relative velocity between each of the 
considered particles and ′ . Instead, in accordance with 
PFT, the respective momentum is 

 ( )
2

0 diff
B AA

p m vγ γγ
 =  


′


 (D.2) 

The term 0 B
A

m γ
γ

  
 

 denotes the mass of a given 

particle as measured in frame ′ , where ( )
1

2 21A vγ
−

= −  

is the Lorentz factor for the observer’s frame ′ , and 

( )
1

2 21Bγ σ
−

= −  is the Lorentz factor for the particle, 

both related to the preferred frame  . Instead, ( )diffv  

denotes the measured in   relative velocity between each 
of (alternatively considered) particles:   or   and frame 
′  (precisely: the absolute value of the vector difference 

between the velocity of given particle and the velocity of 
′ , each time measured in  ; hence ( )diffv = −σ v ). 

Because both mass and velocity of   and   depend on 
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the direction of their motion in ′ , hence Bγ  and ( )diffv  

are defined separately for each particle, hereinafter 
denoted respectively ( )γ  , ( )γ   and ( )v  , ( )v  . Instead, 

the Lorentz factor Aγ  remains unchanged in both cases. 
Our goal is to check whether the momenta of   and   
equal each other, and whether they both equal the 
momentum defined according to STR. Before entering to 
analysis, let us make an obvious reduction of Eq. (D.2) 
obtaining: 

 ( )0 diffA Bp m vγ γ′ =  (D.3) 

Taking advantage of the equivalence of the velocity-
addition formulae according to the STR Eq. (C.1) and the 
PFT Eq. (C.4), we define the particles velocity in   as: 

 ( ),
1
v V

vV
σ ±

=
±

   (D.4) 

with positive signs for  and negative signs for  . 
Hence, the respective absolute Lorentz factors are: 
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v V
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 −  = −   −  





 (D.5) 

After substituting to Eq. (D.3), we obtain the 
momentum '

1p  for particle : 

 

( ) ( )

( )
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 

 (D.6) 

Similarly, we derive the momentum '
2p  for particle  : 
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 

(D.7) 

Identity of these results means equality of momenta of 

the particles   and  , as well as equality of both these 
momenta with the momentum defined according to the 
STR equation (D.1). 

Appendix E. Identity of the Photon Momenta 
According to STR and PFT 

According to STR, the momentum of photon is 

 1 1p h hfcλ− −= =  (E.1) 

( h  - Planck constant, f  - frequency, c  - speed of light, 
λ  - photon wavelength) Let the source of emission be at 
rest in the absolutely moving frame ′ . According to PFT, 
the velocity of light in ′  depends on the absolute 
velocity of ′  in connection with the direction of 
emission. For the source of emission at rest in ′  the 
frequency observed in ′  is isotropic, which is a 
consequence of the homogeneity of time in any inertial 
frame. More specifically, for any particular absolute 
velocity of ′ , each time combined with any arbitrary 
frequency of the source ( 0f ) and the angle of emission 
(ϕ ), one has: 

 ( )

( )
( )

'

0' .
c

f f const
ϕ

ϕ
ϕλ

= = =  (E.2) 

where ϕ  denotes the angle of emission, and 0f  – 
frequency of the source. Rearranging and implementing 
the Planck constant gives 

 
( ) ( )

0' '
hc cE hf

cϕ ϕλ
= =′  (E.3) 

It follows: 

 ( )
( )

( )
' ' 1

2 ' 2
E cp c hf c hfc
c c cϕ ϕ

ϕ

−′ = = =  (E.4) 

The obtained result is identical with the STR prediction 
given by Eq. (E.1). 
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