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Abstract  This study introduces an adaptive intelligent agent-based flog leaping optimizer to tackle the economic 
load dispatch problem in power systems, specifically addressing valve-point effects. Unlike conventional non-
traditional algorithms, it offers a more dynamic and deterministic problem-solving strategy, characterized by its 
simplicity, usability, convergence efficiency, solution quality, and robustness. To enhance the performance of the 
shuffled frog leaping algorithm (SFLA), which may suffer from slow exploration in later iterations and susceptibility 
to local optima, this paper proposes the fusion of Adaptive multi-agent-based evolutionary reinforcement learning 
with the leaping algorithm. This hybrid approach capitalizes on the complementary strengths of both algorithms. By 
leveraging this synergy, this method demonstrates superior performance, achieving optimal results with reduced 
global and local iterations and it also limits the stochastic approach. The proposed hybrid methodology and its 
variations are rigorously evaluated using two distinct test systems, including 13 and 40 thermal unit systems with 
incremental fuel cost functions considering valve-point effects. The experimental results demonstrate the efficacy 
and promise of the proposed approach, outperforming several benchmark techniques commonly used in the field. 
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1. Introduction 

The economic load dispatch (ELD) problem, which is a 
non-convex non-linear constraint optimization problem, 
always encourages researchers to develop new techniques 
that reduce not only the cost of power generation but also 
increase the reliability and decrease the greenhouse effect 
by reducing thermal power production. So, it is very much 
needed to explore more next-generation modern 
optimization techniques to cater to the growing number of 
ELD complexity and optimize the load dispatch problem. 

For solving load dispatch problems, several traditional 
mathematical, computational, and intelligent techniques 
have been developed so far.  Conventional methods such 
as lambda iteration, gradient-based method [1], and 
homogeneous linear programming (LP) [2] are used to 
solve the ELD problem by altering the fuel cost curve in a 
monotonically increasing function or piecewise linear 
function. These approaches disregard the portions of the 
incremental cost curve that are not monotonically or 
continuously increasing. Because of valve point loadings, 
ramp rate limits, etc. modern power generation units’ 
input-output characteristics are intrinsically non-linear. So, 
the fuel cost curve is estimated according to the necessity 
but the use of such estimation may lead to a massive loss 

of revenue over time in the conventional optimization 
solution. Dynamic programming, proposed in [3], is a 
method to solve discontinuous and non-linear ELD 
problems but increasing system size increases simulation 
time in this method. Different non-traditional optimization 
techniques based on AI have been effectively used to 
solve ELD problems. These methods are evolutionary 
programming [4,5], particle swarm optimization [6], tabu 
search [7], differential evolution [8], biography-based 
optimization [9], genetic algorithm [10,11], artificial 
neural network [12], intelligent water drop algorithm [13], 
etc. Some studies have been done for ELD problems with 
valve point effect such as novel niche quantum genetic 
algorithm [14], hybrid quantum mechanics inspired 
particle swarm optimization [15], combining of chaotic 
differential evolution and quadratic programming [16], 
biogeography-based optimization [17], hybrid solution 
methodology integrating particle swarm optimization 
(PSO) algorithm [18,19,20], enhanced bee swarm 
optimization method [21], enhanced adaptive particle 
swarm optimization (EAPSO) algorithm [22], the 
sequential quadratic programming (SQP) method [23] and 
artificial bee colony algorithm [24]. Every approach has 
its limits. Neural networks can become computationally 
expensive due to their iterative nature, leading to longer 
processing times. Genetic algorithms suffer from 
premature convergence, which can degrade their 
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performance and limit their search capabilities. Particle 
Swarm Optimization (PSO) algorithms can progress 
slowly, especially when adjusting velocity step sizes 
becomes challenging, potentially hindering fine-grained 
search. In the case of multi-modal functions, PSO may 
struggle to reach the global optimum. Yet, regulating the 
control parameters in hybrid methods poses challenges, 
and enhancements often involve incorporating mutation 
operators. DE has been found to yield a better and faster 
solution, satisfying all the constraints, both for uni-modal 
and multi-modal systems by using its different crossover 
strategies. However, with an increase in system 
complexity and size, the DE method is unable to map its 
entire array of unknown variables together in an  
efficient way. A multi-objective-teaching–learning-based 
optimization algorithm [25] and a modified teaching–
learning algorithm [26] are employed to solve the dynamic 
economic emission dispatch problem where problem 
formulation is much more complicated. In [27] a self-
adaptive modified firefly algorithm is suggested to solve 
the ELD problem. While this algorithm is well-suited for 
parameter tuning, it faces challenges related to getting 
stuck in local optima. Researchers have introduced a 
meta-heuristic algorithm known as the Shuffled Frog 
Leaping Algorithm (SFLA) [28,29]. It aims to model and 
mimic the behavior of frogs searching for food laid on 
stones randomly located in a pond. It links the advantages 
of the social behavior-based particle swarm optimization 
(PSO) algorithm and the gene-based memetic algorithm 
(MA). The SFLA technique is used in unit commitment 
[30]. The basic Shuffled Frog Leaping Algorithm (SFLA) 
is enhanced by incorporating GA crossover during local 
iterations, resulting in the Modified Shuffled Frog 
Leaping Algorithm (MSFLA)to solve ELD problems with 
non-convex characteristics [31].  

Many other metaheuristic optimization techniques like 
the Backtracking Search Algorithm (BSA) [32], Evolved 
bat algorithm [33], Dragonfly Algorithm [34], Grey Wolf 
Optimizer [35], and Artificial Bee Colony Optimization 
[36] employed for ELD problems. All these methods are 
challenging with problems like low convergence rates and 
sticking to local optima. Another population-based Sine 
Cosine Algorithm (SCA) has been proposed in [37] where 
multiple initial random populations are generated and 
moved outward or toward the best solution. The look-
ahead economic dispatch was evaluated using a sensitivity 
matrix under the influence of data corruption to make a 
fast evaluation [38]. A cooperative reinforcement learning 
(RL) algorithm was proposed to achieve distributed 
economic dispatch in a microgrid with energy storage 
systems [39]. A dynamic economic dispatch problem for 
integrated energy systems was solved using an improved 
DDPG algorithm [40]. A deep RL method incorporating 
with deep deterministic policy gradient method is 
proposed to solve the ELD problem [41]. 

In recent years researchers are paying more attention to 
how optimization problems can be integrated using 
machine learning techniques. The review paper [42] 
evaluates different techniques on how data-driven 
decision-making improves rule-based optimization. [43] 
shows how the agent-based deep RL algorithm worked to 
mimic the decision process of real system operators by 
learning from past decisions and rewards in real-life 

power system applications. After careful consideration of 
all the research work, it is observed that the evaluation 
method for RL in power system economic dispatch 
remains under-explored, especially relating to its 
exceptional ability to adapt to various scenarios. 

The paper introduces a novel hybrid algorithm, termed 
intelligent multi-agent evolutionary Reinforcement 
Learning for multi-objective ELD optimization problems. 
This problem involves optimizing the operation of power 
plants subject to various constraints, including valve-point 
effects that cause non-smooth and non-convex 
characteristics in the cost function. 

The proposed method represents an innovative fusion 
of the Shuffled Frog Leaping Algorithm (SFLA) with 
reinforcement learning techniques, aimed at enhancing the 
optimization process for complex problems. SFLA draws 
inspiration from the social behavior of frogs, utilizing a 
population-based approach to search for optimal solutions. 
However, to mitigate stochastic behavior and improve 
convergence efficiency, we introduce an adaptive 
intelligent agent into the algorithm. This agent guides the 
frogs toward the best positions, thereby enhancing the 
exploration and exploitation capabilities of the algorithm. 

Reinforcement learning is integrated into SFLA to 
further augment its performance. By iteratively applying 
reinforcement learning techniques, the algorithm 
dynamically adjusts its exploration-exploitation balance, 
thereby reducing the range of fitness values over  
iterations. This iterative refinement aids in converging 
towards the global optimum solution. The amalgamation of 
reinforcement learning with SFLA enables a synergistic 
combination of local and global search techniques, fostering 
a more robust and efficient optimization process compared 
to algorithms reliant solely on global search strategies. 

To validate the effectiveness of the proposed method, 
extensive experimentation is conducted on various power 
system models, including those comprising 13 and 40 
generating units. Through these experiments, the 
performance of the proposed method is thoroughly 
evaluated and compared against existing literature. The 
results demonstrate the superior accuracy, efficiency, and 
convergence properties of the proposed method in solving 
the Economic Load Dispatch (ELD) problem within 
power systems. 

In summary, this paper introduces a promising hybrid 
algorithm that leverages the strengths of both SFLA and 
reinforcement learning to address complex optimization 
challenges in power systems. By offering improvements 
in accuracy, efficiency, and convergence compared to 
traditional optimization methods, the proposed approach 
holds significant potential for advancing the state-of-the-
art in power system optimization.  

2. Problem Formulation 

A. Objective Function 
The goal of the Economic Load Dispatch (ELD) 

problem, which exhibits non-convex characteristics, is to 
minimize the generation cost ( ). This cost primarily 
includes the fuel expenses incurred by thermal power 
plants, all while adhering to the operating constraints of a 
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power system—constraints that span both linear and non-
linear The fuel cost function is represented in equation (1) 
where respective cost coefficients and is the 
generated power of unit i.  

The quadratic fuel cost function (shown in Figure 1) 
can be formulated as 

 

Unit of cost/hr                                                            (1) 

 
Figure 1. Cost Function of Non-Convex ELD Problem 

In this study, the valve-point effects are also taken into 
account as a complementary component of the objective 
function. Therefore, the cost function is described as the 
superposition of sinusoidal functions and quadratic 
functions. The cost function curve is shown in Figure 2. 

 
Figure 2. Cost Function Curve for ELD Operation with Valve-Point 
Effect 

The dotted line in Figure 3 shows the cost function 
variation considering the valve-point effects. The cost 
function is derived from the ripple curve to enhance the 
accuracy of our modeling. This curve contains higher-
order nonlinearity and discontinuity due to the valve point 
effect and to incorporate such effects, sinusoidal functions 
are added with fuel cost function. Therefore, instead of 
using equation (1), the modified cost function is used, 
which is 

  (2) 
or 

 (3) 
Where, and are constants of the valve point effect of 
generators. Hence, the total fuel cost must be minimized 
according to equation (4). 

  (4) 
B. Constraints 

The objective of the ELD problem is subjected to the 
following equality and inequality constraints. 
Equality Constraints 

The total generated power from all units must equal the 
sum of the power demanded by the load and the total 
transmission loss. Mathematically, this constraint can be 
expressed as follows: 

  (5) 
Where must be less than tolerance, as according to the 

power balance criterion, generated power (PG) should be 
equal to total load demand (PD) plus total line losses (PL)?  

The system transmission network loss is computed by 
Kron's loss formula, which represents loss as a function of 
the output level of the system-generating units. The matrix 
formulation is shown in (6). 

   

  (6) 
In a system comprising N power plants, the loss 

coefficients are defined as follows: 

  

  

  (7) 
To calculate transmission losses, apart from Kron's 

formula other methods such as Newton's approaches using 
polar coordinates and rectangular coordinates and several 
nonlinear techniques are also being used. Nowadays 
transmission losses are simultaneously determined in 
conjunction with optimal power flow calculation. In this 
paper, loss coefficients are calculated using the optimal 
power flow solution along with the load flow method. 
Inequality Constraints  
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The power output of each unit (i) must be greater  
than or equal to the minimum power permitted and also be 
less than or equal to the maximum power permitted on 
that specified unit. Thus, the inequality constraint is 
expressed as: 

  (8) 
Complications of the ELD problem with and without 

valve point effect considering both equality and inequality 
constraints, have been overcome by introducing a new 
adaptive intelligent agent-based flog leaping optimizer for 
the ELD problem. 

3. Proposed Work-flow of Adaptive 
Intelligent Agent-based Flog Leaping 
Optimizer (AdaFLO) for ELD Problem 

This optimizer is inspired by the frog leaping algorithm 
but Each frog iteratively adjusts its position guided by the 
intelligent agent. The frog's movement is influenced by 
the agent's guidance, aiming to improve the solution. The 
learning rate may dynamically adjust based on the 
performance of the frogs and the agent's observations.  

The adaptive agent is the intelligent agent that evolves 
based on the frogs' behavior and exploration of the 
solution space. It dynamically adjusts its strategy to guide 
the frogs towards promising regions. 

There are mainly two stages in the optimizer. First is 
the creation of the agent which will guide the frog to jump 
in the proper direction instead of random places along the 
search place. Hence, while creating the agent, we will be 
doing the exploration of the solution space. The second 
part of the algorithm is how the agent will help the frogs 
(individual solutions) to jump to the proper location 
within the solution space which is nothing but the 
exploitation of the specific solution spaces. 

To remove the local optima, we will be effectively 
using the learning rate to generate the agent accordingly. 

The optimizer algorithm is defined as follows: 
1.  generate a population of frogs randomly adhering 

to all the constraints 
2.  sort the population and find the best one  
3.  generate agent based on the best frog  

a.  for all the variables, take a constant, and for 
each interval, calculate the fitness value keeping 
all other variables fixed. 

b.  Calculate and sort the fitness values generated 
for all the combinations. 

c.  Take the order of the variables in ascending as 
well as descending order of the fitness values. 

d.  Observe and find the position of each variable 
lying under the solution space based on the 
fitness values. These positions corresponding to 
each variable are the weightage for each 
attribute that impacts the fitness value. 

4.  From the entire population, fetch the best one, 
worst one and randomly pick one. 

5.  Improve the position values for all these 3 frogs 
based on the agent recommendations. 

6.  Take all three newly positioned frogs into the 
population and find the best one. 

7.  Based on the learning rate, generate the agent (step 
3) again and use the recommendations accordingly. 

8.  Go to step 4 and continue until certain global 
iterations are met. 

9.  Fetch the best fitness frog which is the optimal 
solution. 

4. Simulation Result and Analysis 

This section employs two examples to illustrate the 
effectiveness of the proposed intelligent multi-agent 
evolutionary Reinforcement Learning featuring SFLA 
concerning the quality of the solution obtained.  

Case I: Generator number 13.  
Case II: Generator number 40.  
In all the cases transmission losses are considered as 

standard value and valve point effects are considered. 
The program is developed in Python. 
Case Study I: 
The test system consisted of 13 units taking account of 

valve point loading. The accurate cost model using 
(equation 3), considers the valve point effect; the 
sinusoidal function is included in the quadratic cost 
function. In this case, the load demand expected to be 
determined was PD =1800MW. 

The results obtained for case study I with solution 
quality and comparison with other methods are shown in 
Table 1 which shows that the AdaFLO succeeded in 
finding the best solution for the tested method compared 
to other benchmark methods. The proposed method is 
capable of producing a higher-quality solution than most 
evolutionary methods. 

Table 1. Performance Comparison of AdaFLO with Other 
Benchmark Methods for Case Study I 

Optimization Methods Minimum cost 
($/hr) 

Computational time 
(Sec.) 

AdaFLO 17238.43 60.1 
MSFLA with  

GA cross-over 17930.24 52.33 

HQPSO [15] 18081.05 - 
CEP [4] 18190.32 294.96 
FEP [4] 18200.79 168.11 

MFEP [4] 18192.00 317.12 
IFEP [4] 18127.06 157.43 

QPSO [18] 18075.11 77.37 
RCGA [13] - - 

ICA-PSO [19] 17967.94 33.97 
DEC-SQP [16] 17943.1339 50.09 

BBO [8] 18015.38 34.76 

The best generation value of each unit is tabulated in 
Table 1. It can be inferred from the results that the 
solution obtained from the proposed AdaFLO method is 
better than other techniques. The mean cost achieved by 
the proposed method is found to be the least. This implies 
that, on average, the quality of solutions obtained by the 
method is better than other methods. Moreover, the 
average execution time for this algorithm suggests that the 
process is capable of solving at a very high speed. 
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Figure 3. Final computational result and convergence characteristics 

Figure 3 shows how the variables got optimized by the 
reinforcement agent and finally converged into the final 
fitness value over the generations. 

Table 2 reveals that FEP performed worst in terms of 
generation cost and MFEP took maximum computational 
time. AdaFLO possessed higher solution time compared 
to ICA-PSO, DEC-SQP, and BBO, as it runs global as 
well as local iterations simultaneously to get better 
solutions. It has better global search capability compared 
to other benchmark methods mentioned in Table 3.  In this 
test case, it emerged as the most favorable method when 
considering convergence rate, solution time, and the 
likelihood of achieving improved solutions. The best 
result obtained for solution vector Pi, where i=1, 2 … 13 
with the proposed approach with a minimum cost of 
17238.43$/hr is given in Table 2. 
Case Study II 

Test case II consisted of 40 generating units, with 
modifications to incorporate the valve-point loading. The 
load demand is 10500 MW. Table 2 shows the best 
solution time and minimum cost achieved by the proposed 
method, compared with other benchmark methods. MFEP 
was the slowest among the twelve. The minimum 

generation cost obtained by AdaFLO is 121063.55 $/hr is 
the least among the remaining cases. It has been observed 
that the improved mechanism of AdaFLO owns stronger 
global search ability, higher precision, faster velocity of 
convergence, and better robustness. 

Table 2. Performance Comparison of AdaFLO with Other 
Benchmark Methods for Case II 

Optimization 
Methods 

Minimum Cost 
($/hr) 

Computational time 
(Sec.) 

AdaFLO 121063.55 90 
MSFLA with GA 

cross-over 121263.48 82.78 

HQPSO [15] 121320.29 - 
CEP [4] 123448.29 1956.93 
FEP [4] 122679.71 1039.16 

MFEP [4] 122647.57 2196.10 
IFEP [4] 122624.35 1167.35 

QPSO [18] 121448.21 933.39 
RCGA [13] 121418.72 - 

ICA-PSO [19] 121413.20 733.97 
DEC-SQP [16] 121749.1892 14.39 

BBO [8] 121426.95 145.35 
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Comparative study 
Solution quality 

From the above analysis, it is clear that the minimum 
costs achieved by AdaFLO are the lowest in all the case 
studies. Those are best and less than reported in other 
benchmark methods. It can be said that the performance of 
the AdaFLO method is consistent for large convex-type 
systems. For both convex and non-convex ELD problems, 
the method proves its ability to reach global minima in a 
consistent manner and its better convergence characteristic. 
Computational efficiency 

The AdaFLO approach is also efficient as far as 
computational time is concerned. The time requirement is 
significantly less and either comparable or better than 
other mentioned methods. In both the case study, it 
possesses less time compared to CEP, FEP, MFEP, IFEP, 
and QPSO. Only BBO, DEC-SQP.So as a whole, it can be 
said that the AdaFLO method is more computationally 
efficient than the previously mentioned methods. 

5. Conclusion 

In this paper, we introduce a novel approach that 
combines the Shuffled Frog Leaping Algorithm (SFLA) 
with Adaptive Intelligent Agent-Based Learning (AdaFLO) 
to tackle constraint economic dispatch problems, taking 
into account the valve point non-linearities of generators. 
We estimate an optimal range for global iteration, local 
iteration, and population size for AdaFLO to effectively solve 
various test cases. By conducting case studies on 13 and 40-
unit test systems with valve-point effects and load flow 
constraints, we demonstrate the feasibility and effectiveness 
of the AdaFLO method. Our results, compared with other 
evolutionary techniques, highlight AdaFLO's capability to 
obtain optimal solutions for fuel cost functions of non-
smooth and non-differentiable test systems. 

The proposed hybrid method leverages the 
reinforcement learning operation and the Shuffled Frog 
Leaping Algorithm, offering a robust solution approach, 
even in scenarios demanding higher processing time. 
Employing a divide-and-conquer strategy in implementing 
this algorithm enhances its efficiency. Consequently, it 
emerges as a leading non-linear programming technique 
for addressing constrained optimization challenges, with 
its effectiveness being contingent upon the selection of the 
initial point. 

Future research avenues could extend the application of 
this method to various domains within power system 
optimization, such as optimal power flow, voltage control, 
optimal capacitor placement, feeder balancing, and beyond. 
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